आंशिक अवकलज: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Derivative of a function with multiple variables}} {{Calculus}} गणित में, एक फ़ंक्शन (गणित) #MULTIVARIATE FUNCTION...")
 
Line 12: Line 12:
आंशिक डेरिवेटिव को निरूपित करने के लिए प्रयुक्त प्रतीक ∂ है। गणित में इस प्रतीक के पहले ज्ञात उपयोगों में से एक 1770 से [[मार्क्विस डी कोंडोरसेट]] का है, जिन्होंने [[आंशिक अंतर समीकरण]] के लिए इसका इस्तेमाल किया था। आधुनिक आंशिक व्युत्पन्न संकेतन [[एड्रियन मैरी लीजेंड्रे]] (1786) द्वारा बनाया गया था, हालांकि बाद में उन्होंने इसे छोड़ दिया; [[कार्ल गुस्ताव जैकब जैकोबी]] ने 1841 में प्रतीक को फिर से प्रस्तुत किया।<ref name="jeff_earliest">{{cite web|url=http://jeff560.tripod.com/calculus.html|title=पथरी के प्रतीकों का सबसे पुराना उपयोग| first=Jeff| last=Miller|date=2009-06-14|work=Earliest Uses of Various Mathematical Symbols|access-date=2009-02-20}}</रेफरी>
आंशिक डेरिवेटिव को निरूपित करने के लिए प्रयुक्त प्रतीक ∂ है। गणित में इस प्रतीक के पहले ज्ञात उपयोगों में से एक 1770 से [[मार्क्विस डी कोंडोरसेट]] का है, जिन्होंने [[आंशिक अंतर समीकरण]] के लिए इसका इस्तेमाल किया था। आधुनिक आंशिक व्युत्पन्न संकेतन [[एड्रियन मैरी लीजेंड्रे]] (1786) द्वारा बनाया गया था, हालांकि बाद में उन्होंने इसे छोड़ दिया; [[कार्ल गुस्ताव जैकब जैकोबी]] ने 1841 में प्रतीक को फिर से प्रस्तुत किया।<ref name="jeff_earliest">{{cite web|url=http://jeff560.tripod.com/calculus.html|title=पथरी के प्रतीकों का सबसे पुराना उपयोग| first=Jeff| last=Miller|date=2009-06-14|work=Earliest Uses of Various Mathematical Symbols|access-date=2009-02-20}}</रेफरी>


== परिभाषा ==
==परिभाषा==
सामान्य डेरिवेटिव की तरह, आंशिक डेरिवेटिव को फ़ंक्शन की सीमा के रूप में परिभाषित किया जाता है। चलो यू का एक [[खुला सेट]] हो <math>\R^n</math> और <math>f:U\to\R</math> एक समारोह। बिंदु पर f का आंशिक व्युत्पन्न <math>\mathbf{a}=(a_1, \ldots, a_n) \in U</math> i-वें चर x के संबंध में<sub>''i''</sub> की तरह परिभाषित किया गया है
सामान्य डेरिवेटिव की तरह, आंशिक डेरिवेटिव को फ़ंक्शन की सीमा के रूप में परिभाषित किया जाता है। चलो यू का एक [[खुला सेट]] हो <math>\R^n</math> और <math>f:U\to\R</math> एक समारोह। बिंदु पर f का आंशिक व्युत्पन्न <math>\mathbf{a}=(a_1, \ldots, a_n) \in U</math> i-वें चर x के संबंध में<sub>''i''</sub> की तरह परिभाषित किया गया है


Line 26: Line 26:
:<math>\frac{\partial^2f}{\partial x_i \partial x_j} = \frac{\partial^2f} {\partial x_j \partial x_i}.</math>
:<math>\frac{\partial^2f}{\partial x_i \partial x_j} = \frac{\partial^2f} {\partial x_j \partial x_i}.</math>


