आंशिक अवकलज: Difference between revisions
No edit summary |
|||
Line 69: | Line 69: | ||
आंशिक अवकलज <math> | आंशिक अवकलज <math> | ||
{\textstyle {\frac {\partial f}{\partial x}}} </math> को <math>U</math> पर परिभाषित एक अन्य फलन के रूप में देखा जा सकता है और फिर से आंशिक रूप से अवकलित किया जा सकता है। यदि अवकलज की दिशा दोहराई नहीं जाती है, तो इसे '''मिश्रित आंशिक अवकलज''' कहा जाता है। यदि सभी मिश्रित दूसरे क्रम के आंशिक अवकलज एक बिंदु (या एक समुच्चय पर) पर निरंतर हैं, तो <math>f </math> को उस बिंदु पर (या उस समुच्चय पर) <math> | {\textstyle {\frac {\partial f}{\partial x}}} </math> को <math>U</math> पर परिभाषित एक अन्य फलन के रूप में देखा जा सकता है और फिर से आंशिक रूप से अवकलित किया जा सकता है। यदि अवकलज की दिशा दोहराई नहीं जाती है, तो इसे '''मिश्रित आंशिक अवकलज''' कहा जाता है। यदि सभी मिश्रित दूसरे क्रम के आंशिक अवकलज एक बिंदु (या एक समुच्चय पर) पर निरंतर हैं, तो <math>f </math> को उस बिंदु पर (या उस समुच्चय पर) <math> | ||
\mathbb {C} ^{2}</math> फलन कहा जाता है, इस स्थिति में, आंशिक व्युत्पन्न का आदान-प्रदान [[क्लैरौट के प्रमे]]य द्वारा किया जा सकता है, | \mathbb {C} ^{2}</math> फलन कहा जाता है, इस स्थिति में, आंशिक व्युत्पन्न का आदान-प्रदान [[क्लैरौट के प्रमे]][[य]] द्वारा किया जा सकता है, | ||
<math>{\displaystyle {\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}={\frac {\partial ^{2}f}{\partial x_{j}\partial x_{i}}}.}</math> | <math>{\displaystyle {\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}={\frac {\partial ^{2}f}{\partial x_{j}\partial x_{i}}}.}</math> | ||
उच्च क्रम के आंशिक अवकलज के लिए, आंशिक अवकलज (फलन) का <math> | == संकेतन == | ||
अधिक जानकारी, [[∂]] | |||
निम्नलिखित उदाहरणों के लिए, मान लीजिए कि x, y और z में f एक फलन है। | |||
प्रथम-क्रम आंशिक अवकलज | |||
<math>{\displaystyle {\frac {\partial f}{\partial x}}=f'_{x}=\partial _{x}f.}</math> | |||
दूसरे क्रम का आंशिक अवकलज, | |||
<math>{\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}=f''_{xx}=\partial _{xx}f=\partial _{x}^{2}f.} | |||
</math> | |||
दूसरे क्रम के [[मिश्रित अवकलज]], | |||
<math>{\displaystyle {\frac {\partial ^{2}f}{\partial y\,\partial x}}={\frac {\partial }{\partial y}}\left({\frac {\partial f}{\partial x}}\right)=(f'_{x})'_{y}=f''_{xy}=\partial _{yx}f=\partial _{y}\partial _{x}f.} | |||
</math> | |||
उच्च-क्रम आंशिक और मिश्रित अवकलज, | |||
<math>{\displaystyle {\frac {\partial ^{i+j+k}f}{\partial x^{i}\partial y^{j}\partial z^{k}}}=f^{(i,j,k)}=\partial _{x}^{i}\partial _{y}^{j}\partial _{z}^{k}f.} | |||
</math> | |||
एकाधिक चर वाले फलनो का वितरण करते समय, इनमें से कुछ चर एक-दूसरे से संबंधित हो सकते हैं, इस प्रकार यह स्पष्ट रूप से निर्दिष्ट करना आवश्यक हो सकता है कि अस्पष्टता से बचने के लिए कौन से चर स्थिर रखे जा रहे हैं। सांख्यिकीय यांत्रिकी जैसे क्षेत्रों में, x के संबंध में f का आंशिक अवकलज, y और z स्थिरांक रखते हुए, प्रायः <math>{\displaystyle \left({\frac {\partial f}{\partial x}}\right)_{y,z}.}</math> के रूप में व्यक्त किया जाता है। | |||
