आणविक हैमिल्टनियन: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Quantum mechanics}} | {{Quantum mechanics}} | ||
परमाणु, आणविक और ऑप्टिकल भौतिकी और क्वांटम रसायन विज्ञान में, आणविक हैमिल्टनियन एक [[अणु]] में [[इलेक्ट्रॉन]] | परमाणु, आणविक और ऑप्टिकल भौतिकी और क्वांटम रसायन विज्ञान में, आणविक हैमिल्टनियन एक [[अणु]] में [[इलेक्ट्रॉन]] और [[परमाणु नाभिक]] की [[ऊर्जा]] का प्रतिनिधित्व करने वाला [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन]] ऑपरेटर होता है। यह ऑपरेटर और संबंधित श्रोडिंगर समीकरण, थर्मल चालकता, विशिष्ट उर्जा, विद्युत चालकता, [[प्रकाशिकी]] और [[चुंबकत्व]], और [[प्रतिक्रियाशीलता (रसायन विज्ञान)]] जैसे अणुओं और अणुओं के समुच्चय के गुणों की गणना के लिए कम्प्यूटेशनल रसायन विज्ञान और [[कम्प्यूटेशनल भौतिकी]] में एक केंद्रीय भूमिका निभाते हैं। | ||
एक अणु के प्राथमिक भाग नाभिक होते हैं, जो उनके [[परमाणु क्रमांक]], ''Z'' और इलेक्ट्रॉनों द्वारा चिह्नित होते हैं, जिनका प्राथमिक चार्ज | एक अणु के प्राथमिक भाग नाभिक होते हैं, जो उनके [[परमाणु क्रमांक]], ''Z'' और इलेक्ट्रॉनों द्वारा चिह्नित होते हैं, जिनका प्राथमिक चार्ज -''e'' नकारात्मक होता है। उनकी परस्पर क्रिया ''Z'' + ''q'' का परमाणु प्रभार देती है, जहां {{math|1=''q'' = −''eN''}} होता, जिसमें N इलेक्ट्रॉनों की संख्या के समांतर होता है। इलेक्ट्रॉन और नाभिक, एक बहुत अच्छे प्राक्लन के अनुसार, बिंदु आवेश और बिंदु द्रव्यमान होते हैं। आणविक हैमिल्टनियन कई शब्दों का योग होता है: इसके प्रमुख शब्द इलेक्ट्रॉनों की [[गतिज ऊर्जा]] और दो प्रकार के आवेशित कणों के मध्य कूलम्ब (इलेक्ट्रोस्टैटिक) अंतःक्रिया हैं। हैमिल्टनियन जिसमें मात्र इलेक्ट्रॉनों और नाभिकों की गतिज ऊर्जा और उनके मध्य कूलम्ब अंतःक्रिया सम्मिलित होती है, जिसको 'कूलम्ब हैमिल्टनियन' के रूप में जाना जाता है। इसमें से कई छोटे शब्द लुप्त होतेहैं, जिनमें से अधिकांश इलेक्ट्रॉनिक और परमाणु [[स्पिन (भौतिकी)|स्पिन]] के कारण होते हैं। | ||
यद्यपि | यद्यपि सामान्यतः यह माना जाता है कि कूलम्ब हैमिल्टनियन से जुड़े समय-स्वतंत्र श्रोडिंगर समीकरण का समाधान अणु के अधिकांश गुणों की भविष्यवाणी करेगा, जिसमें इसके आकार (त्रि-आयामी संरचना) भी सम्मिलित होते है, पूर्ण कूलम्ब हैमिल्टनियन पर आधारित गणना बहुत दुर्लभ होती है। इसका मुख्य कारण यह है कि इसके श्रोडिंगर समीकरण को हल करना बहुत कठिन होता है। अनुप्रयोग हाइड्रोजन अणु जैसी छोटी प्रणालियों तक ही सीमित होते हैं। | ||
आणविक तरंग कार्यों की लगभग सभी गणनाएँ बोर्न-ओपेनहाइमर सन्निकटन द्वारा | आणविक तरंग कार्यों की लगभग सभी गणनाएँ बोर्न-ओपेनहाइमर सन्निकटन द्वारा निर्मित किए गए कूलम्ब हैमिल्टनियन के पृथक्करण पर आधारित होता हैं। परमाणु गतिज ऊर्जा उद्देश्य को कूलम्ब हैमिल्टनियन से हटा दिया जाता है और शेष हैमिल्टनियन को मात्र इलेक्ट्रॉनों का हैमिल्टनियन माना जाता है। स्थिर नाभिक मात्र विद्युत क्षमता के जनरेटर के रूप में समस्या में प्रवेश करते हैं जिसमें इलेक्ट्रॉन क्वांटम यांत्रिक विधि से चलते हैं। इस ढांचे के भीतर आणविक हैमिल्टनियन को तथाकथित 'क्लैम्प्ड न्यूक्लियस हैमिल्टनियन' में सरलीकृत किया जाता है, जिसे 'इलेक्ट्रॉनिक हैमिल्टनियन' भी कहा जाता है, जो मात्र इलेक्ट्रॉनिक निर्देशांक के कार्यों पर कार्य करता है। | ||
एक बार जब क्लैम्प्ड न्यूक्लियस हैमिल्टनियन के श्रोडिंगर समीकरण को पर्याप्त संख्या में नाभिक के तारामंडल के लिए हल कर लिया गया है, तो एक उपयुक्त [[eigenvalue]] ( | एक बार जब क्लैम्प्ड न्यूक्लियस हैमिल्टनियन के श्रोडिंगर समीकरण को पर्याप्त संख्या में नाभिक के तारामंडल के लिए हल कर लिया गया है, तो एक उपयुक्त [[eigenvalue|आइगेनमूल्य]] (सामान्यतः सबसे कम) को परमाणु निर्देशांक के एक [[फ़ंक्शन (गणित)|फलन]] के रूप में देखा जा सकता है, जो एक संभावित ऊर्जा को सतह की ओर ले जाता है। व्यावहारिक गणनाओं में सतह सामान्यतः कुछ विश्लेषणात्मक कार्यों के संदर्भ में न्यूनतम वर्ग होती है। बोर्न-ओपेनहाइमर सन्निकटन के दूसरे चरण में पूर्ण कूलम्ब हैमिल्टनियन का वह भाग जो इलेक्ट्रॉनों पर निर्भर करता है, [[संभावित ऊर्जा सतह]] द्वारा प्रतिस्थापित किया जाता है। यह कुल आणविक हैमिल्टनियन को दूसरे हैमिल्टनियन में परिवर्तित करता है जो मात्र परमाणु निर्देशांक पर कार्य करता है। बोर्न-ओपेनहाइमर सन्निकटन के पृथक की स्थिति में - जो तब होता है जब विभिन्न इलेक्ट्रॉनिक स्थितियों की ऊर्जाएँ समीप होती हैं - समीपस्थ संभावित ऊर्जा सतहों की आवश्यकता होती है, इस पर अधिक विवरण के लिए बोर्न-ओपेनहाइमर सन्निकटन देखें। | ||
परमाणु गति श्रोडिंगर समीकरण को एक | परमाणु गति श्रोडिंगर समीकरण को एक स्थान-निर्धारित (प्रयोगशाला) संदर्भ फ्रेम में हल किया जा सकता है, यघपि तब [[अनुवाद]] (भौतिकी) और घूर्णी (बाहरी) ऊर्जाओं का परिकलन नहीं दिया जाता है। मात्र (आंतरिक) परमाणु [[कंपन]] ही समस्या में प्रवेश करते हैं। इसके अतिरिक्त, त्रिपरमाण्विक अणुओं से बड़े अणुओं के लिए, [[हार्मोनिक सन्निकटन]] का परिचय देना अधिक आम है, जो परमाणु विस्थापन के द्विघात फलन के रूप में संभावित ऊर्जा सतह का प्राक्लन लगाता है। यह 'हार्मोनिक न्यूक्लियर मोशन हैमिल्टनियन' देता है। हार्मोनिक सन्निकटन बनाते हुए, हम हैमिल्टनियन को अयुग्मित एक-आयामी [[लयबद्ध दोलक]] हैमिल्टनियन के योग में परिवर्तित कर सकते हैं। एक-आयामी हार्मोनिक ऑसिलेटर उन कुछ प्रणालियों में से एक है जो श्रोडिंगर समीकरण के स्पष्ट समाधान की अनुमति देता है। | ||
वैकल्पिक रूप से, परमाणु गति (रोविब्रेशनल) श्रोडिंगर समीकरण को एक विशेष फ्रेम (एक एकार्ट स्थितियों) में हल किया जा सकता है जो अणु के साथ घूमता है और अनुवाद करता है। इस शरीर-स्थिर फ्रेम के संबंध में | वैकल्पिक रूप से, परमाणु गति (रोविब्रेशनल) श्रोडिंगर समीकरण को एक विशेष फ्रेम (एक एकार्ट स्थितियों) में हल किया जा सकता है जो अणु के साथ घूमता है और अनुवाद करता है। इस शरीर-स्थिर फ्रेम के संबंध में निर्मित हैमिल्टनियन नाभिक के घूर्णन, अनुवाद और कंपन के लिए उत्तरदायी होता है। चूंकि वॉटसन ने 1968 में इस हैमिल्टनियन के लिए एक महत्वपूर्ण सरलीकरण प्रस्तुत किया था, इसलिए इसे अधिकांशतः 'वॉटसन की परमाणु गति हैमिल्टन' के रूप में जाना जाता है। यघपि इसे 'एकार्ट हैमिल्टनियन' के नाम से भी जाना जाता है। | ||