 
==नोटेशन==
== नोटेशन ==
{{see|∂}}
{{see|∂}}
निम्नलिखित उदाहरणों के लिए, आइए <math>f</math> में एक समारोह हो <math>x, y</math> और <math>z</math>.
निम्नलिखित उदाहरणों के लिए, आइए <math>f</math> में एक समारोह हो <math>x, y</math> और <math>z</math>.
Line 54: Line 53:
:<math>\frac{\partial f(x,y,z)}{\partial x}(17, u+v, v^2)</math> या
:<math>\frac{\partial f(x,y,z)}{\partial x}(17, u+v, v^2)</math> या


:<math>\left. \frac{\partial f(x,y,z)}{\partial x}\right |_{(x,y,z)=(17, u+v, v^2)}</math> लीबनिज संकेतन का उपयोग करने के लिए। इस प्रकार, इन मामलों में, यूलर डिफरेंशियल ऑपरेटर नोटेशन का उपयोग करना बेहतर हो सकता है <math>D_i</math> iवें चर के संबंध में आंशिक व्युत्पन्न प्रतीक के रूप में। उदाहरण के लिए, कोई लिखेगा <math>D_1 f(17, u+v, v^2)</math> ऊपर वर्णित उदाहरण के लिए, जबकि अभिव्यक्ति <math>D_1 f</math> पहले चर के संबंध में आंशिक डेरिवेटिव फ़ंक्शन का प्रतिनिधित्व करता है।<ref>{{Cite book| url=https://archive.org/details/SpivakM.CalculusOnManifoldsPerseus2006Reprint| title=कई गुना पर पथरी| last=Spivak| first=M.| publisher=W. A. Benjamin, Inc.|year=1965|isbn=9780805390216|location=New York|pages=44}}</ref>
:<math>\left. \frac{\partial f(x,y,z)}{\partial x}\right |_{(x,y,z)=(17, u+v, v^2)}</math> लीबनिज संकेतन का उपयोग करने के लिए। इस प्रकार, इन मामलों में, यूलर डिफरेंशियल ऑपरेटर नोटेशन का उपयोग करना बेहतर हो सकता है <math>D_i</math> iवें चर के संबंध में आंशिक व्युत्पन्न प्रतीक के रूप में। उदाहरण के लिए, कोई लिखेगा <math>D_1 f(17, u+v, v^2)</math> ऊपर वर्णित उदाहरण के लिए, जबकि अभिव्यक्ति <math>D_1 f</math> पहले चर के संबंध में आंशिक डेरिवेटिव फ़ंक्शन का प्रतिनिधित्व करता है।<nowiki><ref></nowiki>{{Cite book| url=https://archive.org/details/SpivakM.CalculusOnManifoldsPerseus2006Reprint| title=कई गुना पर पथरी| last=Spivak| first=M.| publisher=W. A. Benjamin, Inc.|year=1965|isbn=9780805390216|location=New York|pages=44}}</ref>
उच्च क्रम के आंशिक डेरिवेटिव के लिए, आंशिक डेरिवेटिव (फ़ंक्शन) का <math>D_i f</math> jवें चर के संबंध में निरूपित किया जाता है <math>D_j(D_i f)=D_{i,j} f</math>. वह है, <math>D_j\circ D_i =D_{i,j}</math>, ताकि वेरिएबल्स को उस क्रम में सूचीबद्ध किया जा सके जिसमें डेरिवेटिव लिया जाता है, और इस प्रकार, ऑपरेटरों की संरचना आमतौर पर कैसे नोट की जाती है, इसके विपरीत क्रम में। बेशक, मिश्रित आंशिकों की समानता पर क्लेराट का प्रमेय | क्लेराट का प्रमेय का अर्थ है कि <math>D_{i,j}=D_{j,i}</math> जब तक f पर तुलनात्मक रूप से हल्की नियमितता की स्थिति संतुष्ट होती है।
उच्च क्रम के आंशिक डेरिवेटिव के लिए, आंशिक डेरिवेटिव (फ़ंक्शन) का <math>D_i f</math> jवें चर के संबंध में निरूपित किया जाता है <math>D_j(D_i f)=D_{i,j} f</math>. वह है, <math>D_j\circ D_i =D_{i,j}</math>, ताकि वेरिएबल्स को उस क्रम में सूचीबद्ध किया जा सके जिसमें डेरिवेटिव लिया जाता है, और इस प्रकार, ऑपरेटरों की संरचना आमतौर पर कैसे नोट की जाती है, इसके विपरीत क्रम में। बेशक, मिश्रित आंशिकों की समानता पर क्लेराट का प्रमेय | क्लेराट का प्रमेय का अर्थ है कि <math>D_{i,j}=D_{j,i}</math> जब तक f पर तुलनात्मक रूप से हल्की नियमितता की स्थिति संतुष्ट होती है।