परंपरागत रूप से, संकेतन की स्पष्टता और सरलता के लिए, आंशिक अवकलज फलन और एक विशिष्ट बिंदु पर फलन के मूल्य को आंशिक अवकलज प्रतीक (लीबनिज़ संकेतन) का उपयोग करने पर फलन तर्कों को सम्मिलित करके संयोजित किया जाता है। इस प्रकार, फलन के लिए <math>{\displaystyle {\frac {\partial f(x,y,z)}{\partial x}}} | |||
</math> जैसे व्यंजक का उपयोग किया जाता है, जबकि बिंदु <math>{\displaystyle (x,y,z)=(u,v,w)}</math> पर फलन के मान के लिए <math>{\displaystyle {\frac {\partial f(u,v,w)}{\partial u}}} | |||
</math> का उपयोग किया जा सकता है। हालाँकि, यह समझौता तब टूट जाता है जब हम <math>{\displaystyle (x,y,z)=(17,u+v,v^{2})}</math> जैसे बिंदु पर आंशिक अवकलज का मूल्यांकन करना चाहते हैं। ऐसे स्थिति में, लीबनिज़ संकेतन का उपयोग करने के लिए फलन का मूल्यांकन | |||
<math>{\displaystyle {\frac {\partial f(x,y,z)}{\partial x}}(17,u+v,v^{2})} | |||
</math> या | |||
<math>{\displaystyle \left.{\frac {\partial f(x,y,z)}{\partial x}}\right|_{(x,y,z)=(17,u+v,v^{2})}} | |||
</math> | |||
के रूप में एक भारी तरीके से व्यक्त किया जाना चाहिए। इस प्रकार, इन स्थितियों में, i-वें चर के संबंध में आंशिक अवकलज प्रतीक के रूप में <math>D_{i}</math> के साथ ऑयलर अवकल संचालक संकेतन का उपयोग करना बेहतर हो सकता है। उदाहरण के लिए, कोई ऊपर वर्णित उदाहरण के लिए <math> | |||
{\displaystyle D_{1}f(17,u+v,v^{2})}</math>लिखेगा, जबकि व्यंजक <math>{\displaystyle D_{1}f}</math> पहले चर के संबंध में आंशिक अवकलज फलन का प्रतिनिधित्व करता है। | |||
उच्च क्रम के आंशिक अवकलज के लिए, jवें चर के संबंध में <math>D_i f</math> का आंशिक अवकलज (फलन) <math>D_j(D_i f)=D_{i,j} f</math> दर्शाया गया है। अर्थात्, <math>D_j\circ D_i =D_{i,j}</math>, चरों को उसी क्रम में सूचीबद्ध किया जाए जिसमें अवकलज लिए गए हैं, और इस प्रकार, संचालको की संरचना आमतौर पर इसके विपरीत क्रम में कैसे अंकित की जाती है। निःसंदेह, [[क्लेराट के प्रमेय]] का तात्पर्य यह है कि <math>D_{i,j}=D_{j,i}</math>, f पर तुलनात्मक रूप से हल्की नियमितता की स्थिति संतुष्ट करता है। | |||
== ग्रेडिएंट == | == ग्रेडिएंट == | ||
Line 120: | Line 162: | ||
बिंदु पर <math>(1, 1)</math>. अर्थात्, का आंशिक अवकलज <math>z</math> इसके संबंध में <math>x</math> पर <math>(1, 1)</math> 3 है, जैसा कि ग्राफ में दिखाया गया है। | बिंदु पर <math>(1, 1)</math>. अर्थात्, का आंशिक अवकलज <math>z</math> इसके संबंध में <math>x</math> पर <math>(1, 1)</math> 3 है, जैसा कि ग्राफ में दिखाया गया है। | ||
फलन f को अन्य चर द्वारा अनुक्रमित एक चर के | फलन f को अन्य चर द्वारा अनुक्रमित एक चर के फलनो के परिवार के रूप में पुनर्व्याख्या की जा सकती है: | ||
: <math>f(x,y) = f_y(x) = x^2 + xy + y^2.</math> | : <math>f(x,y) = f_y(x) = x^2 + xy + y^2.</math> | ||
Line 141: | Line 183: | ||
== उच्च क्रम आंशिक अवकलज == | == उच्च क्रम आंशिक अवकलज == | ||
दूसरे और उच्च क्रम के आंशिक अवकलज को एकतरफा | दूसरे और उच्च क्रम के आंशिक अवकलज को एकतरफा फलनो के उच्च क्रम के अवकलज के अनुरूप परिभाषित किया गया है। समारोह के लिए <math>f(x, y, ...)</math> एक्स के संबंध में स्वयं का दूसरा आंशिक अवकलज केवल आंशिक अवकलज का आंशिक अवकलज है (दोनों एक्स के संबंध में):<ref>[[Alpha Chiang|Chiang, Alpha C.]] ''Fundamental Methods of Mathematical Economics'', McGraw-Hill, third edition, 1984.</ref>{{rp|316–318}} | ||
