समरूपता (भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Feature of a system that is preserved under some transformation}} | {{Short description|Feature of a system that is preserved under some transformation}} | ||
{{Other uses|Symmetry (disambiguation)}} | {{Other uses|Symmetry (disambiguation)}} | ||
[[File:Brillouin Zone (1st, FCC).svg|thumb|right|200px|[[ एफसीसी जाली |एफसीसी जालक]] का पहला [[ ब्रिलौइन क्षेत्र |ब्रिलौइन क्षेत्र]] समरूपता लेबल दिखाते हुए]][[ भौतिक विज्ञान | | [[File:Brillouin Zone (1st, FCC).svg|thumb|right|200px|[[ एफसीसी जाली |एफसीसी जालक]] का पहला [[ ब्रिलौइन क्षेत्र |ब्रिलौइन क्षेत्र]] समरूपता लेबल दिखाते हुए]][[ भौतिक विज्ञान |भौतिकी]] में, एक [[ भौतिक प्रणाली |भौतिक निकाय]] की '''समरूपता''', उस निकाय (प्रेक्षित या आंतरिक) की एक ऐसी भौतिक या गणितीय विशेषता है, जो कुछ [[ परिवर्तन (फ़ंक्शन) |रूपान्तरणों]] के तहत संरक्षित या अपरिवर्तित रहती है। | ||
विशेष | विशेष रूपान्तरणों का एक परिवार ''सतत'' (जैसे कि एक वृत्त का घूर्णन) या ''[[ असतत स्थान |असतत]]'' (जैसे, द्विपक्षीय रूप से सममित आकृति का [[ प्रतिबिंब (भौतिकी) |प्रतिबिंब (भौतिकी)]], या एक समबहुभुज का घूर्णन) हो सकता है। सतत और असतत परिवर्तन इसी प्रकार की समरूपता को जन्म देते हैं। सतत समरूपता को लाई समूहों द्वारा वर्णित किया जा सकता है जबकि असतत समरूपता को [[ परिमित समूह |परिमित समूहों]] द्वारा वर्णित किया जाता है (''[[ समरूपता समूह |समरूपता समूह]]'' देखें)। | ||
दो अवधारणाएँ, लाई और परिमित समूह, आधुनिक भौतिकी के मूलभूत सिद्धांतों की नींव हैं। समरूपता प्रायः गणितीय संरूपण जैसे [[ झूठ समूह |समूह]] निरूपण के लिए उत्तरदायी होती है और इसके अतिरिक्त, कई समस्याओं को सरल बनाने के लिए इसका लाभ लिया जा सकता है। | |||
तर्कसंगत रूप से भौतिकी में समरूपता का सबसे महत्वपूर्ण उदाहरण यह है कि | तर्कसंगत रूप से भौतिकी में समरूपता का सबसे महत्वपूर्ण उदाहरण यह है कि सभी निर्देश तंत्रों में प्रकाश की गति का मान समान होता है, जिसे [[ विशेष सापेक्षता |विशेष सापेक्षता]] में पोइन्केरे समूह के रूप में ज्ञात दिक्काल के परिवर्तनों के एक समूह द्वारा वर्णित किया गया है। इसका एक अन्य महत्वपूर्ण उदाहरण स्वेच्छ अवकलनीय निर्देशांक परिवर्तनों के तहत भौतिक नियमों के रूपों की [[ सामान्य सहप्रसरण |निश्चरता]] है, जो [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] में एक महत्वपूर्ण विचार है। | ||
== एक प्रकार | == एक प्रकार की निश्चरता के रूप में == | ||
निश्चरता को गणितीय रूप से ऐसे रूपांतरणों द्वारा निर्दिष्ट किया जाता है जो कुछ गुणों (जैसे मात्रा) को अपरिवर्तित छोड़ देते हैं। यह विचार आधारभूत वास्तविक संसार के अवलोकनों पर लागू हो सकता है। उदाहरण के लिए, पूरे कक्ष में [[ तापमान |तापमान]] समान हो सकता है। चूँकि तापमान कक्ष के भीतर एक पर्यवेक्षक की स्थिति पर निर्भर नहीं करता है, हम कहते हैं कि कक्ष के भीतर एक पर्यवेक्षक की स्थिति में बदलाव के तहत तापमान ''निश्चर'' है। | |||
इसी | इसी प्रकार, एक समान गोला अपने केंद्र के चारों ओर घूमता हुआ ठीक वैसा ही दिखाई देता है, जैसा वह घूमने से पहले दिखाई देता है। गोले को [[ गोलाकार समरूपता |गोलाकार समरूपता]] प्रदर्शित करने वाला कहा जाता है। गोले के किसी भी [[ अक्ष |अक्ष]] के बारे में एक घूर्णन यह संरक्षित करता है, कि गोला "कैसा दिखाई देता है"। | ||
=== बल में | === बल में निश्चरता === | ||
उपरोक्त विचार भौतिक समरूपता पर चर्चा करते समय | उपरोक्त विचार भौतिक समरूपता पर चर्चा करते समय निश्चरता के उपयोगी विचार की ओर अग्रसर होते हैं; इसे बलों में समरूपता पर भी लागू किया जा सकता है। | ||
उदाहरण के लिए, एक अनंत लंबाई के विद्युत आवेशित तार के कारण एक विद्युत क्षेत्र को बेलनाकार समरूपता प्रदर्शित करने | उदाहरण के लिए, एक अनंत लंबाई के विद्युत आवेशित तार के कारण एक विद्युत क्षेत्र को बेलनाकार समरूपता प्रदर्शित करने वाला कहा जाता है, क्योंकि तार से दी गई दूरी ''r'' पर [[ विद्युत क्षेत्र की ताकत |विद्युत क्षेत्र की शक्ति]] का त्रिज्या r वाले एक बेलन (जिसकी अक्ष तार है) की सतह पर प्रत्येक बिंदु पर समान परिमाण होता है। तार को अपने अक्ष पर घुमाने से इसकी स्थिति या आवेश घनत्व में कोई परिवर्तन नहीं होता है, इसलिए यह क्षेत्र को संरक्षित रखता है। घूर्णित स्थिति में क्षेत्र की शक्ति समान होती है। यह आवेशों की स्वेच्छ प्रणाली के लिए सामान्य रूप से सत्य नहीं है। | ||
न्यूटन के यांत्रिकी के सिद्धांत में, दो पिंड | न्यूटन के यांत्रिकी के सिद्धांत में, द्रव्यमान m वाले दिए गए दो पिंड मूल बिंदु से प्रारंभ होकर x-अक्ष के अनुदिश क्रमशः ''v<sub>1</sub>'' और ''v<sub>2</sub>'' गतियों से विपरीत दिशाओं में चलते है, निकाय की कुल [[ गतिज ऊर्जा |गतिज ऊर्जा]] (मूलबिंदु पर एक प्रेक्षक की गणना के अनुसार) {{nowrap|{{sfrac|1|2}}''m''(''v''<sub>1</sub><sup>2</sup> + ''v''<sub>2</sub><sup>2</sup>)}} है और यदि वेग परस्पर परिवर्तित कर दिए जाते हैं तो गतिज ऊर्जा समान रहती है। कुल गतिज ऊर्जा y-अक्ष में एक प्रतिबिंब के तहत संरक्षित रहती है। | ||