== कूलम्ब हैमिल्टनियन == | == कूलम्ब हैमिल्टनियन == | ||
कई वेधशालाओं का बीजगणितीय रूप - | कई वेधशालाओं का बीजगणितीय रूप - अर्थात्, अवलोकन योग्य मात्राओं का प्रतिनिधित्व करने वाले हर्मिटियन ऑपरेटर्स - निम्नलिखित कैनोनिकल परिमाणीकरण क्वांटम यांत्रिकी द्वारा प्राप्त किया जाता है: | ||
* अवलोकन योग्य के | * अवलोकन योग्य के मौलिक रूप को हैमिल्टन रूप में लिखें (संवेग पी और स्थिति क्यू के एक फलन के रूप में)। दोनों सदिशों को एक अनैतिक जड़त्वीय फ्रेम के संबंध में व्यक्त किया जाता है, जिसे सामान्यतः ''प्रयोगशाला-फ्रेम'' या ''स्पेस-फिक्स्ड फ्रेम'' कहा जाता है। | ||
* p को इसके द्वारा बदलें <math>-i\hbar\boldsymbol{\nabla}</math> और q की गुणात्मक संचालिका के रूप में व्याख्या करें। यहाँ <math>\boldsymbol{\nabla}</math> डेल ऑपरेटर है, एक | * p को इसके द्वारा बदलें <math>-i\hbar\boldsymbol{\nabla}</math> और q की गुणात्मक संचालिका के रूप में व्याख्या करें। यहाँ <math>\boldsymbol{\nabla}</math> डेल ऑपरेटर होता है, एक सदिश ऑपरेटर जिसमें प्रथम व्युत्पन्न सम्मिलित होते हैं। पी और क्यू ऑपरेटरों के लिए प्रसिद्ध रूपान्तरण संबंध सीधे विभेदन नियमों का पालन करते हैं। | ||
मौलिक रूप से एक अणु में इलेक्ट्रॉनों और नाभिकों में ''p''<sup>2</sup>/(2 ''m'') रूप [[की]] गतिज ऊर्जा होती है। औरकूलम्ब के नियम के माध्यम से परस्पर क्रिया करें, जो कण ''i'' और ''j के मध्य की दुरी r<sub>ij</sub>'' के व्युत्क्रमानुपाती होते हैं। | |||
<math display="block"> r_{ij} \equiv |\mathbf{r}_i -\mathbf{r}_j| | <math display="block"> r_{ij} \equiv |\mathbf{r}_i -\mathbf{r}_j| | ||
= \sqrt{(\mathbf{r}_i -\mathbf{r}_j)\cdot(\mathbf{r}_i -\mathbf{r}_j)} | = \sqrt{(\mathbf{r}_i -\mathbf{r}_j)\cdot(\mathbf{r}_i -\mathbf{r}_j)} | ||
= \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2 + (z_i-z_j)^2 } . | = \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2 + (z_i-z_j)^2 } . | ||
</math> | </math> | ||
इस अभिव्यक्ति में | इस अभिव्यक्ति में '''r'''<sub>''i''</sub> किसी भी कण (इलेक्ट्रॉन या नाभिक) के समन्वय सदिश के लिए उपस्थित रहता है, यघपि यहां से हम परमाणु समन्वय का प्रतिनिधित्व करने के लिए पूंजी '''r''' आरक्षित करेंगे, और प्रणाली के इलेक्ट्रॉनों के लिए लोअर केस आर आरक्षित करेंगे। निर्देशांक को स्थान में कहीं भी केंद्रित किसी भी कार्टेशियन फ्रेम के संबंध में व्यक्त किया जा सकता है, क्योंकि दूरी, एक आंतरिक उत्पाद होने के कारण, फ्रेम के घूर्णन के तहत अपरिवर्तनीय होती है और, एक अंतर वेक्टर का मानक होने के कारण, फ्रेम के अनुवाद के कारण भी दूरी अपरिवर्तनीय होती है। | ||
हैमिल्टन रूप में | हैमिल्टन रूप में मौलिक ऊर्जा की मात्रा निर्धारित करके एक आणविक हैमिल्टन ऑपरेटर प्राप्त किया जाता है जिसे अधिकांशतः कूलम्ब हैमिल्टनियन के रूप में जाना जाता है। यह हैमिल्टनियन पाँच पदों का योग होता है। जो निम्न प्रकार होता है। | ||
# | # प्रणाली में प्रत्येक नाभिक के लिए गतिज ऊर्जा संचालक; <math display="block"> \hat{T}_n = - \sum_i \frac{\hbar^2}{2 M_i} \nabla^2_{\mathbf{R}_i} </math> | ||
# | # प्रणाली में प्रत्येक इलेक्ट्रॉन के लिए गतिज ऊर्जा संचालक;<math display="block">\hat{T}_e = - \sum_i \frac{\hbar^2}{2 m_e} \nabla^2_{\mathbf{r}_i} </math> | ||
# इलेक्ट्रॉनों और नाभिक के | # इलेक्ट्रॉनों और नाभिक के मध्य संभावित ऊर्जा - प्रणाली में कुल इलेक्ट्रॉन-नाभिक कूलम्बिक आकर्षण; <math display="block">\hat{U}_{en} = - \sum_i \sum_j \frac{Z_i e^2}{4 \pi \varepsilon_0 \left | \mathbf{R}_i - \mathbf{r}_j \right | }</math> | ||
# कूलॉमिक इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा <math display="block">\hat{U}_{ee} = {1 \over 2} \sum_i \sum_{j \ne i} \frac{e^2}{4 \pi \varepsilon_0 \left | \mathbf{r}_i - \mathbf{r}_j \right | } = | # कूलॉमिक इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा <math display="block">\hat{U}_{ee} = {1 \over 2} \sum_i \sum_{j \ne i} \frac{e^2}{4 \pi \varepsilon_0 \left | \mathbf{r}_i - \mathbf{r}_j \right | } = | ||
\sum_i \sum_{j > i} \frac{e^2}{4 \pi \varepsilon_0 \left | \mathbf{r}_i - \mathbf{r}_j \right | } | \sum_i \sum_{j > i} \frac{e^2}{4 \pi \varepsilon_0 \left | \mathbf{r}_i - \mathbf{r}_j \right | } | ||
Line 39: | Line 37: | ||
# कूलॉमिक नाभिक-नाभिक प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा - जिसे परमाणु प्रतिकर्षण ऊर्जा के रूप में भी जाना जाता है। अधिक विवरण के लिए विद्युत क्षमता देखें। <math display="block">\hat{U}_{nn} = {1 \over 2} \sum_i \sum_{j \ne i} \frac{Z_i Z_j e^2}{4 \pi \varepsilon_0 \left | \mathbf{R}_i - \mathbf{R}_j \right | } = | # कूलॉमिक नाभिक-नाभिक प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा - जिसे परमाणु प्रतिकर्षण ऊर्जा के रूप में भी जाना जाता है। अधिक विवरण के लिए विद्युत क्षमता देखें। <math display="block">\hat{U}_{nn} = {1 \over 2} \sum_i \sum_{j \ne i} \frac{Z_i Z_j e^2}{4 \pi \varepsilon_0 \left | \mathbf{R}_i - \mathbf{R}_j \right | } = | ||
\sum_i \sum_{j > i} \frac{Z_i Z_j e^2}{4 \pi \varepsilon_0 \left | \mathbf{R}_i - \mathbf{R}_j \right | }. </math> | \sum_i \sum_{j > i} \frac{Z_i Z_j e^2}{4 \pi \varepsilon_0 \left | \mathbf{R}_i - \mathbf{R}_j \right | }. </math> | ||
यहां | यहां ''M''<sub>i</sub> नाभिक का द्रव्यमान i होता है, ''Z<sub>i</sub>'' नाभिक का परमाणु क्रमांक और m<sub>e</sub> इलेक्ट्रॉन का द्रव्यमान होता है। कण i का लाप्लास संचालिका निम्न प्रकार होता है:<math> \nabla^2_{\mathbf{r}_i} \equiv \boldsymbol{\nabla}_{\mathbf{r}_i}\cdot \boldsymbol{\nabla}_{\mathbf{r}_i} | ||
= \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} </math> | = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2} </math>। चूंकि गतिज ऊर्जा ऑपरेटर एक आंतरिक उत्पाद है, यह कार्टेशियन फ्रेम के घूर्णन के कारण अपरिवर्तनीय होता है जिसके संबंध में x<sub>''i''</sub>, ''y<sub>i</sub>'', और z<sub>''i''</sub> व्यक्त किये जाते हैं। | ||
== | == लघु शब्द == | ||