:<math>\frac{\partial ^2 f}{\partial x^2} \equiv \partial \frac{{\partial f / \partial x}}{{\partial x}} \equiv \frac{{\partial f_x }}{{\partial x }} \equiv f_{xx}.</math> | :<math>\frac{\partial ^2 f}{\partial x^2} \equiv \partial \frac{{\partial f / \partial x}}{{\partial x}} \equiv \frac{{\partial f_x }}{{\partial x }} \equiv f_{xx}.</math> | ||
x और y के संबंध में क्रॉस आंशिक अवकलज, x के संबंध में f का आंशिक अवकलज लेकर और फिर y के संबंध में परिणाम का आंशिक अवकलज लेकर प्राप्त किया जाता है। | x और y के संबंध में क्रॉस आंशिक अवकलज, x के संबंध में f का आंशिक अवकलज लेकर और फिर y के संबंध में परिणाम का आंशिक अवकलज लेकर प्राप्त किया जाता है। | ||
Line 162: | Line 204: | ||
:<math>z = \int \frac{\partial z}{\partial x} \,dx = x^2 + xy + g(y).</math> | :<math>z = \int \frac{\partial z}{\partial x} \,dx = x^2 + xy + g(y).</math> | ||
यहाँ, समाकलन का स्थिरांक| एकीकरण का स्थिरांक अब स्थिर नहीं है, बल्कि x को छोड़कर मूल कार्य के सभी चरों का एक कार्य है। इसका कारण यह है कि आंशिक अवकलज लेते समय अन्य सभी चरों को स्थिर माना जाता है, इसलिए कोई भी कार्य जिसमें | यहाँ, समाकलन का स्थिरांक| एकीकरण का स्थिरांक अब स्थिर नहीं है, बल्कि x को छोड़कर मूल कार्य के सभी चरों का एक कार्य है। इसका कारण यह है कि आंशिक अवकलज लेते समय अन्य सभी चरों को स्थिर माना जाता है, इसलिए कोई भी कार्य जिसमें सम्मिलित नहीं होता है <math>x</math> आंशिक अवकलज लेते समय गायब हो जाएगा, और जब हम एंटीअवकलज लेते हैं तो हमें इसका हिसाब देना होगा। इसका प्रतिनिधित्व करने का सबसे सामान्य तरीका यह है कि स्थिरांक अन्य सभी चरों के अज्ञात फलन का प्रतिनिधित्व करता है। | ||
इस प्रकार | इस प्रकार फलनो का सेट <math>x^2 + xy + g(y)</math>, जहाँ g कोई एक-तर्क फलन है, चर x, y में फलनो के पूरे सेट का प्रतिनिधित्व करता है जो x-आंशिक अवकलज का उत्पादन कर सकता था <math>2x + y</math>. | ||
यदि किसी फलन के सभी आंशिक अवकलज ज्ञात हैं (उदाहरण के लिए, ग्रेडिएंट के साथ), तो एंटीअवकलज्स को उपरोक्त प्रक्रिया के माध्यम से एक स्थिरांक तक मूल फलन को फिर से बनाने के लिए मिलान किया जा सकता है। एकल-चर स्थिति के विपरीत, हालांकि, फलन का प्रत्येक सेट एकल फलन के सभी (प्रथम) आंशिक अवकलज का सेट नहीं हो सकता है। दूसरे शब्दों में, प्रत्येक सदिश फ़ील्ड [[रूढ़िवादी वेक्टर क्षेत्र|रूढ़िवादी सदिश क्षेत्र]] नहीं है। | यदि किसी फलन के सभी आंशिक अवकलज ज्ञात हैं (उदाहरण के लिए, ग्रेडिएंट के साथ), तो एंटीअवकलज्स को उपरोक्त प्रक्रिया के माध्यम से एक स्थिरांक तक मूल फलन को फिर से बनाने के लिए मिलान किया जा सकता है। एकल-चर स्थिति के विपरीत, हालांकि, फलन का प्रत्येक सेट एकल फलन के सभी (प्रथम) आंशिक अवकलज का सेट नहीं हो सकता है। दूसरे शब्दों में, प्रत्येक सदिश फ़ील्ड [[रूढ़िवादी वेक्टर क्षेत्र|रूढ़िवादी सदिश क्षेत्र]] नहीं है। | ||
Line 210: | Line 252: | ||
=== ऊष्मप्रवैगिकी, क्वांटम यांत्रिकी और [[गणितीय भौतिकी]] === | === ऊष्मप्रवैगिकी, क्वांटम यांत्रिकी और [[गणितीय भौतिकी]] === | ||
आंशिक अवकलज थर्मोडायनामिक समीकरणों जैसे [[गिब्स-डुहेम समीकरण]], क्वांटम यांत्रिकी में श्रोडिंगर समीकरण के साथ-साथ गणितीय भौतिकी के अन्य समीकरणों में दिखाई देते हैं। यहां आंशिक अवकलज में चर को स्थिर रखा जा सकता है, जो मोल अंश x जैसे सरल चर का अनुपात हो सकता है<sub>i</sub>निम्नलिखित उदाहरण में एक टर्नरी मिश्रण प्रणाली में गिब्स ऊर्जा | आंशिक अवकलज थर्मोडायनामिक समीकरणों जैसे [[गिब्स-डुहेम समीकरण]], क्वांटम यांत्रिकी में श्रोडिंगर समीकरण के साथ-साथ गणितीय भौतिकी के अन्य समीकरणों में दिखाई देते हैं। यहां आंशिक अवकलज में चर को स्थिर रखा जा सकता है, जो मोल अंश x जैसे सरल चर का अनुपात हो सकता है<sub>i</sub>निम्नलिखित उदाहरण में एक टर्नरी मिश्रण प्रणाली में गिब्स ऊर्जा सम्मिलित है: | ||