Line 239: Line 238:
== टिप्पणियाँ ==
== टिप्पणियाँ ==
{{NoteFoot}}
{{NoteFoot}}
== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
==इस पेज में लापता आंतरिक लिंक की सूची==
*अंक शास्त्र
*एक समारोह की सीमा
*वेक्टर क्षेत्र
*स्पर्शरेखा
*एक समारोह का ग्राफ
*ऊंचाई
*RADIUS
*मात्रा
*पहले आदेश की स्थिति
*समीकरणों की प्रणाली
*मोल - अंश
*आंशिक विभेदक समीकरण
*सीवन नक्काशी
*मार्जिनल प्रोपेंसिटी टू कंज़्यूम
*खपत समारोह
== बाहरी कड़ियाँ ==
== बाहरी कड़ियाँ ==
* {{Springer |title = Partial derivative |id = p/p071620 }}
* {{Springer |title = Partial derivative |id = p/p071620 }}
* [http://mathworld.wolfram.com/PartialDerivative.html Partial Derivatives] at [[MathWorld]]
* [http://mathworld.wolfram.com/PartialDerivative.html Partial Derivatives] at [[MathWorld]]
{{-}}
{{Calculus topics}}
{{Calculus topics}}
[[श्रेणी:बहुभिन्नरूपी कलन]]
[[श्रेणी:बहुभिन्नरूपी कलन]]

Revision as of 15:12, 25 July 2023

गणित में, एक फ़ंक्शन (गणित) #MULTIVARIATE FUNCTION का एक आंशिक व्युत्पन्न उन चरों में से एक के संबंध में इसका व्युत्पन्न है, जिसमें अन्य स्थिर होते हैं (कुल व्युत्पन्न के विपरीत, जिसमें सभी चर भिन्न हो सकते हैं)। आंशिक यौगिक का उपयोग वेक्टर पथरी और अंतर ज्यामिति में किया जाता है।

किसी फ़ंक्शन का आंशिक व्युत्पन्न चर के संबंध में द्वारा विभिन्न रूप से निरूपित किया जाता है

,, , , , , or .

इसे फ़ंक्शन के परिवर्तन की दर के रूप में सोचा जा सकता है -दिशा।

कभी-कभी, के लिए , का आंशिक व्युत्पन्न इसके संबंध में के रूप में दर्शाया गया है चूंकि आंशिक व्युत्पन्न में आम तौर पर मूल कार्य के समान तर्क होते हैं, इसकी कार्यात्मक निर्भरता को कभी-कभी संकेतन द्वारा स्पष्ट रूप से दर्शाया जाता है, जैसे कि:

आंशिक डेरिवेटिव को निरूपित करने के लिए प्रयुक्त प्रतीक ∂ है। गणित में इस प्रतीक के पहले ज्ञात उपयोगों में से एक 1770 से मार्क्विस डी कोंडोरसेट का है, जिन्होंने आंशिक अंतर समीकरण के लिए इसका इस्तेमाल किया था। आधुनिक आंशिक व्युत्पन्न संकेतन एड्रियन मैरी लीजेंड्रे (1786) द्वारा बनाया गया था, हालांकि बाद में उन्होंने इसे छोड़ दिया; कार्ल गुस्ताव जैकब जैकोबी ने 1841 में प्रतीक को फिर से प्रस्तुत किया।[1] उच्च क्रम के आंशिक डेरिवेटिव के लिए, आंशिक डेरिवेटिव (फ़ंक्शन) का jवें चर के संबंध में निरूपित किया जाता है . वह है, , ताकि वेरिएबल्स को उस क्रम में सूचीबद्ध किया जा सके जिसमें डेरिवेटिव लिया जाता है, और इस प्रकार, ऑपरेटरों की संरचना आमतौर पर कैसे नोट की जाती है, इसके विपरीत क्रम में। बेशक, मिश्रित आंशिकों की समानता पर क्लेराट का प्रमेय | क्लेराट का प्रमेय का अर्थ है कि जब तक f पर तुलनात्मक रूप से हल्की नियमितता की स्थिति संतुष्ट होती है।