उपरोक्त अंतिम उदाहरण | उपरोक्त अंतिम उदाहरण समरूपताओं को व्यक्त करने की एक और विधि प्रदर्शित करता है, अर्थात् इसमें समरूपता कोऐसे समीकरणों के माध्यम से प्रदर्शित किया जाता है जो भौतिक प्रणाली के कुछ दृष्टिकोणों का वर्णन करती हैं। उपरोक्त उदाहरण से पता चलता है कि यदि ''v<sub>1</sub>'' और ''v<sub>2</sub>'' को परस्पर परिवर्तित कर दिया जाए तो कुल गतिज ऊर्जा समान रहती है। | ||
== स्थानीय और वैश्विक == | == स्थानीय और वैश्विक == | ||
समरूपता को मोटे तौर पर वैश्विक या स्थानीय के रूप में वर्गीकृत किया जा सकता है। एक वैश्विक समरूपता वह है जो एक परिवर्तन के लिए एक संपत्ति अपरिवर्तनीय रखती है जो स्पेसटाइम के सभी बिंदुओं पर एक साथ लागू होती है, जबकि एक स्थानीय समरूपता वह होती है जो स्पेसटाइम के प्रत्येक बिंदु पर संभावित रूप से अलग समरूपता परिवर्तन लागू होने पर एक संपत्ति अपरिवर्तनीय रखती है; विशेष रूप से एक स्थानीय समरूपता परिवर्तन को स्पेसटाइम समन्वय द्वारा पैरामीटर किया जाता है, जबकि एक वैश्विक समरूपता नहीं है। इसका तात्पर्य है कि एक वैश्विक समरूपता भी एक स्थानीय समरूपता है। स्थानीय समरूपता भौतिकी में एक महत्वपूर्ण भूमिका निभाती है क्योंकि वे [[ गेज सिद्धांत |गेज सिद्धांतों]] का आधार बनाती हैं। | समरूपता को मोटे तौर पर वैश्विक या स्थानीय के रूप में वर्गीकृत किया जा सकता है। एक वैश्विक समरूपता वह है जो एक परिवर्तन के लिए एक संपत्ति अपरिवर्तनीय रखती है जो स्पेसटाइम के सभी बिंदुओं पर एक साथ लागू होती है, जबकि एक स्थानीय समरूपता वह होती है जो स्पेसटाइम के प्रत्येक बिंदु पर संभावित रूप से अलग समरूपता परिवर्तन लागू होने पर एक संपत्ति अपरिवर्तनीय रखती है; विशेष रूप से एक स्थानीय समरूपता परिवर्तन को स्पेसटाइम समन्वय द्वारा पैरामीटर किया जाता है, जबकि एक वैश्विक समरूपता नहीं है। इसका तात्पर्य है कि एक वैश्विक समरूपता भी एक स्थानीय समरूपता है। स्थानीय समरूपता भौतिकी में एक महत्वपूर्ण भूमिका निभाती है क्योंकि वे [[ गेज सिद्धांत |गेज सिद्धांतों]] का आधार बनाती हैं। | ||
== | == सतत == | ||
ऊपर वर्णित घूर्णी समरूपता के दो उदाहरण - गोलाकार और बेलनाकार - [[ निरंतर समरूपता | | ऊपर वर्णित घूर्णी समरूपता के दो उदाहरण - गोलाकार और बेलनाकार - [[ निरंतर समरूपता |सतत समरूपता]] के प्रत्येक उदाहरण हैं। इन्हें सिस्टम की ज्यामिति में सतत परिवर्तन के बाद निश्चरता की विशेषता है। उदाहरण के लिए, तार को अपनी धुरी के बारे में किसी भी कोण से घुमाया जा सकता है और दिए गए सिलेंडर पर क्षेत्र की ताकत समान होगी। गणितीय रूप से, सतत समरूपता को उन परिवर्तनों द्वारा वर्णित किया जाता है जो उनके पैरामीटरकरण के [[ निरंतर कार्य |कार्य]] के रूप में लगातार बदलते रहते हैं। भौतिकी में सतत समरूपता का एक महत्वपूर्ण उपवर्ग स्पेसटाइम समरूपता है। | ||
=== स्पेसटाइम === | === स्पेसटाइम === | ||
{{Main|Spacetime symmetries}} | {{Main|Spacetime symmetries}} | ||
{{Lie groups}} | {{Lie groups}} | ||
सतत [[ अंतरिक्ष |अंतरिक्ष]]-[[ समय |समय]] समरूपता अंतरिक्ष और समय के परिवर्तनों से संबंधित समरूपताएं हैं। इन्हें आगे स्थानिक समरूपता के रूप में वर्गीकृत किया जा सकता है, जिसमें केवल भौतिक प्रणाली से जुड़ी स्थानिक ज्यामिति शामिल है; लौकिक समरूपता, केवल समय में परिवर्तन शामिल; या स्थान-लौकिक समरूपता, जिसमें स्थान और समय दोनों में परिवर्तन शामिल हैं। | |||
*[[ समय अनुवाद |''समय अनुवाद'']]: एक भौतिक प्रणाली में एक निश्चित समय अंतराल Δt पर समान विशेषताएं हो सकती हैं; यह गणितीय रूप से अंतराल में किसी भी [[ वास्तविक संख्या |वास्तविक]] पैरामीटर टी और {{nowrap|''t'' + ''a''}} के परिवर्तन {{nowrap|''t'' → ''t'' + ''a''}} के तहत अपरिवर्तनीय के रूप में व्यक्त किया जाता है। उदाहरण के लिए, शास्त्रीय यांत्रिकी में, गुरुत्वाकर्षण द्वारा पूरी तरह से काम करने वाले कण में पृथ्वी की सतह के ऊपर ऊंचाई एच से निलंबित होने पर गुरुत्वाकर्षण संभावित ऊर्जा एमजीएच होगी। यह मानते हुए कि कण की ऊंचाई में कोई परिवर्तन नहीं होता है, यह हर समय कण की कुल गुरुत्वीय स्थितिज ऊर्जा होगी। दूसरे शब्दों में, किसी समय t{{sub|0}} और {{nowrap|''t''{{sub|0}} + ''a''}} पर भी कण की स्थिति पर विचार करके, कण की कुल गुरुत्वीय स्थितिज ऊर्जा संरक्षित रहेगी। | *[[ समय अनुवाद |''समय अनुवाद'']]: एक भौतिक प्रणाली में एक निश्चित समय अंतराल Δt पर समान विशेषताएं हो सकती हैं; यह गणितीय रूप से अंतराल में किसी भी [[ वास्तविक संख्या |वास्तविक]] पैरामीटर टी और {{nowrap|''t'' + ''a''}} के परिवर्तन {{nowrap|''t'' → ''t'' + ''a''}} के तहत अपरिवर्तनीय के रूप में व्यक्त किया जाता है। उदाहरण के लिए, शास्त्रीय यांत्रिकी में, गुरुत्वाकर्षण द्वारा पूरी तरह से काम करने वाले कण में पृथ्वी की सतह के ऊपर ऊंचाई एच से निलंबित होने पर गुरुत्वाकर्षण संभावित ऊर्जा एमजीएच होगी। यह मानते हुए कि कण की ऊंचाई में कोई परिवर्तन नहीं होता है, यह हर समय कण की कुल गुरुत्वीय स्थितिज ऊर्जा होगी। दूसरे शब्दों में, किसी समय t{{sub|0}} और {{nowrap|''t''{{sub|0}} + ''a''}} पर भी कण की स्थिति पर विचार करके, कण की कुल गुरुत्वीय स्थितिज ऊर्जा संरक्षित रहेगी। | ||