1920 के | 1920 के समय में कई स्पेक्ट्रोस्कोपिक साक्ष्यों ने यह स्पष्ट कर दिया कि कूलम्ब हैमिल्टनियन में कुछ शब्द लुप्त हैं। विशेष रूप से भारी परमाणुओं वाले अणुओं के लिए, ये शब्द, यघपि गतिज और कूलम्ब ऊर्जा से बहुत छोटे हैं, नगण्य हैं। इन स्पेक्ट्रोस्कोपिक अवलोकनों ने इलेक्ट्रॉनों और नाभिकों, अर्थात् स्पिन के लिए स्वतंत्रता की एक नई डिग्री का प्रारम्भ किया। इस अनुभवजन्य अवधारणा को [[पॉल डिराक]] द्वारा सैद्धांतिक आधार दिया गया था जब उन्होंने एक-कण श्रोडिंगर समीकरण का सापेक्षिक रूप से सही ([[लोरेंत्ज़ सहसंयोजक]]) रूप में प्रस्तुत किया था। डिराक समीकरण भविष्यवाणी करता है कि एक कण की स्पिन और स्थानिक गति स्पिन-ऑर्बिट युग्मन के माध्यम से अंतःक्रिया करती है। सादृश्य में [[स्पिन-अन्य-कक्षा युग्मन|स्पिन-ऑर्बिट युग्मन]] प्रस्तुत किया गया था। तथ्य यह है कि कण स्पिन में चुंबकीय द्विध्रुव की कुछ विशेषताएं होती हैं, जिसके कारण स्पिन-स्पिन युग्मन होता है। मौलिक समकक्ष के बिना आगे की उद्देश्य [[फर्मी-संपर्क शब्द]] (नाभिक के साथ एक सीमित आकार के नाभिक पर इलेक्ट्रॉनिक घनत्व की अंतःक्रिया), और [[परमाणु चतुर्भुज युग्मन]] (इलेक्ट्रॉनों के कारण विद्युत क्षेत्र के साथ परमाणु चतुर्भुज की अंतःक्रिया) हैं। अंत में [[मानक मॉडल]] द्वारा अनुमानित समता का उल्लंघन करने वाले शब्द का उल्लेख किया जाना चाहिए। यघपि यह एक अत्यधिक लघु अंतःक्रिया होती है, इसने वैज्ञानिक साहित्य में अधिक ध्यान आकर्षित किया है क्योंकि यह [[चिरल अणु]]ओं में एनैन्टीओमर्स के लिए अलग-अलग ऊर्जा देता है। | ||
इस लेख का शेष भाग स्पिन | इस लेख का शेष भाग स्पिन उद्देशों की उपेक्षा करेगा और कूलम्ब हैमिल्टनियन के आइगेनवैल्यू (समय-स्वतंत्र श्रोडिंगर) समीकरण के समाधान पर विचार करेगा। | ||
== कूलम्ब हैमिल्टनियन का श्रोडिंगर समीकरण == | == कूलम्ब हैमिल्टनियन का श्रोडिंगर समीकरण == | ||
सजातीय | सजातीय स्थान में अणु के द्रव्यमान केंद्र (COM) गति के कारण कूलम्ब हैमिल्टनियन में एक सतत स्पेक्ट्रम होता है। मौलिक यांत्रिकी में बिंदु द्रव्यमानों की एक प्रणाली की COM गति को अलग करना आसान है। मौलिक रूप से COM की गति अन्य गतियों से अयुग्मित है। COM स्थान में समान रूप से (अर्थात्, स्थिर वेग के साथ) इस तरह गति करता है जैसे कि यह एक बिंदु कण हो जिसका द्रव्यमान सभी कणों के द्रव्यमान के योग ''M''<sub>tot</sub> के बराबर हो। | ||
क्वांटम यांत्रिकी में एक मुक्त कण की अवस्था में एक समतल तरंग | क्वांटम यांत्रिकी में एक मुक्त कण की अवस्था में एक समतल तरंग फलन होता है, जो अच्छी तरह से परिभाषित गति का एक गैर-वर्ग-अभिन्न कार्य है। गतिज ऊर्जा इस कण का कोई भी धनात्मक मान हो सकता है। [[हाइजेनबर्ग अनिश्चितता सिद्धांत]] के अनुरूप, COM की स्थिति हर जगह समान रूप से संभावित है। | ||
इस कण का कोई भी | |||
प्रणाली की स्वतंत्रता की तीन डिग्री के रूप में द्रव्यमान के केंद्र के समन्वय सदिशों निर्देशांक के सभी कणों (नाभिक और इलेक्ट्रॉन) के पुराने निर्देशांक के रैखिक संयोजन हैं। [[श्रृंखला नियम]] प्रयुक्त करके कोई यह दिखा सकता है | |||
<math display="block"> | <math display="block"> | ||
Line 61: | Line 58: | ||
+\frac{\hbar^2}{2 M_\textrm{tot}}\sum_{i,j=1}^{N_\textrm{tot} -1 } \nabla_{i} \cdot \nabla_{j} +V(\mathbf{t}). | +\frac{\hbar^2}{2 M_\textrm{tot}}\sum_{i,j=1}^{N_\textrm{tot} -1 } \nabla_{i} \cdot \nabla_{j} +V(\mathbf{t}). | ||
</math> | </math> | ||
<math>H</math> का पहला कार्यकाल COM गति की गतिज ऊर्जा है, जिसे तब से अलग से माना जा सकता है <math>H'</math> एक्स पर निर्भर नहीं है। जैसा कि अभी कहा गया है, इसकी मूल तरंगें समतल तरंगें हैं। संभावित ''V''(t) में नए निर्देशांक में व्यक्त कूलम्ब शब्द सम्मिलित हैं। का पहला कार्यकाल <math>H'</math> इसमें गतिज ऊर्जा ऑपरेटर की सामान्य उपस्थिति होती है। दूसरे शब्द को सामूहिक ध्रुवीकरण शब्द के रूप में जाना जाता है। अनुवादात्मक रूप से अपरिवर्तनीय हैमिल्टनियन <math>H'</math> स्वयं से जुड़ा हुआ तथा नीचे से घिरा हुआ दिखाया जा सकता है। अर्थात्, इसका निम्नतम eigenvalue वास्तविक और परिमित है। यद्यपि <math>H'</math> समान कणों के क्रमपरिवर्तन के तहत आवश्यक रूप से अपरिवर्तनीय है (चूंकि <math>H</math> और COM गतिज ऊर्जा अपरिवर्तनीय है), इसकी अपरिवर्तनीयता प्रकट नहीं होती है। | |||
के कई वास्तविक आणविक अनुप्रयोग नहीं <math>H'</math> अस्तित्व; हालाँकि, मौलिक कार्य देखें<ref>{{cite journal| doi=10.1103/RevModPhys.35.473| author=W. Kołos |author2=L. Wolniewicz |name-list-style=amp |title=डायटोमिक अणुओं के लिए नॉनडायबेटिक सिद्धांत और हाइड्रोजन अणु पर इसका अनुप्रयोग|journal= Reviews of Modern Physics|volume=35|pages=473–483 |date=1963|bibcode = 1963RvMP...35..473K| issue=3 }}</ref> शीघ्र अनुप्रयोग के लिए हाइड्रोजन अणु पर। आणविक तरंगों की अधिकांश गणनाओं में इलेक्ट्रॉनिक कार्य करता है | के कई वास्तविक आणविक अनुप्रयोग नहीं <math>H'</math> अस्तित्व; हालाँकि, मौलिक कार्य देखें<ref>{{cite journal| doi=10.1103/RevModPhys.35.473| author=W. Kołos |author2=L. Wolniewicz |name-list-style=amp |title=डायटोमिक अणुओं के लिए नॉनडायबेटिक सिद्धांत और हाइड्रोजन अणु पर इसका अनुप्रयोग|journal= Reviews of Modern Physics|volume=35|pages=473–483 |date=1963|bibcode = 1963RvMP...35..473K| issue=3 }}</ref> शीघ्र अनुप्रयोग के लिए हाइड्रोजन अणु पर। आणविक तरंगों की अधिकांश गणनाओं में इलेक्ट्रॉनिक कार्य करता है | ||
Line 72: | Line 71: | ||
इलेक्ट्रॉनिक हैमिल्टनियन का रूप है | इलेक्ट्रॉनिक हैमिल्टनियन का रूप है | ||
<math display="block"> \hat{H}_\mathrm{el} = \hat{T}_e + \hat{U}_{en}+ \hat{U}_{ee}+ \hat{U}_{nn}.</math> | <math display="block"> \hat{H}_\mathrm{el} = \hat{T}_e + \hat{U}_{en}+ \hat{U}_{ee}+ \hat{U}_{nn}.</math> | ||