ग्रेडिएंट

कई चरों के फ़ंक्शन का एक महत्वपूर्ण उदाहरण अदिश-मूल्यवान समारोह f(x1, ..., एक्सn) यूक्लिडियन अंतरिक्ष में एक डोमेन पर (उदा., पर या ). इस स्थिति में f का आंशिक व्युत्पन्न ∂f/∂x हैjप्रत्येक चर x के संबंध मेंj. बिंदु a पर, ये आंशिक डेरिवेटिव वेक्टर को परिभाषित करते हैं

इस वेक्टर को a पर f का ग्रेडिएंट कहा जाता है। यदि f किसी डोमेन में प्रत्येक बिंदु पर अवकलनीय है, तो ग्रेडिएंट एक वेक्टर-मूल्यवान फ़ंक्शन ∇f है जो बिंदु a को वेक्टर ∇f(a) तक ले जाता है। नतीजतन, ढाल एक सदिश क्षेत्र पैदा करता है।

अंकन का एक सामान्य दुरुपयोग डेल ऑपरेटर (∇) को त्रि-आयामी यूक्लिडियन अंतरिक्ष में निम्नानुसार परिभाषित करना है यूनिट वैक्टर के साथ :

या, अधिक आम तौर पर, एन-डायमेंशनल यूक्लिडियन स्पेस के लिए निर्देशांक के साथ और यूनिट वैक्टर :


दिशात्मक व्युत्पन्न

Page 'Directional derivative' not found


उदाहरण

मान लीजिए कि f एक से अधिक चरों का फलन है। उदाहरण के लिए,

.
A graph of z = x2 + xy + y2. For the partial derivative at (1, 1) that leaves y constant, the corresponding tangent line is parallel to the xz-plane.
A slice of the graph above showing the function in the xz-plane at y = 1. Note that the two axes are shown here with different scales. The slope of the tangent line is 3.

इस फ़ंक्शन के एक फ़ंक्शन का ग्राफ़ यूक्लिडियन अंतरिक्ष में एक सतह (टोपोलॉजी) को परिभाषित करता है। इस सतह के प्रत्येक बिंदु पर अनंत संख्या में स्पर्श रेखाएँ होती हैं। आंशिक विभेदीकरण इन रेखाओं में से किसी एक को चुनने और उसकी ढलान का पता लगाने का कार्य है। आमतौर पर, सबसे अधिक रुचि की रेखाएँ वे होती हैं जो इसके समानांतर होती हैं -प्लेन, और जो इसके समानांतर हैं -प्लेन (जो या तो धारण करने का परिणाम है या स्थिर, क्रमशः)।

फ़ंक्शन पर स्पर्श रेखा की ढलान खोजने के लिए और के समानांतर -प्लेन, हम इलाज करते हैं एक स्थिर के रूप में। ग्राफ और इस विमान को दाईं ओर दिखाया गया है। नीचे, हम देखते हैं कि फ़ंक्शन विमान पर कैसा दिखता है . यह मानते हुए समीकरण का व्युत्पन्न ज्ञात करके एक स्थिर है, हम पाते हैं कि की ढलानबिंदु पर है:

तो पर , प्रतिस्थापन द्वारा, ढलान 3 है। इसलिए,

बिंदु पर . अर्थात्, का आंशिक व्युत्पन्न इसके संबंध में पर 3 है, जैसा कि ग्राफ में दिखाया गया है।