:<math>\bar{G_2}= G + (1-x_2) \left(\frac{{\partial G}}{{\partial x_2}}\right)_{\frac{x_1}{x_3}} </math> | :<math>\bar{G_2}= G + (1-x_2) \left(\frac{{\partial G}}{{\partial x_2}}\right)_{\frac{x_1}{x_3}} </math> | ||
एक घटक के मोल अंशों को अन्य घटकों के मोल अंश और बाइनरी मोल अनुपात के | एक घटक के मोल अंशों को अन्य घटकों के मोल अंश और बाइनरी मोल अनुपात के फलनो के रूप में व्यक्त करें: | ||
:<math>x_1 = \frac{1-x_2}{1+\frac{x_3}{x_1}}</math> | :<math>x_1 = \frac{1-x_2}{1+\frac{x_3}{x_1}}</math> |
Revision as of 04:43, 27 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, कई चरों के एक फलन का आंशिक अवकलज उन चरों में से एक के संबंध में इसका अवकलज है, जिसमें अन्य स्थिर रखा जाता है (कुल अवकलज के विपरीत, जिसमें सभी चर भिन्न हो सकते हैं)। आंशिक अवकलज का उपयोग सदिश कलन और अवकल ज्यामिति में किया जाता है।
चर के संबंध में का आंशिक अवकलज विभिन्न प्रकार से
द्वारा दर्शाया जाता है। इसका अनुमान दिशा में फलन के परिवर्तन की दर के रूप में लगाया जा सकता है।
कभी-कभी, के लिए, के संबंध में का आंशिक अवकलज के रूप में दर्शाया जाता है। चूंकि आंशिक अवकलज में आम तौर पर मूल फलन के समान तर्क होते हैं, इसलिए इसकी कार्यात्मक निर्भरता को कभी-कभी संकेतन द्वारा स्पष्ट रूप से दर्शाया जाता है, जैसे कि,
आंशिक अवकलज को निरूपित करने के लिए प्रयुक्त प्रतीक ∂ है। गणित में इस प्रतीक के पहले ज्ञात उपयोगों में से एक 1770 से मार्क्विस डी कोंडोरसेट का है, जिन्होंने इसका उपयोग आंशिक अंतर के लिए किया था। आधुनिक आंशिक अवकलज संकेतन एड्रियन मैरी लीजेंड्रे (1786) द्वारा बनाया गया था, हालांकि बाद में उन्होंने इसे छोड़ दिया, तब कार्ल गुस्ताव जैकब जैकोबी ने 1841 में प्रतीक को फिर से प्रस्तुत किया।[1]
परिभाषा
सामान्य अवकलज की तरह, आंशिक अवकलज को एक सीमा के रूप में परिभाषित किया गया है। मान लीजिए कि , का एक विवृत उपसमुच्चय है और एक फलन है। i-वें चर के संबंध में बिंदु 1 पर f का आंशिक अवकलज
के रूप में परिभाषित किया गया है। भले ही सभी आंशिक अवकलज किसी दिए गए बिंदु पर उपस्थित हों, लेकिन फलन को वहां निरंतर होने की आवश्यकता नहीं है। हालाँकि, यदि सभी आंशिक अवकलज के प्रतिवेश में उपस्थित हैं और वहां निरंतर हैं, तो उस प्रतिवेश में पूरी तरह से अवलकनीय है और कुल अवकलज निरंतर है। इस स्थिति में, यह कहा जाता है कि एक फलन है। इसका उपयोग घटकवार तर्क का सावधानीपूर्वक उपयोग करके सदिश मूल्यवान फलनो, के लिए सामान्यीकरण करने के लिए किया जा सकता है।
आंशिक अवकलज को पर परिभाषित एक अन्य फलन के रूप में देखा जा सकता है और फिर से आंशिक रूप से अवकलित किया जा सकता है। यदि अवकलज की दिशा दोहराई नहीं जाती है, तो इसे मिश्रित आंशिक अवकलज कहा जाता है। यदि सभी मिश्रित दूसरे क्रम के आंशिक अवकलज एक बिंदु (या एक समुच्चय पर) पर निरंतर हैं, तो को उस बिंदु पर (या उस समुच्चय पर) फलन कहा जाता है, इस स्थिति में, आंशिक व्युत्पन्न का आदान-प्रदान क्लैरौट के प्रमेय द्वारा किया जा सकता है,
संकेतन
अधिक जानकारी, ∂