इलेक्ट्रॉनों और नाभिकों के निर्देशांक एक फ्रेम के संबंध में व्यक्त किए जाते हैं जो नाभिक के साथ चलता है, ताकि नाभिक इस फ्रेम के संबंध में आराम की स्थिति में हो। फ़्रेम स्थान-निर्धारित फ़्रेम के समानांतर रहता है। यह एक जड़त्वीय ढांचा है क्योंकि ऐसा माना जाता है कि नाभिक बाहरी ताकतों या टॉर्क द्वारा त्वरित नहीं होता है। फ़्रेम की उत्पत्ति मनमानी है, यह | इलेक्ट्रॉनों और नाभिकों के निर्देशांक एक फ्रेम के संबंध में व्यक्त किए जाते हैं जो नाभिक के साथ चलता है, ताकि नाभिक इस फ्रेम के संबंध में आराम की स्थिति में हो। फ़्रेम स्थान-निर्धारित फ़्रेम के समानांतर रहता है। यह एक जड़त्वीय ढांचा है क्योंकि ऐसा माना जाता है कि नाभिक बाहरी ताकतों या टॉर्क द्वारा त्वरित नहीं होता है। फ़्रेम की उत्पत्ति मनमानी है, यह सामान्यतः केंद्रीय नाभिक पर या द्रव्यमान के परमाणु केंद्र में स्थित होती है। कभी-कभी यह कहा जाता है कि नाभिक एक स्थान-निर्धारित फ्रेम में आराम कर रहे हैं। इस कथन का तात्पर्य है कि नाभिक को मौलिक कणों के रूप में देखा जाता है, क्योंकि एक क्वांटम यांत्रिक कण आराम की स्थिति में नहीं हो सकता है। (इसका मतलब यह होगा कि इसमें एक साथ शून्य गति और अच्छी तरह से परिभाषित स्थिति थी, जो हाइजेनबर्ग के अनिश्चितता सिद्धांत का खंडन करती है)। | ||
चूँकि परमाणु स्थितियाँ स्थिर होती हैं, इलेक्ट्रॉनिक गतिज ऊर्जा ऑपरेटर किसी भी परमाणु वेक्टर पर अनुवाद के तहत अपरिवर्तनीय होता है। अंतर सदिशों के आधार पर कूलम्ब विभव भी अपरिवर्तनीय है। परमाणु कक्षाओं के विवरण और परमाणु कक्षाओं पर अभिन्नों की गणना में इस अपरिवर्तनीयता का उपयोग अणु में सभी परमाणुओं को | चूँकि परमाणु स्थितियाँ स्थिर होती हैं, इलेक्ट्रॉनिक गतिज ऊर्जा ऑपरेटर किसी भी परमाणु वेक्टर पर अनुवाद के तहत अपरिवर्तनीय होता है। अंतर सदिशों के आधार पर कूलम्ब विभव भी अपरिवर्तनीय है। परमाणु कक्षाओं के विवरण और परमाणु कक्षाओं पर अभिन्नों की गणना में इस अपरिवर्तनीयता का उपयोग अणु में सभी परमाणुओं को स्थान -निर्धारित फ्रेम के समानांतर अपने स्वयं के स्थानीयकृत फ्रेमों से लैस करके किया जाता है। | ||
जैसा कि बोर्न-ओपेनहाइमर सन्निकटन पर लेख में बताया गया है, श्रोडिंगर समीकरण के पर्याप्त संख्या में समाधान <math> H_\text{el}</math> संभावित ऊर्जा सतह (पीईएस) की ओर ले जाता है <math>V(\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{R}_N)</math>. यह माना जाता है कि इसके निर्देशांक पर V की कार्यात्मक निर्भरता ऐसी है | जैसा कि बोर्न-ओपेनहाइमर सन्निकटन पर लेख में बताया गया है, श्रोडिंगर समीकरण के पर्याप्त संख्या में समाधान <math> H_\text{el}</math> संभावित ऊर्जा सतह (पीईएस) की ओर ले जाता है <math>V(\mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{R}_N)</math>. यह माना जाता है कि इसके निर्देशांक पर V की कार्यात्मक निर्भरता ऐसी है | ||
Line 84: | Line 83: | ||
</math> | </math> | ||
जहाँ t और s मनमाना सदिश हैं और Δφ एक अतिसूक्ष्म कोण है, | जहाँ t और s मनमाना सदिश हैं और Δφ एक अतिसूक्ष्म कोण है, | ||
Δφ >> Δφ<sup>2</sup>. पीईएस पर यह अपरिवर्तनीय स्थिति स्वचालित रूप से पूरी हो जाती है जब पीईएस को आर के | Δφ >> Δφ<sup>2</sup>. पीईएस पर यह अपरिवर्तनीय स्थिति स्वचालित रूप से पूरी हो जाती है जब पीईएस को आर के मध्य के अंतर और कोणों के संदर्भ में व्यक्त किया जाता है।<sub>i</sub>, जो सामान्यतः होता है। | ||
== हार्मोनिक परमाणु गति हैमिल्टनियन == | == हार्मोनिक परमाणु गति हैमिल्टनियन == | ||
Line 107: | Line 106: | ||
\frac{\partial^2 V}{\partial \rho_{i\alpha}\partial\rho_{j\beta}}\Big)_0 \;\rho_{i\alpha}\rho_{j\beta} + \cdots, | \frac{\partial^2 V}{\partial \rho_{i\alpha}\partial\rho_{j\beta}}\Big)_0 \;\rho_{i\alpha}\rho_{j\beta} + \cdots, | ||
</math> | </math> | ||
और तीन पदों (तथाकथित हार्मोनिक सन्निकटन) के बाद काट-छाँट करें, हम V का वर्णन | और तीन पदों (तथाकथित हार्मोनिक सन्निकटन) के बाद काट-छाँट करें, हम V का वर्णन मात्र तीसरे पद से कर सकते हैं। शब्द वी<sub>0</sub> ऊर्जा में अवशोषित किया जा सकता है (ऊर्जा का एक नया शून्य देता है)। संतुलन की स्थिति के कारण दूसरा पद लुप्त हो रहा है। शेष पद में ''V'' का [[ हेस्सियन मैट्रिक्स |हेस्सियन मैट्रिक्स]] F सम्मिलित है, जो सममित है और निरंतर तत्वों के साथ एक ऑर्थोगोनल 3''N'' × 3''N'' मैट्रिक्स के साथ विकर्ण हो सकता है: | ||
<math display="block"> | <math display="block"> | ||
\mathbf{Q} \mathbf{F} \mathbf{Q}^\mathrm{T} = \boldsymbol{\Phi} \quad \text{with}\quad | \mathbf{Q} \mathbf{F} \mathbf{Q}^\mathrm{T} = \boldsymbol{\Phi} \quad \text{with}\quad | ||
Line 124: | Line 123: | ||
== वाटसन की परमाणु गति हैमिल्टनियन == | == वाटसन की परमाणु गति हैमिल्टनियन == | ||
आंतरिक (कंपन) गतियों से जुड़ी बाहरी (अनुवाद और घूर्णन) गतियों के लिए हैमिल्टनियन प्राप्त करने के लिए, इस बिंदु पर | आंतरिक (कंपन) गतियों से जुड़ी बाहरी (अनुवाद और घूर्णन) गतियों के लिए हैमिल्टनियन प्राप्त करने के लिए, इस बिंदु पर मौलिक यांत्रिकी पर लौटना और नाभिक की इन गतियों के अनुरूप मौलिक गतिज ऊर्जा निर्मित करना आम बात है। मौलिक रूप से अनुवादात्मक-द्रव्यमान-गति के केंद्र को अन्य गतियों से अलग करना आसान है। हालाँकि, कंपन गति से घूर्णी को अलग करना अधिक कठिन है और पूरी तरह से संभव नहीं है। यह रो-कंपन पृथक्करण सबसे पहले एकार्ट द्वारा प्राप्त किया गया था<ref>{{cite journal|doi=10.1103/PhysRev.47.552|first=C.|last=Eckart|title=घूर्णनशील अक्षों और बहुपरमाणुक अणुओं से संबंधित कुछ अध्ययन|journal=Physical Review|volume=47|pages=552–558|date=1935|bibcode=1935PhRv...47..552E|issue=7|url=http://elib.bsu.by/handle/123456789/154385|access-date=14 December 2019|archive-date=26 June 2020|archive-url=https://web.archive.org/web/20200626040803/https://elib.bsu.by/handle/123456789/154385|url-status=dead}}</ref> 1935 में जिसे अब एकार्ट शर्तों के नाम से जाना जाता है, लागू करके। चूँकि समस्या को एक फ्रेम (एक एकार्ट फ्रेम) में वर्णित किया गया है जो अणु के साथ घूमता है, और इसलिए एक [[गैर-जड़त्वीय फ्रेम]] है, [[काल्पनिक बल]]ों से जुड़ी ऊर्जाएं: केन्द्रापसारक बल और कोरिओलिस प्रभाव गतिज ऊर्जा में दिखाई देते हैं। | ||
सामान्य तौर पर, | सामान्य तौर पर, मौलिक गतिज ऊर्जा टी मीट्रिक टेंसर 'जी' = (जी) को परिभाषित करती है<sub>ij</sub>) [[वक्ररेखीय निर्देशांक]] s = (''s'' से संबद्ध<sub>i</sub>) द्वारा | ||
<math display="block"> 2T = \sum_{ij} g_{ij} \dot{s}_i \dot{s}_j. </math> | <math display="block"> 2T = \sum_{ij} g_{ij} \dot{s}_i \dot{s}_j. </math> | ||