फ़ंक्शन f को अन्य चर द्वारा अनुक्रमित एक चर के कार्यों के परिवार के रूप में पुनर्व्याख्या की जा सकती है:

दूसरे शब्दों में, y का प्रत्येक मान एक फलन को परिभाषित करता है, जिसे f द्वारा निरूपित किया जाता हैy, जो कि एक चर x का फलन है।[note 1] वह है,

इस खंड में सबस्क्रिप्ट नोटेशन fyy के निश्चित मान पर आकस्मिक फलन को दर्शाता है, न कि आंशिक अवकलज को।

एक बार जब y का मान चुन लिया जाता है, मान लीजिए a, तो f(x,y) एक फलन f निर्धारित करता हैaजो एक वक्र x का पता लगाता है2 + कुल्हाड़ी + ए2 पर -विमान:

इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए एफaकेवल एक वास्तविक चर का फलन है, जो कि x है। नतीजतन, एक चर के एक समारोह के लिए व्युत्पन्न की परिभाषा लागू होती है:

उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। डेरिवेटिव को एक साथ एक फ़ंक्शन में इकट्ठा करना एक ऐसा फ़ंक्शन देता है जो x दिशा में f की भिन्नता का वर्णन करता है:

यह x के संबंध में f का आंशिक व्युत्पन्न है। यहाँ ∂ एक गोलाकार d है जिसे आंशिक व्युत्पन्न प्रतीक कहा जाता है; अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी आंशिक उच्चारित किया जाता है।

उच्च क्रम आंशिक डेरिवेटिव

दूसरे और उच्च क्रम के आंशिक डेरिवेटिव को एकतरफा कार्यों के उच्च क्रम के डेरिवेटिव के अनुरूप परिभाषित किया गया है। समारोह के लिए एक्स के संबंध में स्वयं का दूसरा आंशिक व्युत्पन्न केवल आंशिक व्युत्पन्न का आंशिक व्युत्पन्न है (दोनों एक्स के संबंध में):[2]: 316–318 

x और y के संबंध में क्रॉस आंशिक व्युत्पन्न, x के संबंध में f का आंशिक व्युत्पन्न लेकर और फिर y के संबंध में परिणाम का आंशिक व्युत्पन्न लेकर प्राप्त किया जाता है।

श्वार्ज प्रमेय | श्वार्ज की प्रमेय में कहा गया है कि यदि दूसरा डेरिवेटिव निरंतर है, तो क्रॉस आंशिक डेरिवेटिव के लिए अभिव्यक्ति अप्रभावित है कि पहले के संबंध में आंशिक डेरिवेटिव किस वेरिएबल के लिए लिया जाता है और जो दूसरे के लिए लिया जाता है। वह है,

या समकक्ष हेसियन मैट्रिक्स में स्वयं और क्रॉस आंशिक डेरिवेटिव दिखाई देते हैं जो अनुकूलन समस्याओं में दूसरे क्रम की स्थितियों में उपयोग किया जाता है। उच्च कोटि के आंशिक अवकलज उत्तरोत्तर अवकलन द्वारा प्राप्त किए जा सकते हैं

antiderivative एनालॉग

आंशिक डेरिवेटिव के लिए एक अवधारणा है जो नियमित डेरिवेटिव के लिए एंटीडेरिवेटिव के अनुरूप है। आंशिक व्युत्पन्न को देखते हुए, यह मूल कार्य की आंशिक वसूली की अनुमति देता है।

के उदाहरण पर विचार करें

आंशिक समाकल को x के संबंध में लिया जा सकता है (y को स्थिर मानते हुए, आंशिक विभेदन के समान तरीके से):

यहाँ, समाकलन का स्थिरांक| एकीकरण का स्थिरांक अब स्थिर नहीं है, बल्कि x को छोड़कर मूल कार्य के सभी चरों का एक कार्य है। इसका कारण यह है कि आंशिक व्युत्पन्न लेते समय अन्य सभी चरों को स्थिर माना जाता है, इसलिए कोई भी कार्य जिसमें शामिल नहीं होता है आंशिक डेरिवेटिव लेते समय गायब हो जाएगा, और जब हम एंटीडेरिवेटिव लेते हैं तो हमें इसका हिसाब देना होगा। इसका प्रतिनिधित्व करने का सबसे सामान्य तरीका यह है कि स्थिरांक अन्य सभी चरों के अज्ञात फ़ंक्शन का प्रतिनिधित्व करता है।