*[[ स्थानिक अनुवाद समरूपता |''स्थानिक अनुवाद'']]: इन स्थानिक समरूपताओं को {{nowrap|{{vec|''r''}} → {{vec|''r''}} + {{vec|''a''}}}} के रूपांतरों द्वारा दर्शाया जाता है और उन स्थितियों का वर्णन करता है जहाँ सिस्टम की संपत्ति स्थान में | *[[ स्थानिक अनुवाद समरूपता |''स्थानिक अनुवाद'']]: इन स्थानिक समरूपताओं को {{nowrap|{{vec|''r''}} → {{vec|''r''}} + {{vec|''a''}}}} के रूपांतरों द्वारा दर्शाया जाता है और उन स्थितियों का वर्णन करता है जहाँ सिस्टम की संपत्ति स्थान में सतत परिवर्तन के साथ नहीं बदलती है। उदाहरण के लिए, एक कमरे में तापमान इस बात से स्वतंत्र हो सकता है कि कमरे में थर्मामीटर कहाँ स्थित है। | ||
* [[ घूर्णी समरूपता |''स्थानिक घूर्णन'']]: इन स्थानिक समरूपताओं को उचित घूर्णन और अनुचित घूर्णन के रूप में वर्गीकृत किया जाता है। पूर्व केवल 'साधारण' घुमाव हैं; गणितीय रूप से, वे इकाई निर्धारक के साथ वर्ग मैट्रिसेस द्वारा दर्शाए जाते हैं। उत्तरार्द्ध को निर्धारक -1 के साथ वर्ग मैट्रिसेस द्वारा दर्शाया जाता है और इसमें एक स्थानिक प्रतिबिंब ([[ बिंदु प्रतिबिंब |उलटा]]) के साथ संयुक्त एक [[ उचित घुमाव |उचित घुमाव]] होता है। उदाहरण के लिए, एक गोले में उचित घूर्णी समरूपता होती है। लेख रोटेशन समरूपता में अन्य प्रकार के स्थानिक घुमावों का वर्णन किया गया है। | * [[ घूर्णी समरूपता |''स्थानिक घूर्णन'']]: इन स्थानिक समरूपताओं को उचित घूर्णन और अनुचित घूर्णन के रूप में वर्गीकृत किया जाता है। पूर्व केवल 'साधारण' घुमाव हैं; गणितीय रूप से, वे इकाई निर्धारक के साथ वर्ग मैट्रिसेस द्वारा दर्शाए जाते हैं। उत्तरार्द्ध को निर्धारक -1 के साथ वर्ग मैट्रिसेस द्वारा दर्शाया जाता है और इसमें एक स्थानिक प्रतिबिंब ([[ बिंदु प्रतिबिंब |उलटा]]) के साथ संयुक्त एक [[ उचित घुमाव |उचित घुमाव]] होता है। उदाहरण के लिए, एक गोले में उचित घूर्णी समरूपता होती है। लेख रोटेशन समरूपता में अन्य प्रकार के स्थानिक घुमावों का वर्णन किया गया है। | ||
*''पॉइनकेयर परिवर्तन'': ये स्थान-लौकिक समरूपताएं हैं जो मिन्कोव्स्की अंतरिक्ष-समय में दूरियों को संरक्षित करती हैं, यानी वे मिन्कोवस्की अंतरिक्ष के आइसोमेट्रीज़ हैं। उनका अध्ययन मुख्य रूप से विशेष सापेक्षता में किया जाता है। वे [[ isometric |आइसोमेट्री]] जो मूल को स्थिर छोड़ देते हैं उन्हें लोरेंत्ज़ रूपांतरण कहा जाता है और समरूपता को [[ लोरेंत्ज़ सहप्रसरण |लोरेंत्ज़ सहप्रसरण]] के रूप में जाना जाता है। | *''पॉइनकेयर परिवर्तन'': ये स्थान-लौकिक समरूपताएं हैं जो मिन्कोव्स्की अंतरिक्ष-समय में दूरियों को संरक्षित करती हैं, यानी वे मिन्कोवस्की अंतरिक्ष के आइसोमेट्रीज़ हैं। उनका अध्ययन मुख्य रूप से विशेष सापेक्षता में किया जाता है। वे [[ isometric |आइसोमेट्री]] जो मूल को स्थिर छोड़ देते हैं उन्हें लोरेंत्ज़ रूपांतरण कहा जाता है और समरूपता को [[ लोरेंत्ज़ सहप्रसरण |लोरेंत्ज़ सहप्रसरण]] के रूप में जाना जाता है। | ||
Line 43: | Line 43: | ||
गणितीय रूप से, स्पेसटाइम समरूपता आमतौर पर [[ चिकना कार्य |चिकनी]] [[ वेक्टर क्षेत्र |वेक्टर क्षेत्र]] द्वारा [[ चिकना कई गुना |चिकनी मैनिफोल्ड]] पर वर्णित होती है। सदिश क्षेत्रों से जुड़े अंतर्निहित [[ स्थानीय भिन्नता |स्थानीय भिन्नता]] भौतिक समरूपता से अधिक सीधे मेल खाते हैं, लेकिन भौतिक प्रणाली की समरूपता को वर्गीकृत करते समय स्वयं सदिश क्षेत्र अधिक बार उपयोग किए जाते हैं। | गणितीय रूप से, स्पेसटाइम समरूपता आमतौर पर [[ चिकना कार्य |चिकनी]] [[ वेक्टर क्षेत्र |वेक्टर क्षेत्र]] द्वारा [[ चिकना कई गुना |चिकनी मैनिफोल्ड]] पर वर्णित होती है। सदिश क्षेत्रों से जुड़े अंतर्निहित [[ स्थानीय भिन्नता |स्थानीय भिन्नता]] भौतिक समरूपता से अधिक सीधे मेल खाते हैं, लेकिन भौतिक प्रणाली की समरूपता को वर्गीकृत करते समय स्वयं सदिश क्षेत्र अधिक बार उपयोग किए जाते हैं। | ||
सबसे महत्वपूर्ण सदिश क्षेत्रों में से कुछ किलिंग सदिश क्षेत्र हैं जो कि अंतरिक्ष-समय समरूपता हैं जो कई गुना अंतर्निहित [[ मीट्रिक टेंसर |मीट्रिक]] संरचना को संरक्षित करते हैं। मोटे तौर पर, [[ हत्या वेक्टर क्षेत्र |किलिंग वेक्टर क्षेत्र]] कई गुना के किन्हीं दो बिंदुओं के बीच की दूरी को बनाए रखते हैं और | सबसे महत्वपूर्ण सदिश क्षेत्रों में से कुछ किलिंग सदिश क्षेत्र हैं जो कि अंतरिक्ष-समय समरूपता हैं जो कई गुना अंतर्निहित [[ मीट्रिक टेंसर |मीट्रिक]] संरचना को संरक्षित करते हैं। मोटे तौर पर, [[ हत्या वेक्टर क्षेत्र |किलिंग वेक्टर क्षेत्र]] कई गुना के किन्हीं दो बिंदुओं के बीच की दूरी को बनाए रखते हैं और प्रायः आइसोमेट्री के नाम से जाने जाते हैं। | ||
== असतत == | == असतत == | ||