निम्नलिखित उदाहरणों के लिए, मान लीजिए कि x, y और z में f एक फलन है।
प्रथम-क्रम आंशिक अवकलज
दूसरे क्रम का आंशिक अवकलज,
दूसरे क्रम के मिश्रित अवकलज,
उच्च-क्रम आंशिक और मिश्रित अवकलज,
एकाधिक चर वाले फलनो का वितरण करते समय, इनमें से कुछ चर एक-दूसरे से संबंधित हो सकते हैं, इस प्रकार यह स्पष्ट रूप से निर्दिष्ट करना आवश्यक हो सकता है कि अस्पष्टता से बचने के लिए कौन से चर स्थिर रखे जा रहे हैं। सांख्यिकीय यांत्रिकी जैसे क्षेत्रों में, x के संबंध में f का आंशिक अवकलज, y और z स्थिरांक रखते हुए, प्रायः के रूप में व्यक्त किया जाता है।
परंपरागत रूप से, संकेतन की स्पष्टता और सरलता के लिए, आंशिक अवकलज फलन और एक विशिष्ट बिंदु पर फलन के मूल्य को आंशिक अवकलज प्रतीक (लीबनिज़ संकेतन) का उपयोग करने पर फलन तर्कों को सम्मिलित करके संयोजित किया जाता है। इस प्रकार, फलन के लिए जैसे व्यंजक का उपयोग किया जाता है, जबकि बिंदु पर फलन के मान के लिए का उपयोग किया जा सकता है। हालाँकि, यह समझौता तब टूट जाता है जब हम जैसे बिंदु पर आंशिक अवकलज का मूल्यांकन करना चाहते हैं। ऐसे स्थिति में, लीबनिज़ संकेतन का उपयोग करने के लिए फलन का मूल्यांकन
या
के रूप में एक भारी तरीके से व्यक्त किया जाना चाहिए। इस प्रकार, इन स्थितियों में, i-वें चर के संबंध में आंशिक अवकलज प्रतीक के रूप में के साथ ऑयलर अवकल संचालक संकेतन का उपयोग करना बेहतर हो सकता है। उदाहरण के लिए, कोई ऊपर वर्णित उदाहरण के लिए लिखेगा, जबकि व्यंजक पहले चर के संबंध में आंशिक अवकलज फलन का प्रतिनिधित्व करता है।
उच्च क्रम के आंशिक अवकलज के लिए, jवें चर के संबंध में का आंशिक अवकलज (फलन) दर्शाया गया है। अर्थात्, , चरों को उसी क्रम में सूचीबद्ध किया जाए जिसमें अवकलज लिए गए हैं, और इस प्रकार, संचालको की संरचना आमतौर पर इसके विपरीत क्रम में कैसे अंकित की जाती है। निःसंदेह, क्लेराट के प्रमेय का तात्पर्य यह है कि , f पर तुलनात्मक रूप से हल्की नियमितता की स्थिति संतुष्ट करता है।
ग्रेडिएंट
कई चरों के फलन का एक महत्वपूर्ण उदाहरण अदिश-मूल्यवान समारोह f(x1, ..., एक्सn) यूक्लिडियन अंतरिक्ष में एक डोमेन पर (उदा., पर या ). इस स्थिति में f का आंशिक अवकलज ∂f/∂x हैjप्रत्येक चर x के संबंध मेंj. बिंदु a पर, ये आंशिक अवकलज सदिश को परिभाषित करते हैं
इस सदिश को a पर f का ग्रेडिएंट कहा जाता है। यदि f किसी डोमेन में प्रत्येक बिंदु पर अवकलनीय है, तो ग्रेडिएंट एक सदिश-मूल्यवान फलन ∇f है जो बिंदु a को सदिश ∇f(a) तक ले जाता है। नतीजतन, ढाल एक सदिश क्षेत्र पैदा करता है।
अंकन का एक सामान्य दुरुपयोग डेल ऑपरेटर (∇) को त्रि-आयामी यूक्लिडियन अंतरिक्ष में निम्नानुसार परिभाषित करना है यूनिट वैक्टर के साथ :
या, अधिक आम तौर पर, एन-डायमेंशनल यूक्लिडियन स्पेस के लिए निर्देशांक के साथ और यूनिट वैक्टर :
दिशात्मक अवकलज
उदाहरण
मान लीजिए कि f एक से अधिक चरों का फलन है। उदाहरण के लिए,
- .
इस फलन के एक फलन का ग्राफ़ यूक्लिडियन अंतरिक्ष में एक सतह (टोपोलॉजी) को परिभाषित करता है। इस सतह के प्रत्येक बिंदु पर अनंत संख्या में स्पर्श रेखाएँ होती हैं। आंशिक विभेदीकरण इन रेखाओं में से किसी एक को चुनने और उसकी ढलान का पता लगाने का कार्य है। आमतौर पर, सबसे अधिक रुचि की रेखाएँ वे होती हैं जो इसके समानांतर होती हैं -प्लेन, और जो इसके समानांतर हैं -प्लेन (जो या तो धारण करने का परिणाम है या स्थिर, क्रमशः)।