इस प्रकार कार्यों का सेट , जहाँ g कोई एक-तर्क फलन है, चर x, y में कार्यों के पूरे सेट का प्रतिनिधित्व करता है जो x-आंशिक व्युत्पन्न का उत्पादन कर सकता था .

यदि किसी फ़ंक्शन के सभी आंशिक डेरिवेटिव ज्ञात हैं (उदाहरण के लिए, ग्रेडिएंट के साथ), तो एंटीडेरिवेटिव्स को उपरोक्त प्रक्रिया के माध्यम से एक स्थिरांक तक मूल फ़ंक्शन को फिर से बनाने के लिए मिलान किया जा सकता है। एकल-चर मामले के विपरीत, हालांकि, फ़ंक्शन का प्रत्येक सेट एकल फ़ंक्शन के सभी (प्रथम) आंशिक डेरिवेटिव का सेट नहीं हो सकता है। दूसरे शब्दों में, प्रत्येक वेक्टर फ़ील्ड रूढ़िवादी वेक्टर क्षेत्र नहीं है।

अनुप्रयोग

ज्यामिति

शंकु का आयतन ऊंचाई और त्रिज्या पर निर्भर करता है

एक शंकु (ज्यामिति) का आयतन V सूत्र के अनुसार शंकु की ऊँचाई h और उसकी त्रिज्या r पर निर्भर करता है

आर के संबंध में वी का आंशिक व्युत्पन्न है

जो उस दर का प्रतिनिधित्व करता है जिसके साथ शंकु का आयतन बदलता है यदि इसकी त्रिज्या भिन्न होती है और इसकी ऊंचाई स्थिर रहती है। के संबंध में आंशिक व्युत्पन्न बराबरी जो उस दर का प्रतिनिधित्व करता है जिसके साथ मात्रा बदलती है यदि इसकी ऊंचाई भिन्न होती है और इसकी त्रिज्या स्थिर रहती है।

इसके विपरीत, r और h के संबंध में V का कुल व्युत्पन्न क्रमशः है

और

कुल और आंशिक व्युत्पन्न के बीच का अंतर आंशिक डेरिवेटिव में चर के बीच अप्रत्यक्ष निर्भरता का उन्मूलन है।

अगर (किसी मनमाने कारण से) शंकु के अनुपात को वही रहना है, और ऊंचाई और त्रिज्या एक निश्चित अनुपात k में हैं,

यह आर के संबंध में कुल व्युत्पन्न देता है:

जो सरल करता है:

इसी प्रकार, एच के संबंध में कुल व्युत्पन्न है:

इन दो वेरिएबल्स के स्केलर फ़ंक्शन के रूप में इच्छित मात्रा के आर और एच दोनों के संबंध में कुल व्युत्पन्न ढाल वेक्टर द्वारा दिया गया है


अनुकूलन

आंशिक डेरिवेटिव किसी भी कलन-आधारित अनुकूलन समस्या में एक से अधिक विकल्प चर के साथ दिखाई देते हैं। उदाहरण के लिए, अर्थशास्त्र में एक फर्म दो अलग-अलग प्रकार के आउटपुट की मात्रा x और y की पसंद के संबंध में लाभ (अर्थशास्त्र) π(x, y) को अधिकतम करने की इच्छा कर सकती है। इस अनुकूलन के लिए पहली ऑर्डर की शर्तें π हैंx = 0 = पीy. चूंकि दोनों आंशिक डेरिवेटिव πx और πy आम तौर पर स्वयं दोनों तर्कों x और y के कार्य होंगे, ये दो प्रथम क्रम की शर्तें समीकरणों की एक प्रणाली बनाती हैं।