{{Main|Discrete symmetry}} | {{Main|Discrete symmetry}} | ||
असतत समरूपता एक समरूपता है जो एक प्रणाली में | असतत समरूपता एक समरूपता है जो एक प्रणाली में सतत परिवर्तन का वर्णन करती है। उदाहरण के लिए, एक वर्ग में असतत घूर्णी समरूपता होती है, क्योंकि समकोण के गुणकों द्वारा केवल घुमाव ही वर्ग के मूल स्वरूप को संरक्षित करेगा। असतत समरूपता में कभी-कभी कुछ प्रकार की 'अदला-बदली' शामिल होती है, इन स्वैपों को आमतौर पर प्रतिबिंब या इंटरचेंज कहा जाता है। | ||
*टाइम रिवर्सल: भौतिकी के कई नियम वास्तविक घटना का वर्णन करते हैं जब समय की दिशा उलट जाती है। गणितीय रूप से, यह रूपांतरण द्वारा दर्शाया जाता है, <math>t \, \rightarrow - t </math> । उदाहरण के लिए, न्यूटन का गति का दूसरा नियम अभी भी लागू होता है, यदि समीकरण में <math>F \, = m \ddot {r} </math> , <math>t</math> को बदल दिया जाए <math>-t</math> द्वारा। इसे लंबवत रूप से ऊपर फेंकी गई वस्तु की गति को रिकॉर्ड करके (वायु प्रतिरोध की उपेक्षा करते हुए) और फिर इसे वापस चलाकर चित्रित किया जा सकता है। वस्तु हवा के माध्यम से समान [[ परवलय |परवलयिक]] प्रक्षेपवक्र का पालन करेगी, चाहे रिकॉर्डिंग सामान्य रूप से या रिवर्स में खेली जाए। इस प्रकार, स्थिति उस क्षण के संबंध में सममित होती है जब वस्तु अपनी अधिकतम ऊंचाई पर होती है। | *टाइम रिवर्सल: भौतिकी के कई नियम वास्तविक घटना का वर्णन करते हैं जब समय की दिशा उलट जाती है। गणितीय रूप से, यह रूपांतरण द्वारा दर्शाया जाता है, <math>t \, \rightarrow - t </math> । उदाहरण के लिए, न्यूटन का गति का दूसरा नियम अभी भी लागू होता है, यदि समीकरण में <math>F \, = m \ddot {r} </math> , <math>t</math> को बदल दिया जाए <math>-t</math> द्वारा। इसे लंबवत रूप से ऊपर फेंकी गई वस्तु की गति को रिकॉर्ड करके (वायु प्रतिरोध की उपेक्षा करते हुए) और फिर इसे वापस चलाकर चित्रित किया जा सकता है। वस्तु हवा के माध्यम से समान [[ परवलय |परवलयिक]] प्रक्षेपवक्र का पालन करेगी, चाहे रिकॉर्डिंग सामान्य रूप से या रिवर्स में खेली जाए। इस प्रकार, स्थिति उस क्षण के संबंध में सममित होती है जब वस्तु अपनी अधिकतम ऊंचाई पर होती है। | ||
Line 59: | Line 59: | ||
*[[ सी-समरूपता |सी-समरूपता]] (आवेश समरूपता), एक ब्रह्मांड जहां हर कण को उसके एंटीपार्टिकल से बदल दिया जाता है | *[[ सी-समरूपता |सी-समरूपता]] (आवेश समरूपता), एक ब्रह्मांड जहां हर कण को उसके एंटीपार्टिकल से बदल दिया जाता है | ||
*<!-- This really isn't a good example, because a mirror only reflects one axis (the normal). If possible, a common mans description of inverting 3 axis really needs to be used here. The mirror is too likely to be taken literally, and lead to misunderstanding. -->पी-समरूपता (समता समरूपता), एक ब्रह्मांड जहां सब कुछ तीन भौतिक अक्षों के साथ प्रतिबिम्बित होता है। यह [[ χ en-shi UN GW U |चिएन-शिउंग वू]] द्वारा प्रदर्शित कमजोर अंतःक्रियाओं को शामिल नहीं करता है। | *<!-- This really isn't a good example, because a mirror only reflects one axis (the normal). If possible, a common mans description of inverting 3 axis really needs to be used here. The mirror is too likely to be taken literally, and lead to misunderstanding. -->पी-समरूपता (समता समरूपता), एक ब्रह्मांड जहां सब कुछ तीन भौतिक अक्षों के साथ प्रतिबिम्बित होता है। यह [[ χ en-shi UN GW U |चिएन-शिउंग वू]] द्वारा प्रदर्शित कमजोर अंतःक्रियाओं को शामिल नहीं करता है। | ||
*टी-समरूपता (समय उत्क्रमण समरूपता), एक ब्रह्मांड जहां समय की दिशा उलट जाती है। टी-समरूपता प्रतिकूल है (भविष्य और अतीत सममित नहीं हैं) लेकिन इस तथ्य से समझाया गया है कि मानक मॉडल स्थानीय गुणों का वर्णन करता है, न कि [[ एन्ट्रापी |एन्ट्रापी]] जैसे वैश्विक गुणों का। समय की दिशा को ठीक से उलटने के लिए, किसी को [[ महा विस्फोट |बिग बैंग]] और परिणामी कम-एन्ट्रॉपी स्थिति को "भविष्य" में रखना होगा। | *टी-समरूपता (समय उत्क्रमण समरूपता), एक ब्रह्मांड जहां समय की दिशा उलट जाती है। टी-समरूपता प्रतिकूल है (भविष्य और अतीत सममित नहीं हैं) लेकिन इस तथ्य से समझाया गया है कि मानक मॉडल स्थानीय गुणों का वर्णन करता है, न कि [[ एन्ट्रापी |एन्ट्रापी]] जैसे वैश्विक गुणों का। समय की दिशा को ठीक से उलटने के लिए, किसी को [[ महा विस्फोट |बिग बैंग]] और परिणामी कम-एन्ट्रॉपी स्थिति को "भविष्य" में रखना होगा। चूँकि हम "अतीत" ("भविष्य") को वर्तमान की तुलना में कम (उच्च) एन्ट्रापी के रूप में देखते हैं, इस काल्पनिक समय-उलट ब्रह्मांड के निवासी भविष्य को उसी तरह से देखेंगे जैसे हम अतीत को देखते हैं, और इसके विपरीत। | ||