फलन पर स्पर्श रेखा की ढलान खोजने के लिए और के समानांतर -प्लेन, हम इलाज करते हैं एक स्थिर के रूप में। ग्राफ और इस विमान को दाईं ओर दिखाया गया है। नीचे, हम देखते हैं कि फलन विमान पर कैसा दिखता है . यह मानते हुए समीकरण का अवकलज ज्ञात करके एक स्थिर है, हम पाते हैं कि की ढलानबिंदु पर है:
तो पर , प्रतिस्थापन द्वारा, ढलान 3 है। इसलिए,
बिंदु पर . अर्थात्, का आंशिक अवकलज इसके संबंध में पर 3 है, जैसा कि ग्राफ में दिखाया गया है।
फलन f को अन्य चर द्वारा अनुक्रमित एक चर के फलनो के परिवार के रूप में पुनर्व्याख्या की जा सकती है:
दूसरे शब्दों में, y का प्रत्येक मान एक फलन को परिभाषित करता है, जिसे f द्वारा निरूपित किया जाता हैy, जो कि एक चर x का फलन है।[note 1] वह है,
इस खंड में सबस्क्रिप्ट नोटेशन fyy के निश्चित मान पर आकस्मिक फलन को दर्शाता है, न कि आंशिक अवकलज को।
एक बार जब y का मान चुन लिया जाता है, मान लीजिए a, तो f(x,y) एक फलन f निर्धारित करता हैaजो एक वक्र x का पता लगाता है2 + कुल्हाड़ी + ए2 पर -विमान:
इस अभिव्यक्ति में, एक स्थिर है, एक चर नहीं है, इसलिए एफaकेवल एक वास्तविक चर का फलन है, जो कि x है। नतीजतन, एक चर के एक समारोह के लिए अवकलज की परिभाषा लागू होती है:
उपरोक्त प्रक्रिया किसी भी विकल्प के लिए की जा सकती है। अवकलज को एक साथ एक फलन में इकट्ठा करना एक ऐसा फलन देता है जो x दिशा में f की भिन्नता का वर्णन करता है:
यह x के संबंध में f का आंशिक अवकलज है। यहाँ ∂ एक गोलाकार d है जिसे आंशिक अवकलज प्रतीक कहा जाता है; अक्षर d से इसे अलग करने के लिए, ∂ को कभी-कभी आंशिक उच्चारित किया जाता है।
उच्च क्रम आंशिक अवकलज
दूसरे और उच्च क्रम के आंशिक अवकलज को एकतरफा फलनो के उच्च क्रम के अवकलज के अनुरूप परिभाषित किया गया है। समारोह के लिए एक्स के संबंध में स्वयं का दूसरा आंशिक अवकलज केवल आंशिक अवकलज का आंशिक अवकलज है (दोनों एक्स के संबंध में):[2]: 316–318
x और y के संबंध में क्रॉस आंशिक अवकलज, x के संबंध में f का आंशिक अवकलज लेकर और फिर y के संबंध में परिणाम का आंशिक अवकलज लेकर प्राप्त किया जाता है।
श्वार्ज प्रमेय | श्वार्ज की प्रमेय में कहा गया है कि यदि दूसरा अवकलज निरंतर है, तो क्रॉस आंशिक अवकलज के लिए अभिव्यक्ति अप्रभावित है कि पहले के संबंध में आंशिक अवकलज किस वेरिएबल के लिए लिया जाता है और जो दूसरे के लिए लिया जाता है। वह है,
या समकक्ष हेसियन मैट्रिक्स में स्वयं और क्रॉस आंशिक अवकलज दिखाई देते हैं जो अनुकूलन समस्याओं में दूसरे क्रम की स्थितियों में उपयोग किया जाता है। उच्च कोटि के आंशिक अवकलज उत्तरोत्तर अवकलन द्वारा प्राप्त किए जा सकते हैं
antiderivative एनालॉग
आंशिक अवकलज के लिए एक अवधारणा है जो नियमित अवकलज के लिए एंटीअवकलज के अनुरूप है। आंशिक अवकलज को देखते हुए, यह मूल कार्य की आंशिक वसूली की अनुमति देता है।
के उदाहरण पर विचार करें
आंशिक समाकल को x के संबंध में लिया जा सकता है (y को स्थिर मानते हुए, आंशिक विभेदन के समान तरीके से):
यहाँ, समाकलन का स्थिरांक| एकीकरण का स्थिरांक अब स्थिर नहीं है, बल्कि x को छोड़कर मूल कार्य के सभी चरों का एक कार्य है। इसका कारण यह है कि आंशिक अवकलज लेते समय अन्य सभी चरों को स्थिर माना जाता है, इसलिए कोई भी कार्य जिसमें सम्मिलित नहीं होता है आंशिक अवकलज लेते समय गायब हो जाएगा, और जब हम एंटीअवकलज लेते हैं तो हमें इसका हिसाब देना होगा। इसका प्रतिनिधित्व करने का सबसे सामान्य तरीका यह है कि स्थिरांक अन्य सभी चरों के अज्ञात फलन का प्रतिनिधित्व करता है।
इस प्रकार फलनो का सेट , जहाँ g कोई एक-तर्क फलन है, चर x, y में फलनो के पूरे सेट का प्रतिनिधित्व करता है जो x-आंशिक अवकलज का उत्पादन कर सकता था .