ऊष्मप्रवैगिकी, क्वांटम यांत्रिकी और गणितीय भौतिकी

आंशिक डेरिवेटिव थर्मोडायनामिक समीकरणों जैसे गिब्स-डुहेम समीकरण, क्वांटम यांत्रिकी में श्रोडिंगर समीकरण के साथ-साथ गणितीय भौतिकी के अन्य समीकरणों में दिखाई देते हैं। यहां आंशिक डेरिवेटिव में चर को स्थिर रखा जा सकता है, जो मोल अंश x जैसे सरल चर का अनुपात हो सकता हैiनिम्नलिखित उदाहरण में एक टर्नरी मिश्रण प्रणाली में गिब्स ऊर्जा शामिल है:

एक घटक के मोल अंशों को अन्य घटकों के मोल अंश और बाइनरी मोल अनुपात के कार्यों के रूप में व्यक्त करें:

उपरोक्त की तरह स्थिर अनुपात में विभेदक भागफल बनाए जा सकते हैं:

मोल अंशों के अनुपात X, Y, Z को त्रिगुट और बहुघटक प्रणालियों के लिए लिखा जा सकता है:

जिसका उपयोग आंशिक अंतर समीकरणों को हल करने के लिए किया जा सकता है:

इस समानता को एक तरफ मोल अंशों के अंतर भागफल के लिए पुनर्व्यवस्थित किया जा सकता है।

छवि का आकार बदलना

आंशिक डेरिवेटिव लक्ष्य-जागरूक छवि आकार बदलने वाले एल्गोरिदम के लिए महत्वपूर्ण हैं। व्यापक रूप से सीम नक्काशी के रूप में जाना जाता है, इन एल्गोरिदम को ऑर्थोगोनल आसन्न पिक्सल के खिलाफ उनकी असमानता का वर्णन करने के लिए एक छवि में प्रत्येक पिक्सेल को एक संख्यात्मक 'ऊर्जा' निर्दिष्ट करने की आवश्यकता होती है। कलन विधि फिर सबसे कम ऊर्जा वाली पंक्तियों या स्तंभों को उत्तरोत्तर हटाता है। एक पिक्सेल की ऊर्जा (पिक्सेल पर ग्रेडिएंट का परिमाण) निर्धारित करने के लिए स्थापित सूत्र आंशिक डेरिवेटिव के निर्माण पर बहुत अधिक निर्भर करता है।

अर्थशास्त्र

आंशिक डेरिवेटिव अर्थशास्त्र में एक प्रमुख भूमिका निभाते हैं, जिसमें आर्थिक व्यवहार का वर्णन करने वाले अधिकांश कार्य यह मानते हैं कि व्यवहार एक से अधिक चर पर निर्भर करता है। उदाहरण के लिए, एक सामाजिक उपभोग फलन आय और धन दोनों के आधार पर उपभोक्ता वस्तुओं पर खर्च की गई राशि का वर्णन कर सकता है; उपभोग करने के लिए सीमांत प्रवृत्ति तो आय के संबंध में उपभोग समारोह का आंशिक व्युत्पन्न है।

यह भी देखें


टिप्पणियाँ

  1. This can also be expressed as the adjointness between the product space and function space constructions.

संदर्भ

  1. Miller, Jeff (2009-06-14). "पथरी के प्रतीकों का सबसे पुराना उपयोग". Earliest Uses of Various Mathematical Symbols. Retrieved 2009-02-20.</रेफरी>

    परिभाषा

    सामान्य डेरिवेटिव की तरह, आंशिक डेरिवेटिव को फ़ंक्शन की सीमा के रूप में परिभाषित किया जाता है। चलो यू का एक खुला सेट हो और एक समारोह। बिंदु पर f का आंशिक व्युत्पन्न i-वें चर x के संबंध मेंi की तरह परिभाषित किया गया है