ये समरूपता निकट-समरूपता हैं क्योंकि प्रत्येक वर्तमान ब्रह्मांड में टूटा हुआ है। हालाँकि, मानक मॉडल भविष्यवाणी करता है कि तीनों का संयोजन (अर्थात, तीनों परिवर्तनों का एक साथ अनुप्रयोग) एक समरूपता होनी चाहिए, जिसे CPT समरूपता कहा जाता है। [[ सीपी उल्लंघन |सीपी उल्लंघन]], सी- और पी-समरूपता के संयोजन का उल्लंघन, ब्रह्मांड में महत्वपूर्ण मात्रा में [[ बैरोनिक पदार्थ |बैरोनिक पदार्थ]] की उपस्थिति के लिए आवश्यक है। सीपी उल्लंघन कण भौतिकी में वर्तमान शोध का एक उपयोगी क्षेत्र है। | ये समरूपता निकट-समरूपता हैं क्योंकि प्रत्येक वर्तमान ब्रह्मांड में टूटा हुआ है। हालाँकि, मानक मॉडल भविष्यवाणी करता है कि तीनों का संयोजन (अर्थात, तीनों परिवर्तनों का एक साथ अनुप्रयोग) एक समरूपता होनी चाहिए, जिसे CPT समरूपता कहा जाता है। [[ सीपी उल्लंघन |सीपी उल्लंघन]], सी- और पी-समरूपता के संयोजन का उल्लंघन, ब्रह्मांड में महत्वपूर्ण मात्रा में [[ बैरोनिक पदार्थ |बैरोनिक पदार्थ]] की उपस्थिति के लिए आवश्यक है। सीपी उल्लंघन कण भौतिकी में वर्तमान शोध का एक उपयोगी क्षेत्र है। | ||
Line 71: | Line 71: | ||
भौतिक समरूपता का वर्णन करने वाले रूपांतरण आमतौर पर एक गणितीय [[ समूह (गणित) |समूह (गणित)]] बनाते हैं। भौतिकविदों के लिए [[ समूह सिद्धांत |समूह सिद्धांत]] गणित का एक महत्वपूर्ण क्षेत्र है। | भौतिक समरूपता का वर्णन करने वाले रूपांतरण आमतौर पर एक गणितीय [[ समूह (गणित) |समूह (गणित)]] बनाते हैं। भौतिकविदों के लिए [[ समूह सिद्धांत |समूह सिद्धांत]] गणित का एक महत्वपूर्ण क्षेत्र है। | ||
सतत समरूपता गणितीय रूप से सतत समूहों (जिन्हें लाई समूह कहा जाता है) द्वारा निर्दिष्ट किया जाता है। कई भौतिक समरूपताएं आइसोमेट्री हैं और समरूपता समूहों द्वारा निर्दिष्ट की जाती हैं। कभी-कभी इस शब्द का प्रयोग अधिक सामान्य प्रकार की सममितियों के लिए किया जाता है। एक गोले के किसी भी अक्ष के माध्यम से सभी उचित घुमावों (किसी भी कोण के बारे में) का सेट एक लाइ समूह बनाता है जिसे [[ विशेष ऑर्थोगोनल समूह |विशेष ऑर्थोगोनल समूह]] SO(3) कहा जाता है। ('3' एक साधारण गोले के त्रि-आयामी स्थान को संदर्भित करता है।) इस प्रकार, उचित घुमाव वाले गोले का समरूपता समूह SO(3) है। कोई भी घुमाव गेंद की सतह पर दूरियों को बनाए रखता है। सभी लोरेंत्ज़ परिवर्तनों का सेट एक समूह बनाता है जिसे [[ लोरेंत्ज़ समूह |लोरेंत्ज़ समूह]] कहा जाता है (इसे पॉइनकेयर समूह के लिए सामान्यीकृत किया जा सकता है)। | |||
असतत समूह असतत समरूपता का वर्णन करते हैं। उदाहरण के लिए, एक समबाहु त्रिभुज की सममितियों की विशेषता [[ सममित समूह |सममित समूह]] S{{sub|3}} है। | असतत समूह असतत समरूपता का वर्णन करते हैं। उदाहरण के लिए, एक समबाहु त्रिभुज की सममितियों की विशेषता [[ सममित समूह |सममित समूह]] S{{sub|3}} है। | ||
Line 77: | Line 77: | ||
स्थानीय समरूपता पर आधारित एक प्रकार के भौतिक सिद्धांत को गेज सिद्धांत कहा जाता है और ऐसे सिद्धांत के लिए प्राकृतिक समरूपता को [[ गेज समरूपता |गेज समरूपता]] कहा जाता है। मानक मॉडल में गेज समरूपता, तीन मूलभूत अंतःक्रियाओं का वर्णन करने के लिए उपयोग की जाती है, जो SU(3) × SU(2) × U(1) समूह पर आधारित हैं। (मोटे तौर पर, एसयू (3) समूह की समरूपता [[ मजबूत बल |मजबूत बल]] का वर्णन करती है, एसयू (2) समूह कमजोर बातचीत का वर्णन करता है और यू (1) समूह [[ विद्युत |विद्युत]] चुम्बकीय बल का वर्णन करता है।) | स्थानीय समरूपता पर आधारित एक प्रकार के भौतिक सिद्धांत को गेज सिद्धांत कहा जाता है और ऐसे सिद्धांत के लिए प्राकृतिक समरूपता को [[ गेज समरूपता |गेज समरूपता]] कहा जाता है। मानक मॉडल में गेज समरूपता, तीन मूलभूत अंतःक्रियाओं का वर्णन करने के लिए उपयोग की जाती है, जो SU(3) × SU(2) × U(1) समूह पर आधारित हैं। (मोटे तौर पर, एसयू (3) समूह की समरूपता [[ मजबूत बल |मजबूत बल]] का वर्णन करती है, एसयू (2) समूह कमजोर बातचीत का वर्णन करता है और यू (1) समूह [[ विद्युत |विद्युत]] चुम्बकीय बल का वर्णन करता है।) | ||
इसके | इसके अतिरिक्त, एक समूह द्वारा कार्रवाई के तहत कार्यात्मक ऊर्जा की समरूपता में कमी और सममित समूहों के परिवर्तनों के सहज समरूपता को तोड़ना कण भौतिकी में विषयों को स्पष्ट करने के लिए प्रकट होता है (उदाहरण के लिए, विद्युत चुंबकत्व का एकीकरण और [[ भौतिक ब्रह्मांड विज्ञान |भौतिक ब्रह्मांड विज्ञान]] में [[ कमजोर बल |कमजोर बल]])। | ||
=== संरक्षण कानून और समरूपता === | === संरक्षण कानून और समरूपता === | ||
{{Main|Noether's theorem}} | {{Main|Noether's theorem}} | ||
एक भौतिक प्रणाली के समरूपता गुण उस प्रणाली की विशेषता वाले [[ संरक्षण कानून |संरक्षण कानूनों]] से घनिष्ठ रूप से संबंधित हैं। नोएदर का प्रमेय इस संबंध का सटीक विवरण देता है। प्रमेय कहता है कि भौतिक प्रणाली की प्रत्येक | एक भौतिक प्रणाली के समरूपता गुण उस प्रणाली की विशेषता वाले [[ संरक्षण कानून |संरक्षण कानूनों]] से घनिष्ठ रूप से संबंधित हैं। नोएदर का प्रमेय इस संबंध का सटीक विवरण देता है। प्रमेय कहता है कि भौतिक प्रणाली की प्रत्येक सतत समरूपता का तात्पर्य है कि उस प्रणाली की कुछ भौतिक संपत्ति संरक्षित है। इसके विपरीत, प्रत्येक संरक्षित मात्रा में एक समान समरूपता होती है। उदाहरण के लिए, स्थानिक अनुवाद समरूपता (यानी अंतरिक्ष की एकरूपता) (रैखिक) संवेग के संरक्षण को जन्म देती है, और लौकिक अनुवाद समरूपता (यानी समय की एकरूपता) ऊर्जा के संरक्षण को जन्म देती है। | ||