परिमाणीकरण चरण इस | परिमाणीकरण चरण इस मौलिक गतिज ऊर्जा का क्वांटम मैकेनिकल ऑपरेटर में परिवर्तन है। पोडॉल्स्की का अनुसरण करना आम बात है<ref name="Podolsky">{{cite journal| first=B. |last=Podolsky|title=रूढ़िवादी प्रणाली के लिए हैमिल्टनियन फ़ंक्शन का क्वांटम-यांत्रिक रूप से सही रूप|journal=Physical Review|volume=32|page= 812 |date=1928|bibcode = 1928PhRv...32..812P |doi = 10.1103/PhysRev.32.812| issue=5 }}</ref> लाप्लास-बेल्ट्रामी ऑपरेटर को उसी (सामान्यीकृत, वक्रीय) निर्देशांक में लिखकर, जैसा कि मौलिक रूप के लिए उपयोग किया जाता है। इस ऑपरेटर के समीकरण के लिए मीट्रिक टेंसर जी और उसके निर्धारक के व्युत्क्रम की आवश्यकता होती है। लाप्लास-बेल्ट्रामी ऑपरेटर का गुणन <math>-\hbar^2</math> आवश्यक क्वांटम यांत्रिक गतिज ऊर्जा ऑपरेटर देता है। जब हम इस नुस्खे को कार्टेशियन निर्देशांक पर लागू करते हैं, जिसमें इकाई मीट्रिक होती है, तो वही गतिज ऊर्जा प्राप्त होती है जो कैनोनिकल परिमाणीकरण#क्वांटम यांत्रिकी के अनुप्रयोग से प्राप्त होती है। | ||
परमाणु गति हैमिल्टनियन को 1936 में विल्सन और हॉवर्ड द्वारा प्राप्त किया गया था,<ref>{{cite journal|doi=10.1063/1.1749833|author=E. Bright Wilson Jr. |author2=J. B. Howard |name-list-style=amp |title=The Vibration–Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules|journal= The Journal of Chemical Physics|volume=4|pages= 260–268 |date=1936|issue=4|bibcode = 1936JChPh...4..260W }}</ref> जिन्होंने इस प्रक्रिया का पालन किया और 1940 में डार्लिंग और डेनिसन द्वारा इसे और परिष्कृत किया गया।<ref>{{cite journal|doi=10.1103/PhysRev.57.128|author=B. T. Darling |author2=D. M. Dennison |name-list-style=amp |title=जलवाष्प अणु|journal=Physical Review| volume=57|pages= 128–139 |date=1940|bibcode = 1940PhRv...57..128D|issue=2 }}</ref> यह 1968 तक वॉटसन के समय तक मानक बना रहा<ref>{{cite journal|doi= 10.1080/00268976800101381|title= आणविक कंपन-रोटेशन हैमिल्टनियन का सरलीकरण|date= 1968|last1= Watson|first1= James K.G.|journal= Molecular Physics|volume= 15|issue= 5|pages= 479–490|bibcode = 1968MolPh..15..479W }}</ref> मीट्रिक टेंसर के निर्धारक को डेरिवेटिव के माध्यम से परिवर्तित करके इसे काफी सरल बनाने में सक्षम था। हम वॉटसन द्वारा प्राप्त रो-वाइब्रेशनल हैमिल्टनियन देंगे, जिसे अक्सर वॉटसन हैमिल्टनियन के रूप में जाना जाता है। ऐसा करने से पहले हमें उल्लेख करना होगा | परमाणु गति हैमिल्टनियन को 1936 में विल्सन और हॉवर्ड द्वारा प्राप्त किया गया था,<ref>{{cite journal|doi=10.1063/1.1749833|author=E. Bright Wilson Jr. |author2=J. B. Howard |name-list-style=amp |title=The Vibration–Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules|journal= The Journal of Chemical Physics|volume=4|pages= 260–268 |date=1936|issue=4|bibcode = 1936JChPh...4..260W }}</ref> जिन्होंने इस प्रक्रिया का पालन किया और 1940 में डार्लिंग और डेनिसन द्वारा इसे और परिष्कृत किया गया।<ref>{{cite journal|doi=10.1103/PhysRev.57.128|author=B. T. Darling |author2=D. M. Dennison |name-list-style=amp |title=जलवाष्प अणु|journal=Physical Review| volume=57|pages= 128–139 |date=1940|bibcode = 1940PhRv...57..128D|issue=2 }}</ref> यह 1968 तक वॉटसन के समय तक मानक बना रहा<ref>{{cite journal|doi= 10.1080/00268976800101381|title= आणविक कंपन-रोटेशन हैमिल्टनियन का सरलीकरण|date= 1968|last1= Watson|first1= James K.G.|journal= Molecular Physics|volume= 15|issue= 5|pages= 479–490|bibcode = 1968MolPh..15..479W }}</ref> मीट्रिक टेंसर के निर्धारक को डेरिवेटिव के माध्यम से परिवर्तित करके इसे काफी सरल बनाने में सक्षम था। हम वॉटसन द्वारा प्राप्त रो-वाइब्रेशनल हैमिल्टनियन देंगे, जिसे अक्सर वॉटसन हैमिल्टनियन के रूप में जाना जाता है। ऐसा करने से पहले हमें उल्लेख करना होगा | ||
Line 154: | Line 153: | ||
Q_{s, i\beta}\,Q_{t,i\gamma} \;\; \mathrm{and}\quad\alpha=1,2,3. | Q_{s, i\beta}\,Q_{t,i\gamma} \;\; \mathrm{and}\quad\alpha=1,2,3. | ||
</math> | </math> | ||
यहाँ {{math|''ε<sub>αβγ</sub>''}} [[लेवी-सिविटा प्रतीक]] है। में पद द्विघात <math>\mathcal{P}_\alpha</math> केन्द्रापसारक शब्द हैं, वे द्विरेखीय हैं <math>\mathcal{P}_\alpha</math> और <math>\Pi_\beta\, </math> कोरिओलिस शब्द हैं। मात्राएँ Q<sub> s, iγ</sub> ऊपर प्रस्तुत सामान्य निर्देशांक के घटक हैं। वैकल्पिक रूप से, विल्सन की [[जीएफ विधि]] के अनुप्रयोग द्वारा सामान्य निर्देशांक प्राप्त किए जा सकते हैं। 3×3 सममित मैट्रिक्स <math>\boldsymbol{\mu}</math> प्रभावी पारस्परिक जड़त्व टेंसर कहा जाता है। यदि सभी प्र<sub> s</sub> शून्य (कठोर अणु) थे तो एकार्ट फ्रेम एक प्रमुख अक्ष फ्रेम के साथ मेल खाएगा (कठोर रोटर देखें) और <math>\boldsymbol{\mu}</math> विकर्ण पर जड़त्व के संतुलन पारस्परिक क्षणों के साथ, विकर्ण होगा। यदि सभी प्र<sub> s</sub> शून्य होगा, | यहाँ {{math|''ε<sub>αβγ</sub>''}} [[लेवी-सिविटा प्रतीक]] है। में पद द्विघात <math>\mathcal{P}_\alpha</math> केन्द्रापसारक शब्द हैं, वे द्विरेखीय हैं <math>\mathcal{P}_\alpha</math> और <math>\Pi_\beta\, </math> कोरिओलिस शब्द हैं। मात्राएँ Q<sub> s, iγ</sub> ऊपर प्रस्तुत सामान्य निर्देशांक के घटक हैं। वैकल्पिक रूप से, विल्सन की [[जीएफ विधि]] के अनुप्रयोग द्वारा सामान्य निर्देशांक प्राप्त किए जा सकते हैं। 3×3 सममित मैट्रिक्स <math>\boldsymbol{\mu}</math> प्रभावी पारस्परिक जड़त्व टेंसर कहा जाता है। यदि सभी प्र<sub> s</sub> शून्य (कठोर अणु) थे तो एकार्ट फ्रेम एक प्रमुख अक्ष फ्रेम के साथ मेल खाएगा (कठोर रोटर देखें) और <math>\boldsymbol{\mu}</math> विकर्ण पर जड़त्व के संतुलन पारस्परिक क्षणों के साथ, विकर्ण होगा। यदि सभी प्र<sub> s</sub> शून्य होगा, मात्र अनुवाद और कठोर घूर्णन की गतिज ऊर्जाएँ जीवित रहेंगी। | ||
संभावित-समान शब्द यू वॉटसन शब्द है: | संभावित-समान शब्द यू वॉटसन शब्द है: | ||
Line 162: | Line 161: | ||