    भले ही सभी आंशिक डेरिवेटिव ∂f/∂xi(ए) किसी दिए गए बिंदु पर मौजूद है, फ़ंक्शन को वहां निरंतर कार्य करने की आवश्यकता नहीं है। हालाँकि, यदि सभी आंशिक डेरिवेटिव a के एक पड़ोस (टोपोलॉजी) में मौजूद हैं और वहाँ निरंतर हैं, तो f उस पड़ोस में कुल व्युत्पन्न है और कुल व्युत्पन्न निरंतर है। इस स्थिति में, यह कहा जाता है कि f एक C है1 समारोह। इसका उपयोग सदिश मूल्यवान कार्यों के लिए सामान्यीकृत करने के लिए किया जा सकता है, , एक घटकवार तर्क का सावधानीपूर्वक उपयोग करके।

    आंशिक व्युत्पन्न यू पर परिभाषित एक अन्य फ़ंक्शन के रूप में देखा जा सकता है और फिर से आंशिक रूप से विभेदित किया जा सकता है। यदि सभी मिश्रित दूसरे क्रम के आंशिक डेरिवेटिव एक बिंदु (या एक सेट पर) पर निरंतर होते हैं, तो f को C कहा जाता है2 उस बिंदु पर कार्य करता है (या उस सेट पर); इस मामले में, आंशिक डेरिवेटिव को दूसरे डेरिवेटिव की समरूपता से बदला जा सकता है#Clairaut.27s theorem|Clairaut's theorem:

    नोटेशन

    निम्नलिखित उदाहरणों के लिए, आइए में एक समारोह हो और .

    प्रथम-क्रम आंशिक डेरिवेटिव:

    द्वितीय क्रम आंशिक डेरिवेटिव:

    दूसरे क्रम के मिश्रित डेरिवेटिव:

    उच्च-क्रम आंशिक और मिश्रित डेरिवेटिव:

    कई चर के कार्यों के साथ काम करते समय, इनमें से कुछ चर एक-दूसरे से संबंधित हो सकते हैं, इस प्रकार यह स्पष्ट रूप से निर्दिष्ट करना आवश्यक हो सकता है कि अस्पष्टता से बचने के लिए किन चरों को स्थिर रखा जा रहा है। सांख्यिकीय यांत्रिकी जैसे क्षेत्रों में, का आंशिक व्युत्पन्न इसके संबंध में , धारण करना और स्थिर, अक्सर के रूप में व्यक्त किया जाता है

    पारंपरिक रूप से, अंकन की स्पष्टता और सरलता के लिए, आंशिक व्युत्पन्न फलन और एक विशिष्ट बिंदु पर फलन का मान, आंशिक व्युत्पन्न प्रतीक (लीबनिज़ संकेतन) का उपयोग किए जाने पर फलन तर्कों को शामिल करके अंकन का दुरुपयोग है। इस प्रकार, एक अभिव्यक्ति की तरह

    समारोह के लिए प्रयोग किया जाता है, जबकि
    बिंदु पर समारोह के मूल्य के लिए इस्तेमाल किया जा सकता है . हालाँकि, यह परिपाटी तब टूट जाती है जब हम एक बिंदु पर आंशिक व्युत्पन्न का मूल्यांकन करना चाहते हैं . ऐसे मामले में, फ़ंक्शन का मूल्यांकन एक बोझल तरीके से व्यक्त किया जाना चाहिए
    या
    लीबनिज संकेतन का उपयोग करने के लिए। इस प्रकार, इन मामलों में, यूलर डिफरेंशियल ऑपरेटर नोटेशन का उपयोग करना बेहतर हो सकता है iवें चर के संबंध में आंशिक व्युत्पन्न प्रतीक के रूप में। उदाहरण के लिए, कोई लिखेगा ऊपर वर्णित उदाहरण के लिए, जबकि अभिव्यक्ति पहले चर के संबंध में आंशिक डेरिवेटिव फ़ंक्शन का प्रतिनिधित्व करता है।<ref>Spivak, M. (1965). कई गुना पर पथरी. New York: W. A. Benjamin, Inc. p. 44. ISBN 9780805390216.
  2. Chiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.

बाहरी कड़ियाँ

श्रेणी:बहुभिन्नरूपी कलन श्रेणी:विभेदक संचालक