यदि किसी फलन के सभी आंशिक अवकलज ज्ञात हैं (उदाहरण के लिए, ग्रेडिएंट के साथ), तो एंटीअवकलज्स को उपरोक्त प्रक्रिया के माध्यम से एक स्थिरांक तक मूल फलन को फिर से बनाने के लिए मिलान किया जा सकता है। एकल-चर स्थिति के विपरीत, हालांकि, फलन का प्रत्येक सेट एकल फलन के सभी (प्रथम) आंशिक अवकलज का सेट नहीं हो सकता है। दूसरे शब्दों में, प्रत्येक सदिश फ़ील्ड रूढ़िवादी सदिश क्षेत्र नहीं है।
अनुप्रयोग
ज्यामिति
एक शंकु (ज्यामिति) का आयतन V सूत्र के अनुसार शंकु की ऊँचाई h और उसकी त्रिज्या r पर निर्भर करता है
आर के संबंध में वी का आंशिक अवकलज है
जो उस दर का प्रतिनिधित्व करता है जिसके साथ शंकु का आयतन बदलता है यदि इसकी त्रिज्या भिन्न होती है और इसकी ऊंचाई स्थिर रहती है। के संबंध में आंशिक अवकलज बराबरी जो उस दर का प्रतिनिधित्व करता है जिसके साथ मात्रा बदलती है यदि इसकी ऊंचाई भिन्न होती है और इसकी त्रिज्या स्थिर रहती है।
इसके विपरीत, r और h के संबंध में V का कुल अवकलज क्रमशः है
और
कुल और आंशिक अवकलज के बीच का अंतर आंशिक अवकलज में चर के बीच अप्रत्यक्ष निर्भरता का उन्मूलन है।
अगर (किसी मनमाने कारण से) शंकु के अनुपात को वही रहना है, और ऊंचाई और त्रिज्या एक निश्चित अनुपात k में हैं,
यह आर के संबंध में कुल अवकलज देता है:
जो सरल करता है:
इसी प्रकार, एच के संबंध में कुल अवकलज है:
इन दो वेरिएबल्स के स्केलर फलन के रूप में इच्छित मात्रा के आर और एच दोनों के संबंध में कुल अवकलज ढाल सदिश द्वारा दिया गया है
अनुकूलन
आंशिक अवकलज किसी भी कलन-आधारित अनुकूलन समस्या में एक से अधिक विकल्प चर के साथ दिखाई देते हैं। उदाहरण के लिए, अर्थशास्त्र में एक फर्म दो अलग-अलग प्रकार के आउटपुट की मात्रा x और y की पसंद के संबंध में लाभ (अर्थशास्त्र) π(x, y) को अधिकतम करने की इच्छा कर सकती है। इस अनुकूलन के लिए पहली ऑर्डर की शर्तें π हैंx = 0 = पीy. चूंकि दोनों आंशिक अवकलज πx और πy आम तौर पर स्वयं दोनों तर्कों x और y के कार्य होंगे, ये दो प्रथम क्रम की शर्तें समीकरणों की एक प्रणाली बनाती हैं।
ऊष्मप्रवैगिकी, क्वांटम यांत्रिकी और गणितीय भौतिकी
आंशिक अवकलज थर्मोडायनामिक समीकरणों जैसे गिब्स-डुहेम समीकरण, क्वांटम यांत्रिकी में श्रोडिंगर समीकरण के साथ-साथ गणितीय भौतिकी के अन्य समीकरणों में दिखाई देते हैं। यहां आंशिक अवकलज में चर को स्थिर रखा जा सकता है, जो मोल अंश x जैसे सरल चर का अनुपात हो सकता हैiनिम्नलिखित उदाहरण में एक टर्नरी मिश्रण प्रणाली में गिब्स ऊर्जा सम्मिलित है:
एक घटक के मोल अंशों को अन्य घटकों के मोल अंश और बाइनरी मोल अनुपात के फलनो के रूप में व्यक्त करें:
उपरोक्त की तरह स्थिर अनुपात में विभेदक भागफल बनाए जा सकते हैं:
मोल अंशों के अनुपात X, Y, Z को त्रिगुट और बहुघटक प्रणालियों के लिए लिखा जा सकता है:
जिसका उपयोग आंशिक अंतर समीकरणों को हल करने के लिए किया जा सकता है:
इस समानता को एक तरफ मोल अंशों के अंतर भागफल के लिए पुनर्व्यवस्थित किया जा सकता है।
छवि का आकार बदलना
आंशिक अवकलज लक्ष्य-जागरूक छवि आकार बदलने वाले एल्गोरिदम के लिए महत्वपूर्ण हैं। व्यापक रूप से सीम नक्काशी के रूप में जाना जाता है, इन एल्गोरिदम को ऑर्थोगोनल आसन्न पिक्सल के खिलाफ उनकी असमानता का वर्णन करने के लिए एक छवि में प्रत्येक पिक्सेल को एक संख्यात्मक 'ऊर्जा' निर्दिष्ट करने की आवश्यकता होती है। कलन विधि फिर सबसे कम ऊर्जा वाली पंक्तियों या स्तंभों को उत्तरोत्तर हटाता है। एक पिक्सेल की ऊर्जा (पिक्सेल पर ग्रेडिएंट का परिमाण) निर्धारित करने के लिए स्थापित सूत्र आंशिक अवकलज के निर्माण पर बहुत अधिक निर्भर करता है।
अर्थशास्त्र
आंशिक अवकलज अर्थशास्त्र में एक प्रमुख भूमिका निभाते हैं, जिसमें आर्थिक व्यवहार का वर्णन करने वाले अधिकांश कार्य यह मानते हैं कि व्यवहार एक से अधिक चर पर निर्भर करता है। उदाहरण के लिए, एक सामाजिक उपभोग फलन आय और धन दोनों के आधार पर उपभोक्ता वस्तुओं पर खर्च की गई राशि का वर्णन कर सकता है; उपभोग करने के लिए सीमांत प्रवृत्ति तो आय के संबंध में उपभोग समारोह का आंशिक अवकलज है।
यह भी देखें
- डी'अलेम्बर्टियन ऑपरेटर
- श्रृंखला नियम
- कर्ल (गणित)
- विचलन
- बाहरी व्युत्पन्न
- पुनरावृत्त अभिन्न
- जेकोबियन मैट्रिक्स और निर्धारक
- लाप्लासियन
- बहुभिन्नरूपी कैलकुलस
- दूसरे डेरिवेटिव की समरूपता
- ट्रिपल उत्पाद नियम, जिसे चक्रीय श्रृंखला नियम भी कहा जाता है।
टिप्पणियाँ
- ↑ This can also be expressed as the adjointness between the product space and function space constructions.