निम्न तालिका कुछ मौलिक समरूपता और संबंधित संरक्षित मात्रा का सारांश देती है। | निम्न तालिका कुछ मौलिक समरूपता और संबंधित संरक्षित मात्रा का सारांश देती है। | ||
Line 173: | Line 173: | ||
== गणित == | == गणित == | ||
भौतिकी में | भौतिकी में सतत समरूपता परिवर्तनों को संरक्षित करती है। एक बहुत छोटा परिवर्तन विभिन्न कण [[ क्षेत्र (भौतिकी) |क्षेत्रों (भौतिकी)]] को कैसे प्रभावित करता है, यह दिखा कर एक समरूपता निर्दिष्ट कर सकता है। इन अपरिमेय परिवर्तनों में से दो का [[ कम्यूटेटर |कम्यूटेटर]] एक ही प्रकार के तीसरे अतिसूक्ष्म परिवर्तन के बराबर है इसलिए वे एक [[ झूठ बीजगणित |लाई बीजगणित]] बनाते हैं। | ||
सामान्य क्षेत्र <math>h(x)</math> (जिसे [[ डिफियोमोर्फिज्म |डिफियोमोर्फिज्म]] भी कहा जाता है) के रूप में वर्णित एक सामान्य समन्वय परिवर्तन का [[ अदिश क्षेत्र |अदिश]] <math>\phi(x)</math> पर अतिसूक्ष्म प्रभाव होता है। [[ स्पिनर फ़ील्ड |स्पिनर]] <math>\psi(x)</math> या वेक्टर क्षेत्र <math>A(x)</math> जिसे व्यक्त किया जा सकता है (आइंस्टीन सारांश सम्मेलन का उपयोग करके): | सामान्य क्षेत्र <math>h(x)</math> (जिसे [[ डिफियोमोर्फिज्म |डिफियोमोर्फिज्म]] भी कहा जाता है) के रूप में वर्णित एक सामान्य समन्वय परिवर्तन का [[ अदिश क्षेत्र |अदिश]] <math>\phi(x)</math> पर अतिसूक्ष्म प्रभाव होता है। [[ स्पिनर फ़ील्ड |स्पिनर]] <math>\psi(x)</math> या वेक्टर क्षेत्र <math>A(x)</math> जिसे व्यक्त किया जा सकता है (आइंस्टीन सारांश सम्मेलन का उपयोग करके): | ||
Line 213: | Line 213: | ||
D जनरेटिंग स्केल ट्रांसफ़ॉर्मेशन और K जनरेटिंग स्पेशल कन्फ़र्मल ट्रांसफ़ॉर्मेशन के साथ। उदाहरण के लिए, एन = 4 सुपर-यांग-मिल्स सिद्धांत में यह समरूपता है, जबकि सामान्य सापेक्षता में नहीं है, हालांकि गुरुत्वाकर्षण के अन्य सिद्धांत जैसे [[ अनुरूप गुरुत्वाकर्षण |अनुरूप गुरुत्व]] करते हैं। क्षेत्र सिद्धांत की 'कार्रवाई' सिद्धांत की सभी समरूपताओं के तहत एक [[ अपरिवर्तनीय (भौतिकी) |अपरिवर्तनीय (भौतिकी)]] है। अधिकांश आधुनिक सैद्धांतिक भौतिकी ब्रह्मांड में मौजूद विभिन्न समरूपताओं पर अनुमान लगाने और मॉडल के रूप में क्षेत्र सिद्धांतों का निर्माण करने के लिए आक्रमणकारियों को खोजने के लिए है। | D जनरेटिंग स्केल ट्रांसफ़ॉर्मेशन और K जनरेटिंग स्पेशल कन्फ़र्मल ट्रांसफ़ॉर्मेशन के साथ। उदाहरण के लिए, एन = 4 सुपर-यांग-मिल्स सिद्धांत में यह समरूपता है, जबकि सामान्य सापेक्षता में नहीं है, हालांकि गुरुत्वाकर्षण के अन्य सिद्धांत जैसे [[ अनुरूप गुरुत्वाकर्षण |अनुरूप गुरुत्व]] करते हैं। क्षेत्र सिद्धांत की 'कार्रवाई' सिद्धांत की सभी समरूपताओं के तहत एक [[ अपरिवर्तनीय (भौतिकी) |अपरिवर्तनीय (भौतिकी)]] है। अधिकांश आधुनिक सैद्धांतिक भौतिकी ब्रह्मांड में मौजूद विभिन्न समरूपताओं पर अनुमान लगाने और मॉडल के रूप में क्षेत्र सिद्धांतों का निर्माण करने के लिए आक्रमणकारियों को खोजने के लिए है। | ||
स्ट्रिंग सिद्धांतों में, | स्ट्रिंग सिद्धांतों में, चूँकि एक स्ट्रिंग को अनंत संख्या में कण क्षेत्रों में विघटित किया जा सकता है, स्ट्रिंग वर्ल्ड शीट पर समरूपता विशेष परिवर्तनों के बराबर होती है जो अनंत संख्या में फ़ील्ड को मिलाते हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:31, 13 January 2023
भौतिकी में, एक भौतिक निकाय की समरूपता, उस निकाय (प्रेक्षित या आंतरिक) की एक ऐसी भौतिक या गणितीय विशेषता है, जो कुछ रूपान्तरणों के तहत संरक्षित या अपरिवर्तित रहती है।
विशेष रूपान्तरणों का एक परिवार सतत (जैसे कि एक वृत्त का घूर्णन) या असतत (जैसे, द्विपक्षीय रूप से सममित आकृति का प्रतिबिंब (भौतिकी), या एक समबहुभुज का घूर्णन) हो सकता है। सतत और असतत परिवर्तन इसी प्रकार की समरूपता को जन्म देते हैं। सतत समरूपता को लाई समूहों द्वारा वर्णित किया जा सकता है जबकि असतत समरूपता को परिमित समूहों द्वारा वर्णित किया जाता है (समरूपता समूह देखें)।
दो अवधारणाएँ, लाई और परिमित समूह, आधुनिक भौतिकी के मूलभूत सिद्धांतों की नींव हैं। समरूपता प्रायः गणितीय संरूपण जैसे समूह निरूपण के लिए उत्तरदायी होती है और इसके अतिरिक्त, कई समस्याओं को सरल बनाने के लिए इसका लाभ लिया जा सकता है।
तर्कसंगत रूप से भौतिकी में समरूपता का सबसे महत्वपूर्ण उदाहरण यह है कि सभी निर्देश तंत्रों में प्रकाश की गति का मान समान होता है, जिसे विशेष सापेक्षता में पोइन्केरे समूह के रूप में ज्ञात दिक्काल के परिवर्तनों के एक समूह द्वारा वर्णित किया गया है। इसका एक अन्य महत्वपूर्ण उदाहरण स्वेच्छ अवकलनीय निर्देशांक परिवर्तनों के तहत भौतिक नियमों के रूपों की निश्चरता है, जो सामान्य सापेक्षता में एक महत्वपूर्ण विचार है।
एक प्रकार की निश्चरता के रूप में
