कम्प्यूटेशनल संख्या सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Study of algorithms for performing number theoretic computations}}
{{short description|Study of algorithms for performing number theoretic computations}}
गणित और [[कंप्यूटर विज्ञान]] में, '''कम्प्यूटेशनल [[संख्या सिद्धांत]]''', जिसे एल्गोरिथम संख्या सिद्धांत के रूप में भी जाना जाता है, संख्या सिद्धांत और [[अंकगणित ज्यामिति]] में समस्याओं की जांच और समाधान के लिए [[गणना]] का अध्ययन किया जाता है, जिसमें [[प्रारंभिक परीक्षण]] और [[पूर्णांक गुणनखंडन]] के लिए एल्गोरिदम, [[डायोफैंटाइन समीकरण]] के समाधान ढूंढना और अंकगणित ज्यामिति में स्पष्ट विधियाँ सम्मिलित हैं।{{r|pcm}} कम्प्यूटेशनल संख्या सिद्धांत में [[क्रिप्टोग्राफी]] के लिए अनुप्रयोग हैं, जिसमें [[आरएसए (क्रिप्टोसिस्टम)]], [[अण्डाकार वक्र क्रिप्टोग्राफी]] और [[पोस्ट-क्वांटम क्रिप्टोग्राफी]] सम्मिलित है, और इसका उपयोग संख्या सिद्धांत में [[अनुमान]] और विवर्त समस्याओं की जांच करने के लिए किया जाता है, जिसमें [[रीमैन परिकल्पना]], [[बिर्च और स्विनर्टन-डायर अनुमान]], [[एबीसी अनुमान]], [[मॉड्यूलैरिटी प्रमेय]], [[सातो-टेट अनुमान]], और [[लैंगलैंड्स कार्यक्रम|लैंगलैंड्स प्रोग्राम]] के स्पष्ट सम्मिलित हैं।{{r|pcm}}{{r|bachshallit}}{{r|cohen}}
गणित और [[कंप्यूटर विज्ञान]] में, '''कम्प्यूटेशनल [[संख्या सिद्धांत]] हैं''', जिसे एल्गोरिथम संख्या सिद्धांत के रूप में भी जाना जाता है, संख्या सिद्धांत और [[अंकगणित ज्यामिति]] में समस्याओं की जांच और समाधान के लिए [[गणना]] का अध्ययन किया जाता है, जिसमें [[प्रारंभिक परीक्षण]] और [[पूर्णांक गुणनखंडन]] के लिए एल्गोरिदम, [[डायोफैंटाइन समीकरण]] के समाधान ढूंढना और अंकगणित ज्यामिति में स्पष्ट विधियाँ सम्मिलित होती हैं। {{r|pcm}} कम्प्यूटेशनल संख्या सिद्धांत में [[क्रिप्टोग्राफी]] के लिए अनुप्रयोग होते हैं, जिसमें [[आरएसए (क्रिप्टोसिस्टम)]], [[अण्डाकार वक्र क्रिप्टोग्राफी]] और [[पोस्ट-क्वांटम क्रिप्टोग्राफी]] सम्मिलित है, और इसका उपयोग संख्या सिद्धांत में [[अनुमान]] और विवर्त समस्याओं की जांच करने के लिए किया जाता है, जिसमें यह [[रीमैन परिकल्पना]], [[बिर्च और स्विनर्टन-डायर अनुमान]], [[एबीसी अनुमान]], [[मॉड्यूलैरिटी प्रमेय]], [[सातो-टेट अनुमान]], और [[लैंगलैंड्स कार्यक्रम|लैंगलैंड्स प्रोग्राम]] के स्पष्ट रूप से सम्मिलित होते हैं। {{r|pcm}}{{r|bachshallit}}{{r|cohen}}
==सॉफ़्टवेयर पैकेज==
==सॉफ़्टवेयर पैकेज==
* [[मैग्मा कंप्यूटर बीजगणित प्रणाली]]
* [[मैग्मा कंप्यूटर बीजगणित प्रणाली]]

Revision as of 17:56, 30 July 2023

गणित और कंप्यूटर विज्ञान में, कम्प्यूटेशनल संख्या सिद्धांत हैं, जिसे एल्गोरिथम संख्या सिद्धांत के रूप में भी जाना जाता है, संख्या सिद्धांत और अंकगणित ज्यामिति में समस्याओं की जांच और समाधान के लिए गणना का अध्ययन किया जाता है, जिसमें प्रारंभिक परीक्षण और पूर्णांक गुणनखंडन के लिए एल्गोरिदम, डायोफैंटाइन समीकरण के समाधान ढूंढना और अंकगणित ज्यामिति में स्पष्ट विधियाँ सम्मिलित होती हैं। [1] कम्प्यूटेशनल संख्या सिद्धांत में क्रिप्टोग्राफी के लिए अनुप्रयोग होते हैं, जिसमें आरएसए (क्रिप्टोसिस्टम), अण्डाकार वक्र क्रिप्टोग्राफी और पोस्ट-क्वांटम क्रिप्टोग्राफी सम्मिलित है, और इसका उपयोग संख्या सिद्धांत में अनुमान और विवर्त समस्याओं की जांच करने के लिए किया जाता है, जिसमें यह रीमैन परिकल्पना, बिर्च और स्विनर्टन-डायर अनुमान, एबीसी अनुमान, मॉड्यूलैरिटी प्रमेय, सातो-टेट अनुमान, और लैंगलैंड्स प्रोग्राम के स्पष्ट रूप से सम्मिलित होते हैं। [1][2][3]

सॉफ़्टवेयर पैकेज

अग्रिम पठन

  • Eric Bach; Jeffrey Shallit (1996). Algorithmic Number Theory, Volume 1: Efficient Algorithms. MIT Press. ISBN 0-262-02405-5.

संदर्भ

  1. 1.0 1.1 Carl Pomerance (2009), Timothy Gowers (ed.), "Computational Number Theory" (PDF), The Princeton Companion to Mathematics, Princeton University Press
  2. Eric Bach; Jeffrey Shallit (1996). Algorithmic Number Theory, Volume 1: Efficient Algorithms. MIT Press. ISBN 0-262-02405-5.
  3. Henri Cohen (1993). A Course In Computational Algebraic Number Theory. Graduate Texts in Mathematics. Vol. 138. Springer-Verlag. doi:10.1007/978-3-662-02945-9. ISBN 0-387-55640-0.

बाहरी संबंध