वॉटसन हैमिल्टनियन में चौथा शब्द सामान्य निर्देशांक में व्यक्त परमाणुओं (नाभिक) के कंपन से जुड़ी गतिज ऊर्जा है<sub>s</sub>, जैसा कि ऊपर बताया गया है, परमाणु विस्थापन ρ के संदर्भ में दिए गए हैं<sub>iα</sub> द्वारा | वॉटसन हैमिल्टनियन में चौथा शब्द सामान्य निर्देशांक में व्यक्त परमाणुओं (नाभिक) के कंपन से जुड़ी गतिज ऊर्जा है<sub>s</sub>, जैसा कि ऊपर बताया गया है, परमाणु विस्थापन ρ के संदर्भ में दिए गए हैं<sub>iα</sub> द्वारा | ||
<math display="block">q_s = \sum_{i=1}^N \sum_{\alpha=1}^3 Q_{s, i\alpha} \rho_{i\alpha}\quad\text{for}\quad s=1,\ldots, 3N-6.</math> | <math display="block">q_s = \sum_{i=1}^N \sum_{\alpha=1}^3 Q_{s, i\alpha} \rho_{i\alpha}\quad\text{for}\quad s=1,\ldots, 3N-6.</math> | ||
अंततः V | अंततः V मात्र आंतरिक निर्देशांक के आधार पर परिभाषा के अनुसार अविस्तारित स्थितिज ऊर्जा है। हार्मोनिक सन्निकटन में यह रूप ले लेता है | ||
<math display="block">V \approx \frac{1}{2} \sum_{s=1}^{3N-6} f_s q_s^2.</math> | <math display="block">V \approx \frac{1}{2} \sum_{s=1}^{3N-6} f_s q_s^2.</math> | ||
[[Category: आणविक भौतिकी]] [[Category: क्वांटम रसायन शास्त्र]] [[Category: स्पेक्ट्रोस्कोपी]] | [[Category: आणविक भौतिकी]] [[Category: क्वांटम रसायन शास्त्र]] [[Category: स्पेक्ट्रोस्कोपी]] |
Revision as of 01:40, 21 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
परमाणु, आणविक और ऑप्टिकल भौतिकी और क्वांटम रसायन विज्ञान में, आणविक हैमिल्टनियन एक अणु में इलेक्ट्रॉन और परमाणु नाभिक की ऊर्जा का प्रतिनिधित्व करने वाला हैमिल्टनियन ऑपरेटर होता है। यह ऑपरेटर और संबंधित श्रोडिंगर समीकरण, थर्मल चालकता, विशिष्ट उर्जा, विद्युत चालकता, प्रकाशिकी और चुंबकत्व, और प्रतिक्रियाशीलता (रसायन विज्ञान) जैसे अणुओं और अणुओं के समुच्चय के गुणों की गणना के लिए कम्प्यूटेशनल रसायन विज्ञान और कम्प्यूटेशनल भौतिकी में एक केंद्रीय भूमिका निभाते हैं।
एक अणु के प्राथमिक भाग नाभिक होते हैं, जो उनके परमाणु क्रमांक, Z और इलेक्ट्रॉनों द्वारा चिह्नित होते हैं, जिनका प्राथमिक चार्ज -e नकारात्मक होता है। उनकी परस्पर क्रिया Z + q का परमाणु प्रभार देती है, जहां q = −eN होता, जिसमें N इलेक्ट्रॉनों की संख्या के समांतर होता है। इलेक्ट्रॉन और नाभिक, एक बहुत अच्छे प्राक्लन के अनुसार, बिंदु आवेश और बिंदु द्रव्यमान होते हैं। आणविक हैमिल्टनियन कई शब्दों का योग होता है: इसके प्रमुख शब्द इलेक्ट्रॉनों की गतिज ऊर्जा और दो प्रकार के आवेशित कणों के मध्य कूलम्ब (इलेक्ट्रोस्टैटिक) अंतःक्रिया हैं। हैमिल्टनियन जिसमें मात्र इलेक्ट्रॉनों और नाभिकों की गतिज ऊर्जा और उनके मध्य कूलम्ब अंतःक्रिया सम्मिलित होती है, जिसको 'कूलम्ब हैमिल्टनियन' के रूप में जाना जाता है। इसमें से कई छोटे शब्द लुप्त होतेहैं, जिनमें से अधिकांश इलेक्ट्रॉनिक और परमाणु स्पिन के कारण होते हैं।
यद्यपि सामान्यतः यह माना जाता है कि कूलम्ब हैमिल्टनियन से जुड़े समय-स्वतंत्र श्रोडिंगर समीकरण का समाधान अणु के अधिकांश गुणों की भविष्यवाणी करेगा, जिसमें इसके आकार (त्रि-आयामी संरचना) भी सम्मिलित होते है, पूर्ण कूलम्ब हैमिल्टनियन पर आधारित गणना बहुत दुर्लभ होती है। इसका मुख्य कारण यह है कि इसके श्रोडिंगर समीकरण को हल करना बहुत कठिन होता है। अनुप्रयोग हाइड्रोजन अणु जैसी छोटी प्रणालियों तक ही सीमित होते हैं।
आणविक तरंग कार्यों की लगभग सभी गणनाएँ बोर्न-ओपेनहाइमर सन्निकटन द्वारा निर्मित किए गए कूलम्ब हैमिल्टनियन के पृथक्करण पर आधारित होता हैं। परमाणु गतिज ऊर्जा उद्देश्य को कूलम्ब हैमिल्टनियन से हटा दिया जाता है और शेष हैमिल्टनियन को मात्र इलेक्ट्रॉनों का हैमिल्टनियन माना जाता है। स्थिर नाभिक मात्र विद्युत क्षमता के जनरेटर के रूप में समस्या में प्रवेश करते हैं जिसमें इलेक्ट्रॉन क्वांटम यांत्रिक विधि से चलते हैं। इस ढांचे के भीतर आणविक हैमिल्टनियन को तथाकथित 'क्लैम्प्ड न्यूक्लियस हैमिल्टनियन' में सरलीकृत किया जाता है, जिसे 'इलेक्ट्रॉनिक हैमिल्टनियन' भी कहा जाता है, जो मात्र इलेक्ट्रॉनिक निर्देशांक के कार्यों पर कार्य करता है।
एक बार जब क्लैम्प्ड न्यूक्लियस हैमिल्टनियन के श्रोडिंगर समीकरण को पर्याप्त संख्या में नाभिक के तारामंडल के लिए हल कर लिया गया है, तो एक उपयुक्त आइगेनमूल्य (सामान्यतः सबसे कम) को परमाणु निर्देशांक के एक फलन के रूप में देखा जा सकता है, जो एक संभावित ऊर्जा को सतह की ओर ले जाता है। व्यावहारिक गणनाओं में सतह सामान्यतः कुछ विश्लेषणात्मक कार्यों के संदर्भ में न्यूनतम वर्ग होती है। बोर्न-ओपेनहाइमर सन्निकटन के दूसरे चरण में पूर्ण कूलम्ब हैमिल्टनियन का वह भाग जो इलेक्ट्रॉनों पर निर्भर करता है, संभावित ऊर्जा सतह द्वारा प्रतिस्थापित किया जाता है। यह कुल आणविक हैमिल्टनियन को दूसरे हैमिल्टनियन में परिवर्तित करता है जो मात्र परमाणु निर्देशांक पर कार्य करता है। बोर्न-ओपेनहाइमर सन्निकटन के पृथक की स्थिति में - जो तब होता है जब विभिन्न इलेक्ट्रॉनिक स्थितियों की ऊर्जाएँ समीप होती हैं - समीपस्थ संभावित ऊर्जा सतहों की आवश्यकता होती है, इस पर अधिक विवरण के लिए बोर्न-ओपेनहाइमर सन्निकटन देखें।
परमाणु गति श्रोडिंगर समीकरण को एक स्थान-निर्धारित (प्रयोगशाला) संदर्भ फ्रेम में हल किया जा सकता है, यघपि तब अनुवाद (भौतिकी) और घूर्णी (बाहरी) ऊर्जाओं का परिकलन नहीं दिया जाता है। मात्र (आंतरिक) परमाणु कंपन ही समस्या में प्रवेश करते हैं। इसके अतिरिक्त, त्रिपरमाण्विक अणुओं से बड़े अणुओं के लिए, हार्मोनिक सन्निकटन का परिचय देना अधिक आम है, जो परमाणु विस्थापन के द्विघात फलन के रूप में संभावित ऊर्जा सतह का प्राक्लन लगाता है। यह 'हार्मोनिक न्यूक्लियर मोशन हैमिल्टनियन' देता है। हार्मोनिक सन्निकटन बनाते हुए, हम हैमिल्टनियन को अयुग्मित एक-आयामी लयबद्ध दोलक हैमिल्टनियन के योग में परिवर्तित कर सकते हैं। एक-आयामी हार्मोनिक ऑसिलेटर उन कुछ प्रणालियों में से एक है जो श्रोडिंगर समीकरण के स्पष्ट समाधान की अनुमति देता है।
वैकल्पिक रूप से, परमाणु गति (रोविब्रेशनल) श्रोडिंगर समीकरण को एक विशेष फ्रेम (एक एकार्ट स्थितियों) में हल किया जा सकता है जो अणु के साथ घूमता है और अनुवाद करता है। इस शरीर-स्थिर फ्रेम के संबंध में निर्मित हैमिल्टनियन नाभिक के घूर्णन, अनुवाद और कंपन के लिए उत्तरदायी होता है। चूंकि वॉटसन ने 1968 में इस हैमिल्टनियन के लिए एक महत्वपूर्ण सरलीकरण प्रस्तुत किया था, इसलिए इसे अधिकांशतः 'वॉटसन की परमाणु गति हैमिल्टन' के रूप में जाना जाता है। यघपि इसे 'एकार्ट हैमिल्टनियन' के नाम से भी जाना जाता है।