निश्चरता को गणितीय रूप से ऐसे रूपांतरणों द्वारा निर्दिष्ट किया जाता है जो कुछ गुणों (जैसे मात्रा) को अपरिवर्तित छोड़ देते हैं। यह विचार आधारभूत वास्तविक संसार के अवलोकनों पर लागू हो सकता है। उदाहरण के लिए, पूरे कक्ष में तापमान समान हो सकता है। चूँकि तापमान कक्ष के भीतर एक पर्यवेक्षक की स्थिति पर निर्भर नहीं करता है, हम कहते हैं कि कक्ष के भीतर एक पर्यवेक्षक की स्थिति में बदलाव के तहत तापमान निश्चर है।
इसी प्रकार, एक समान गोला अपने केंद्र के चारों ओर घूमता हुआ ठीक वैसा ही दिखाई देता है, जैसा वह घूमने से पहले दिखाई देता है। गोले को गोलाकार समरूपता प्रदर्शित करने वाला कहा जाता है। गोले के किसी भी अक्ष के बारे में एक घूर्णन यह संरक्षित करता है, कि गोला "कैसा दिखाई देता है"।
बल में निश्चरता
उपरोक्त विचार भौतिक समरूपता पर चर्चा करते समय निश्चरता के उपयोगी विचार की ओर अग्रसर होते हैं; इसे बलों में समरूपता पर भी लागू किया जा सकता है।
उदाहरण के लिए, एक अनंत लंबाई के विद्युत आवेशित तार के कारण एक विद्युत क्षेत्र को बेलनाकार समरूपता प्रदर्शित करने वाला कहा जाता है, क्योंकि तार से दी गई दूरी r पर विद्युत क्षेत्र की शक्ति का त्रिज्या r वाले एक बेलन (जिसकी अक्ष तार है) की सतह पर प्रत्येक बिंदु पर समान परिमाण होता है। तार को अपने अक्ष पर घुमाने से इसकी स्थिति या आवेश घनत्व में कोई परिवर्तन नहीं होता है, इसलिए यह क्षेत्र को संरक्षित रखता है। घूर्णित स्थिति में क्षेत्र की शक्ति समान होती है। यह आवेशों की स्वेच्छ प्रणाली के लिए सामान्य रूप से सत्य नहीं है।
न्यूटन के यांत्रिकी के सिद्धांत में, द्रव्यमान m वाले दिए गए दो पिंड मूल बिंदु से प्रारंभ होकर x-अक्ष के अनुदिश क्रमशः v1 और v2 गतियों से विपरीत दिशाओं में चलते है, निकाय की कुल गतिज ऊर्जा (मूलबिंदु पर एक प्रेक्षक की गणना के अनुसार) 1/2m(v12 + v22) है और यदि वेग परस्पर परिवर्तित कर दिए जाते हैं तो गतिज ऊर्जा समान रहती है। कुल गतिज ऊर्जा y-अक्ष में एक प्रतिबिंब के तहत संरक्षित रहती है।
उपरोक्त अंतिम उदाहरण समरूपताओं को व्यक्त करने की एक और विधि प्रदर्शित करता है, अर्थात् इसमें समरूपता कोऐसे समीकरणों के माध्यम से प्रदर्शित किया जाता है जो भौतिक प्रणाली के कुछ दृष्टिकोणों का वर्णन करती हैं। उपरोक्त उदाहरण से पता चलता है कि यदि v1 और v2 को परस्पर परिवर्तित कर दिया जाए तो कुल गतिज ऊर्जा समान रहती है।
स्थानीय और वैश्विक
समरूपता को मोटे तौर पर वैश्विक या स्थानीय के रूप में वर्गीकृत किया जा सकता है। एक वैश्विक समरूपता वह है जो एक परिवर्तन के लिए एक संपत्ति अपरिवर्तनीय रखती है जो स्पेसटाइम के सभी बिंदुओं पर एक साथ लागू होती है, जबकि एक स्थानीय समरूपता वह होती है जो स्पेसटाइम के प्रत्येक बिंदु पर संभावित रूप से अलग समरूपता परिवर्तन लागू होने पर एक संपत्ति अपरिवर्तनीय रखती है; विशेष रूप से एक स्थानीय समरूपता परिवर्तन को स्पेसटाइम समन्वय द्वारा पैरामीटर किया जाता है, जबकि एक वैश्विक समरूपता नहीं है। इसका तात्पर्य है कि एक वैश्विक समरूपता भी एक स्थानीय समरूपता है। स्थानीय समरूपता भौतिकी में एक महत्वपूर्ण भूमिका निभाती है क्योंकि वे गेज सिद्धांतों का आधार बनाती हैं।
सतत
ऊपर वर्णित घूर्णी समरूपता के दो उदाहरण - गोलाकार और बेलनाकार - सतत समरूपता के प्रत्येक उदाहरण हैं। इन्हें सिस्टम की ज्यामिति में सतत परिवर्तन के बाद निश्चरता की विशेषता है। उदाहरण के लिए, तार को अपनी धुरी के बारे में किसी भी कोण से घुमाया जा सकता है और दिए गए सिलेंडर पर क्षेत्र की ताकत समान होगी। गणितीय रूप से, सतत समरूपता को उन परिवर्तनों द्वारा वर्णित किया जाता है जो उनके पैरामीटरकरण के कार्य के रूप में लगातार बदलते रहते हैं। भौतिकी में सतत समरूपता का एक महत्वपूर्ण उपवर्ग स्पेसटाइम समरूपता है।
स्पेसटाइम
Lie groups |
---|
सतत अंतरिक्ष-समय समरूपता अंतरिक्ष और समय के परिवर्तनों से संबंधित समरूपताएं हैं। इन्हें आगे स्थानिक समरूपता के रूप में वर्गीकृत किया जा सकता है, जिसमें केवल भौतिक प्रणाली से जुड़ी स्थानिक ज्यामिति शामिल है; लौकिक समरूपता, केवल समय में परिवर्तन शामिल; या स्थान-लौकिक समरूपता, जिसमें स्थान और समय दोनों में परिवर्तन शामिल हैं।
- समय अनुवाद: एक भौतिक प्रणाली में एक निश्चित समय अंतराल Δt पर समान विशेषताएं हो सकती हैं; यह गणितीय रूप से अंतराल में किसी भी वास्तविक पैरामीटर टी और t + a के परिवर्तन t → t + a के तहत अपरिवर्तनीय के रूप में व्यक्त किया जाता है। उदाहरण के लिए, शास्त्रीय यांत्रिकी में, गुरुत्वाकर्षण द्वारा पूरी तरह से काम करने वाले कण में पृथ्वी की सतह के ऊपर ऊंचाई एच से निलंबित होने पर गुरुत्वाकर्षण संभावित ऊर्जा एमजीएच होगी। यह मानते हुए कि कण की ऊंचाई में कोई परिवर्तन नहीं होता है, यह हर समय कण की कुल गुरुत्वीय स्थितिज ऊर्जा होगी। दूसरे शब्दों में, किसी समय t0 और t0 + a पर भी कण की स्थिति पर विचार करके, कण की कुल गुरुत्वीय स्थितिज ऊर्जा संरक्षित रहेगी।
- स्थानिक अनुवाद: इन स्थानिक समरूपताओं को r→ → r→ + a→ के रूपांतरों द्वारा दर्शाया जाता है और उन स्थितियों का वर्णन करता है जहाँ सिस्टम की संपत्ति स्थान में सतत परिवर्तन के साथ नहीं बदलती है। उदाहरण के लिए, एक कमरे में तापमान इस बात से स्वतंत्र हो सकता है कि कमरे में थर्मामीटर कहाँ स्थित है।