संदर्भ
- ↑ Miller, Jeff (2009-06-14). "पथरी के प्रतीकों का सबसे पुराना उपयोग". Earliest Uses of Various Mathematical Symbols. Retrieved 2009-02-20.</रेफरी>
परिभाषा
सामान्य डेरिवेटिव की तरह, आंशिक डेरिवेटिव को फ़ंक्शन की सीमा के रूप में परिभाषित किया जाता है। चलो यू का एक खुला सेट हो और एक समारोह। बिंदु पर f का आंशिक व्युत्पन्न i-वें चर x के संबंध मेंi की तरह परिभाषित किया गया है
भले ही सभी आंशिक डेरिवेटिव ∂f/∂xi(ए) किसी दिए गए बिंदु पर मौजूद है, फ़ंक्शन को वहां निरंतर कार्य करने की आवश्यकता नहीं है। हालाँकि, यदि सभी आंशिक डेरिवेटिव a के एक पड़ोस (टोपोलॉजी) में मौजूद हैं और वहाँ निरंतर हैं, तो f उस पड़ोस में कुल व्युत्पन्न है और कुल व्युत्पन्न निरंतर है। इस स्थिति में, यह कहा जाता है कि f एक C है1 समारोह। इसका उपयोग सदिश मूल्यवान कार्यों के लिए सामान्यीकृत करने के लिए किया जा सकता है, , एक घटकवार तर्क का सावधानीपूर्वक उपयोग करके।
आंशिक व्युत्पन्न यू पर परिभाषित एक अन्य फ़ंक्शन के रूप में देखा जा सकता है और फिर से आंशिक रूप से विभेदित किया जा सकता है। यदि सभी मिश्रित दूसरे क्रम के आंशिक डेरिवेटिव एक बिंदु (या एक सेट पर) पर निरंतर होते हैं, तो f को C कहा जाता है2 उस बिंदु पर कार्य करता है (या उस सेट पर); इस मामले में, आंशिक डेरिवेटिव को दूसरे डेरिवेटिव की समरूपता से बदला जा सकता है#Clairaut.27s theorem|Clairaut's theorem:
नोटेशन
निम्नलिखित उदाहरणों के लिए, आइए में एक समारोह हो और .
प्रथम-क्रम आंशिक डेरिवेटिव:
द्वितीय क्रम आंशिक डेरिवेटिव:
दूसरे क्रम के मिश्रित डेरिवेटिव:
उच्च-क्रम आंशिक और मिश्रित डेरिवेटिव:
कई चर के कार्यों के साथ काम करते समय, इनमें से कुछ चर एक-दूसरे से संबंधित हो सकते हैं, इस प्रकार यह स्पष्ट रूप से निर्दिष्ट करना आवश्यक हो सकता है कि अस्पष्टता से बचने के लिए किन चरों को स्थिर रखा जा रहा है। सांख्यिकीय यांत्रिकी जैसे क्षेत्रों में, का आंशिक व्युत्पन्न इसके संबंध में , धारण करना और स्थिर, अक्सर के रूप में व्यक्त किया जाता है
पारंपरिक रूप से, अंकन की स्पष्टता और सरलता के लिए, आंशिक व्युत्पन्न फलन और एक विशिष्ट बिंदु पर फलन का मान, आंशिक व्युत्पन्न प्रतीक (लीबनिज़ संकेतन) का उपयोग किए जाने पर फलन तर्कों को शामिल करके अंकन का दुरुपयोग है। इस प्रकार, एक अभिव्यक्ति की तरह
- समारोह के लिए प्रयोग किया जाता है, जबकि
- बिंदु पर समारोह के मूल्य के लिए इस्तेमाल किया जा सकता है . हालाँकि, यह परिपाटी तब टूट जाती है जब हम एक बिंदु पर आंशिक व्युत्पन्न का मूल्यांकन करना चाहते हैं . ऐसे मामले में, फ़ंक्शन का मूल्यांकन एक बोझल तरीके से व्यक्त किया जाना चाहिए
- या
- लीबनिज संकेतन का उपयोग करने के लिए। इस प्रकार, इन मामलों में, यूलर डिफरेंशियल ऑपरेटर नोटेशन का उपयोग करना बेहतर हो सकता है iवें चर के संबंध में आंशिक व्युत्पन्न प्रतीक के रूप में। उदाहरण के लिए, कोई लिखेगा ऊपर वर्णित उदाहरण के लिए, जबकि अभिव्यक्ति पहले चर के संबंध में आंशिक डेरिवेटिव फ़ंक्शन का प्रतिनिधित्व करता है।<ref>Spivak, M. (1965). कई गुना पर पथरी. New York: W. A. Benjamin, Inc. p. 44. ISBN 9780805390216.
- ↑ Chiang, Alpha C. Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984.
बाहरी कड़ियाँ
- "Partial derivative", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Partial Derivatives at MathWorld