कूलम्ब हैमिल्टनियन
कई वेधशालाओं का बीजगणितीय रूप - अर्थात्, अवलोकन योग्य मात्राओं का प्रतिनिधित्व करने वाले हर्मिटियन ऑपरेटर्स - निम्नलिखित कैनोनिकल परिमाणीकरण क्वांटम यांत्रिकी द्वारा प्राप्त किया जाता है:
- अवलोकन योग्य के मौलिक रूप को हैमिल्टन रूप में लिखें (संवेग पी और स्थिति क्यू के एक फलन के रूप में)। दोनों सदिशों को एक अनैतिक जड़त्वीय फ्रेम के संबंध में व्यक्त किया जाता है, जिसे सामान्यतः प्रयोगशाला-फ्रेम या स्पेस-फिक्स्ड फ्रेम कहा जाता है।
- p को इसके द्वारा बदलें और q की गुणात्मक संचालिका के रूप में व्याख्या करें। यहाँ डेल ऑपरेटर होता है, एक सदिश ऑपरेटर जिसमें प्रथम व्युत्पन्न सम्मिलित होते हैं। पी और क्यू ऑपरेटरों के लिए प्रसिद्ध रूपान्तरण संबंध सीधे विभेदन नियमों का पालन करते हैं।
मौलिक रूप से एक अणु में इलेक्ट्रॉनों और नाभिकों में p2/(2 m) रूप की गतिज ऊर्जा होती है। औरकूलम्ब के नियम के माध्यम से परस्पर क्रिया करें, जो कण i और j के मध्य की दुरी rij के व्युत्क्रमानुपाती होते हैं।
हैमिल्टन रूप में मौलिक ऊर्जा की मात्रा निर्धारित करके एक आणविक हैमिल्टन ऑपरेटर प्राप्त किया जाता है जिसे अधिकांशतः कूलम्ब हैमिल्टनियन के रूप में जाना जाता है। यह हैमिल्टनियन पाँच पदों का योग होता है। जो निम्न प्रकार होता है।
- प्रणाली में प्रत्येक नाभिक के लिए गतिज ऊर्जा संचालक;
- प्रणाली में प्रत्येक इलेक्ट्रॉन के लिए गतिज ऊर्जा संचालक;
- इलेक्ट्रॉनों और नाभिक के मध्य संभावित ऊर्जा - प्रणाली में कुल इलेक्ट्रॉन-नाभिक कूलम्बिक आकर्षण;
- कूलॉमिक इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा
- कूलॉमिक नाभिक-नाभिक प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा - जिसे परमाणु प्रतिकर्षण ऊर्जा के रूप में भी जाना जाता है। अधिक विवरण के लिए विद्युत क्षमता देखें।
यहां Mi नाभिक का द्रव्यमान i होता है, Zi नाभिक का परमाणु क्रमांक और me इलेक्ट्रॉन का द्रव्यमान होता है। कण i का लाप्लास संचालिका निम्न प्रकार होता है:। चूंकि गतिज ऊर्जा ऑपरेटर एक आंतरिक उत्पाद है, यह कार्टेशियन फ्रेम के घूर्णन के कारण अपरिवर्तनीय होता है जिसके संबंध में xi, yi, और zi व्यक्त किये जाते हैं।
लघु शब्द
1920 के समय में कई स्पेक्ट्रोस्कोपिक साक्ष्यों ने यह स्पष्ट कर दिया कि कूलम्ब हैमिल्टनियन में कुछ शब्द लुप्त हैं। विशेष रूप से भारी परमाणुओं वाले अणुओं के लिए, ये शब्द, यघपि गतिज और कूलम्ब ऊर्जा से बहुत छोटे हैं, नगण्य हैं। इन स्पेक्ट्रोस्कोपिक अवलोकनों ने इलेक्ट्रॉनों और नाभिकों, अर्थात् स्पिन के लिए स्वतंत्रता की एक नई डिग्री का प्रारम्भ किया। इस अनुभवजन्य अवधारणा को पॉल डिराक द्वारा सैद्धांतिक आधार दिया गया था जब उन्होंने एक-कण श्रोडिंगर समीकरण का सापेक्षिक रूप से सही (लोरेंत्ज़ सहसंयोजक) रूप में प्रस्तुत किया था। डिराक समीकरण भविष्यवाणी करता है कि एक कण की स्पिन और स्थानिक गति स्पिन-ऑर्बिट युग्मन के माध्यम से अंतःक्रिया करती है। सादृश्य में स्पिन-ऑर्बिट युग्मन प्रस्तुत किया गया था। तथ्य यह है कि कण स्पिन में चुंबकीय द्विध्रुव की कुछ विशेषताएं होती हैं, जिसके कारण स्पिन-स्पिन युग्मन होता है। मौलिक समकक्ष के बिना आगे की उद्देश्य फर्मी-संपर्क शब्द (नाभिक के साथ एक सीमित आकार के नाभिक पर इलेक्ट्रॉनिक घनत्व की अंतःक्रिया), और परमाणु चतुर्भुज युग्मन (इलेक्ट्रॉनों के कारण विद्युत क्षेत्र के साथ परमाणु चतुर्भुज की अंतःक्रिया) हैं। अंत में मानक मॉडल द्वारा अनुमानित समता का उल्लंघन करने वाले शब्द का उल्लेख किया जाना चाहिए। यघपि यह एक अत्यधिक लघु अंतःक्रिया होती है, इसने वैज्ञानिक साहित्य में अधिक ध्यान आकर्षित किया है क्योंकि यह चिरल अणुओं में एनैन्टीओमर्स के लिए अलग-अलग ऊर्जा देता है।
इस लेख का शेष भाग स्पिन उद्देशों की उपेक्षा करेगा और कूलम्ब हैमिल्टनियन के आइगेनवैल्यू (समय-स्वतंत्र श्रोडिंगर) समीकरण के समाधान पर विचार करेगा।
कूलम्ब हैमिल्टनियन का श्रोडिंगर समीकरण
सजातीय स्थान में अणु के द्रव्यमान केंद्र (COM) गति के कारण कूलम्ब हैमिल्टनियन में एक सतत स्पेक्ट्रम होता है। मौलिक यांत्रिकी में बिंदु द्रव्यमानों की एक प्रणाली की COM गति को अलग करना आसान है। मौलिक रूप से COM की गति अन्य गतियों से अयुग्मित है। COM स्थान में समान रूप से (अर्थात्, स्थिर वेग के साथ) इस तरह गति करता है जैसे कि यह एक बिंदु कण हो जिसका द्रव्यमान सभी कणों के द्रव्यमान के योग Mtot के बराबर हो।
क्वांटम यांत्रिकी में एक मुक्त कण की अवस्था में एक समतल तरंग फलन होता है, जो अच्छी तरह से परिभाषित गति का एक गैर-वर्ग-अभिन्न कार्य है। गतिज ऊर्जा इस कण का कोई भी धनात्मक मान हो सकता है। हाइजेनबर्ग अनिश्चितता सिद्धांत के अनुरूप, COM की स्थिति हर जगह समान रूप से संभावित है।
प्रणाली की स्वतंत्रता की तीन डिग्री के रूप में द्रव्यमान के केंद्र के समन्वय सदिशों निर्देशांक के सभी कणों (नाभिक और इलेक्ट्रॉन) के पुराने निर्देशांक के रैखिक संयोजन हैं। श्रृंखला नियम प्रयुक्त करके कोई यह दिखा सकता है
का पहला कार्यकाल COM गति की गतिज ऊर्जा है, जिसे तब से अलग से माना जा सकता है एक्स पर निर्भर नहीं है। जैसा कि अभी कहा गया है, इसकी मूल तरंगें समतल तरंगें हैं। संभावित V(t) में नए निर्देशांक में व्यक्त कूलम्ब शब्द सम्मिलित हैं। का पहला कार्यकाल इसमें गतिज ऊर्जा ऑपरेटर की सामान्य उपस्थिति होती है। दूसरे शब्द को सामूहिक ध्रुवीकरण शब्द के रूप में जाना जाता है। अनुवादात्मक रूप से अपरिवर्तनीय हैमिल्टनियन स्वयं से जुड़ा हुआ तथा नीचे से घिरा हुआ दिखाया जा सकता है। अर्थात्, इसका निम्नतम eigenvalue वास्तविक और परिमित है। यद्यपि समान कणों के क्रमपरिवर्तन के तहत आवश्यक रूप से अपरिवर्तनीय है (चूंकि और COM गतिज ऊर्जा अपरिवर्तनीय है), इसकी अपरिवर्तनीयता प्रकट नहीं होती है।
के कई वास्तविक आणविक अनुप्रयोग नहीं अस्तित्व; हालाँकि, मौलिक कार्य देखें[1] शीघ्र अनुप्रयोग के लिए हाइड्रोजन अणु पर। आणविक तरंगों की अधिकांश गणनाओं में इलेक्ट्रॉनिक कार्य करता है समस्या का समाधान बोर्न-ओपेनहाइमर सन्निकटन के पहले चरण में उत्पन्न होने वाले क्लैम्प्ड न्यूक्लियस हैमिल्टनियन से किया गया है।
रेफरी देखें.[2] कूलम्ब हैमिल्टनियन के गणितीय गुणों की गहन चर्चा के लिए। इस पेपर में इस बात पर भी चर्चा की गई है कि क्या कोई अकेले कूलम्ब हैमिल्टनियन के गुणों से एक अणु (एक अच्छी तरह से परिभाषित ज्यामिति के साथ इलेक्ट्रॉनों और नाभिक की एक स्थिर प्रणाली के रूप में) की अवधारणा पर पहुंच सकता है।
क्लैंप्ड न्यूक्लियस हैमिल्टनियन
क्लैंप्ड न्यूक्लियस हैमिल्टनियन नाभिक के इलेक्ट्रोस्टैटिक क्षेत्र में इलेक्ट्रॉनों की ऊर्जा का वर्णन करता है, जहां नाभिक को एक जड़त्वीय फ्रेम के संबंध में स्थिर माना जाता है। इलेक्ट्रॉनिक हैमिल्टनियन का रूप है
चूँकि परमाणु स्थितियाँ स्थिर होती हैं, इलेक्ट्रॉनिक गतिज ऊर्जा ऑपरेटर किसी भी परमाणु वेक्टर पर अनुवाद के तहत अपरिवर्तनीय होता है। अंतर सदिशों के आधार पर कूलम्ब विभव भी अपरिवर्तनीय है। परमाणु कक्षाओं के विवरण और परमाणु कक्षाओं पर अभिन्नों की गणना में इस अपरिवर्तनीयता का उपयोग अणु में सभी परमाणुओं को स्थान -निर्धारित फ्रेम के समानांतर अपने स्वयं के स्थानीयकृत फ्रेमों से लैस करके किया जाता है।
जैसा कि बोर्न-ओपेनहाइमर सन्निकटन पर लेख में बताया गया है, श्रोडिंगर समीकरण के पर्याप्त संख्या में समाधान संभावित ऊर्जा सतह (पीईएस) की ओर ले जाता है . यह माना जाता है कि इसके निर्देशांक पर V की कार्यात्मक निर्भरता ऐसी है
हार्मोनिक परमाणु गति हैमिल्टनियन
इस लेख के शेष भाग में हम मानते हैं कि अणु अर्ध-कठोर अणु|अर्ध-कठोर है। बीओ सन्निकटन के दूसरे चरण में परमाणु गतिज ऊर्जा टीn पुनः प्रस्तुत किया गया है और हैमिल्टनियन के साथ श्रोडिंगर समीकरण
पृथक्करण प्राप्त करने के लिए हमें आंतरिक और बाह्य निर्देशांकों में अंतर करना होगा, जिसके अंत में एकार्ट ने निर्देशांकों से संतुष्ट होने के लिए एकार्ट शर्तों की शुरुआत की। हम दिखाएंगे कि द्रव्यमान-भारित कार्टेशियन निर्देशांक में हार्मोनिक विश्लेषण से ये स्थितियां प्राकृतिक तरीके से कैसे उत्पन्न होती हैं।
गतिज ऊर्जा के लिए अभिव्यक्ति को सरल बनाने के लिए हम द्रव्यमान-भारित विस्थापन निर्देशांक प्रस्तुत करते हैं
सामान्य निर्देशांक की शुरूआत के साथ
3N द्रव्यमान-भारित कार्टेशियन निर्देशांक में वर्णित परमाणु गति समस्या का यह अनुमान क्वांटम रसायन विज्ञान में मानक बन गया, उन दिनों (1980-1990 के दशक) से जब हेसियन 'एफ' की सटीक गणना के लिए एल्गोरिदम उपलब्ध हो गए। हार्मोनिक सन्निकटन के अलावा, इसकी एक और कमी यह है कि अणु की बाहरी (घूर्णी और अनुवादात्मक) गतियों का ध्यान नहीं रखा जाता है। उनका वर्णन एक रोविब्रेशनल हैमिल्टनियन में किया गया है जिसे कभी-कभी वॉटसन का हैमिल्टनियन भी कहा जाता है।
वाटसन की परमाणु गति हैमिल्टनियन
आंतरिक (कंपन) गतियों से जुड़ी बाहरी (अनुवाद और घूर्णन) गतियों के लिए हैमिल्टनियन प्राप्त करने के लिए, इस बिंदु पर मौलिक यांत्रिकी पर लौटना और नाभिक की इन गतियों के अनुरूप मौलिक गतिज ऊर्जा निर्मित करना आम बात है। मौलिक रूप से अनुवादात्मक-द्रव्यमान-गति के केंद्र को अन्य गतियों से अलग करना आसान है। हालाँकि, कंपन गति से घूर्णी को अलग करना अधिक कठिन है और पूरी तरह से संभव नहीं है। यह रो-कंपन पृथक्करण सबसे पहले एकार्ट द्वारा प्राप्त किया गया था[3] 1935 में जिसे अब एकार्ट शर्तों के नाम से जाना जाता है, लागू करके। चूँकि समस्या को एक फ्रेम (एक एकार्ट फ्रेम) में वर्णित किया गया है जो अणु के साथ घूमता है, और इसलिए एक गैर-जड़त्वीय फ्रेम है, काल्पनिक बलों से जुड़ी ऊर्जाएं: केन्द्रापसारक बल और कोरिओलिस प्रभाव गतिज ऊर्जा में दिखाई देते हैं।
सामान्य तौर पर, मौलिक गतिज ऊर्जा टी मीट्रिक टेंसर 'जी' = (जी) को परिभाषित करती हैij) वक्ररेखीय निर्देशांक s = (s से संबद्धi) द्वारा
परमाणु गति हैमिल्टनियन को 1936 में विल्सन और हॉवर्ड द्वारा प्राप्त किया गया था,[5] जिन्होंने इस प्रक्रिया का पालन किया और 1940 में डार्लिंग और डेनिसन द्वारा इसे और परिष्कृत किया गया।[6] यह 1968 तक वॉटसन के समय तक मानक बना रहा[7] मीट्रिक टेंसर के निर्धारक को डेरिवेटिव के माध्यम से परिवर्तित करके इसे काफी सरल बनाने में सक्षम था। हम वॉटसन द्वारा प्राप्त रो-वाइब्रेशनल हैमिल्टनियन देंगे, जिसे अक्सर वॉटसन हैमिल्टनियन के रूप में जाना जाता है। ऐसा करने से पहले हमें उल्लेख करना होगा इस हैमिल्टनियन की व्युत्पत्ति कार्टेशियन रूप में लाप्लास ऑपरेटर से शुरू करके, समन्वय परिवर्तनों के अनुप्रयोग और कई चर के लिए चेन नियम#चेन नियम के उपयोग से भी संभव है।[8] वॉटसन हैमिल्टनियन, एन नाभिक की सभी गतियों का वर्णन करता है
संभावित-समान शब्द यू वॉटसन शब्द है:
वॉटसन हैमिल्टनियन में चौथा शब्द सामान्य निर्देशांक में व्यक्त परमाणुओं (नाभिक) के कंपन से जुड़ी गतिज ऊर्जा हैs, जैसा कि ऊपर बताया गया है, परमाणु विस्थापन ρ के संदर्भ में दिए गए हैंiα द्वारा
- ↑ W. Kołos & L. Wolniewicz (1963). "डायटोमिक अणुओं के लिए नॉनडायबेटिक सिद्धांत और हाइड्रोजन अणु पर इसका अनुप्रयोग". Reviews of Modern Physics. 35 (3): 473–483. Bibcode:1963RvMP...35..473K. doi:10.1103/RevModPhys.35.473.
- ↑ R. G. Woolley & B. T. Sutcliffe (2003). "P.-O. Löwdin and the Quantum Mechanics of Molecules". In E. J. Brändas & E. S. Kryachko (eds.). क्वांटम रसायन विज्ञान की मौलिक दुनिया. Vol. 1. Kluwer Academic Publishers. pp. 21–65.
- ↑ Eckart, C. (1935). "घूर्णनशील अक्षों और बहुपरमाणुक अणुओं से संबंधित कुछ अध्ययन". Physical Review. 47 (7): 552–558. Bibcode:1935PhRv...47..552E. doi:10.1103/PhysRev.47.552. Archived from the original on 26 June 2020. Retrieved 14 December 2019.
- ↑ Podolsky, B. (1928). "रूढ़िवादी प्रणाली के लिए हैमिल्टनियन फ़ंक्शन का क्वांटम-यांत्रिक रूप से सही रूप". Physical Review. 32 (5): 812. Bibcode:1928PhRv...32..812P. doi:10.1103/PhysRev.32.812.
- ↑ E. Bright Wilson Jr. & J. B. Howard (1936). "The Vibration–Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules". The Journal of Chemical Physics. 4 (4): 260–268. Bibcode:1936JChPh...4..260W. doi:10.1063/1.1749833.
- ↑ B. T. Darling & D. M. Dennison (1940). "जलवाष्प अणु". Physical Review. 57 (2): 128–139. Bibcode:1940PhRv...57..128D. doi:10.1103/PhysRev.57.128.
- ↑ Watson, James K.G. (1968). "आणविक कंपन-रोटेशन हैमिल्टनियन का सरलीकरण". Molecular Physics. 15 (5): 479–490. Bibcode:1968MolPh..15..479W. doi:10.1080/00268976800101381.
- ↑ Biedenharn, L. C.; Louck, J. D. (1981). "क्वांटम भौतिकी में कोणीय संवेग". Encyclopedia of Mathematics. Vol. 8. Reading: Addison–Wesley. ISBN 978-0-201-13507-7.