- स्थानिक घूर्णन: इन स्थानिक समरूपताओं को उचित घूर्णन और अनुचित घूर्णन के रूप में वर्गीकृत किया जाता है। पूर्व केवल 'साधारण' घुमाव हैं; गणितीय रूप से, वे इकाई निर्धारक के साथ वर्ग मैट्रिसेस द्वारा दर्शाए जाते हैं। उत्तरार्द्ध को निर्धारक -1 के साथ वर्ग मैट्रिसेस द्वारा दर्शाया जाता है और इसमें एक स्थानिक प्रतिबिंब (उलटा) के साथ संयुक्त एक उचित घुमाव होता है। उदाहरण के लिए, एक गोले में उचित घूर्णी समरूपता होती है। लेख रोटेशन समरूपता में अन्य प्रकार के स्थानिक घुमावों का वर्णन किया गया है।
- पॉइनकेयर परिवर्तन: ये स्थान-लौकिक समरूपताएं हैं जो मिन्कोव्स्की अंतरिक्ष-समय में दूरियों को संरक्षित करती हैं, यानी वे मिन्कोवस्की अंतरिक्ष के आइसोमेट्रीज़ हैं। उनका अध्ययन मुख्य रूप से विशेष सापेक्षता में किया जाता है। वे आइसोमेट्री जो मूल को स्थिर छोड़ देते हैं उन्हें लोरेंत्ज़ रूपांतरण कहा जाता है और समरूपता को लोरेंत्ज़ सहप्रसरण के रूप में जाना जाता है।
- प्रक्षेपी सममितियाँ: ये स्थान-लौकिक समरूपताएँ हैं जो दिक्-काल की भूगणितीय संरचना को संरक्षित करती हैं। उन्हें किसी भी चिकनी कई गुना पर परिभाषित किया जा सकता है, लेकिन सामान्य सापेक्षता में सटीक समाधानों के अध्ययन में कई अनुप्रयोग मिलते हैं।
- व्युत्क्रम परिवर्तन: ये स्थान-लौकिक समरूपताएं हैं जो स्पेस-टाइम निर्देशांक पर अन्य अनुरूप एक-से-एक परिवर्तनों को शामिल करने के लिए पोंकारे परिवर्तनों को सामान्यीकृत करती हैं। व्युत्क्रम परिवर्तन के तहत लम्बाई अपरिवर्तनीय नहीं है लेकिन अपरिवर्तनीय चार बिंदुओं पर एक क्रॉस-अनुपात है।
गणितीय रूप से, स्पेसटाइम समरूपता आमतौर पर चिकनी वेक्टर क्षेत्र द्वारा चिकनी मैनिफोल्ड पर वर्णित होती है। सदिश क्षेत्रों से जुड़े अंतर्निहित स्थानीय भिन्नता भौतिक समरूपता से अधिक सीधे मेल खाते हैं, लेकिन भौतिक प्रणाली की समरूपता को वर्गीकृत करते समय स्वयं सदिश क्षेत्र अधिक बार उपयोग किए जाते हैं।
सबसे महत्वपूर्ण सदिश क्षेत्रों में से कुछ किलिंग सदिश क्षेत्र हैं जो कि अंतरिक्ष-समय समरूपता हैं जो कई गुना अंतर्निहित मीट्रिक संरचना को संरक्षित करते हैं। मोटे तौर पर, किलिंग वेक्टर क्षेत्र कई गुना के किन्हीं दो बिंदुओं के बीच की दूरी को बनाए रखते हैं और प्रायः आइसोमेट्री के नाम से जाने जाते हैं।
असतत
असतत समरूपता एक समरूपता है जो एक प्रणाली में सतत परिवर्तन का वर्णन करती है। उदाहरण के लिए, एक वर्ग में असतत घूर्णी समरूपता होती है, क्योंकि समकोण के गुणकों द्वारा केवल घुमाव ही वर्ग के मूल स्वरूप को संरक्षित करेगा। असतत समरूपता में कभी-कभी कुछ प्रकार की 'अदला-बदली' शामिल होती है, इन स्वैपों को आमतौर पर प्रतिबिंब या इंटरचेंज कहा जाता है।
- टाइम रिवर्सल: भौतिकी के कई नियम वास्तविक घटना का वर्णन करते हैं जब समय की दिशा उलट जाती है। गणितीय रूप से, यह रूपांतरण द्वारा दर्शाया जाता है, । उदाहरण के लिए, न्यूटन का गति का दूसरा नियम अभी भी लागू होता है, यदि समीकरण में , को बदल दिया जाए द्वारा। इसे लंबवत रूप से ऊपर फेंकी गई वस्तु की गति को रिकॉर्ड करके (वायु प्रतिरोध की उपेक्षा करते हुए) और फिर इसे वापस चलाकर चित्रित किया जा सकता है। वस्तु हवा के माध्यम से समान परवलयिक प्रक्षेपवक्र का पालन करेगी, चाहे रिकॉर्डिंग सामान्य रूप से या रिवर्स में खेली जाए। इस प्रकार, स्थिति उस क्षण के संबंध में सममित होती है जब वस्तु अपनी अधिकतम ऊंचाई पर होती है।
- स्थानिक उलटा: इन्हें और निर्देशांक 'उल्टे' होने पर सिस्टम की एक अपरिवर्तनीय संपत्ति इंगित करें। दूसरे तरीके से कहा गया है, ये एक निश्चित वस्तु और उसकी दर्पण छवि के बीच समरूपता हैं।
- सरकना प्रतिबिंब: ये एक अनुवाद और एक प्रतिबिंब की रचना द्वारा दर्शाए जाते हैं। ये समरूपता कुछ क्रिस्टल में और कुछ प्लानर समरूपता में होती है, जिन्हें वॉलपेपर समरूपता के रूप में जाना जाता है।
सी, पी, और टी
कण भौतिकी के मानक मॉडल में तीन संबंधित प्राकृतिक निकट-समरूपताएँ हैं। ये कहते हैं कि जिस ब्रह्मांड में हम रहते हैं, वह उस ब्रह्मांड से अप्रभेद्य होना चाहिए जहां एक निश्चित प्रकार का परिवर्तन पेश किया जाता है।
- सी-समरूपता (आवेश समरूपता), एक ब्रह्मांड जहां हर कण को उसके एंटीपार्टिकल से बदल दिया जाता है
- पी-समरूपता (समता समरूपता), एक ब्रह्मांड जहां सब कुछ तीन भौतिक अक्षों के साथ प्रतिबिम्बित होता है। यह चिएन-शिउंग वू द्वारा प्रदर्शित कमजोर अंतःक्रियाओं को शामिल नहीं करता है।
- टी-समरूपता (समय उत्क्रमण समरूपता), एक ब्रह्मांड जहां समय की दिशा उलट जाती है। टी-समरूपता प्रतिकूल है (भविष्य और अतीत सममित नहीं हैं) लेकिन इस तथ्य से समझाया गया है कि मानक मॉडल स्थानीय गुणों का वर्णन करता है, न कि एन्ट्रापी जैसे वैश्विक गुणों का। समय की दिशा को ठीक से उलटने के लिए, किसी को बिग बैंग और परिणामी कम-एन्ट्रॉपी स्थिति को "भविष्य" में रखना होगा। चूँकि हम "अतीत" ("भविष्य") को वर्तमान की तुलना में कम (उच्च) एन्ट्रापी के रूप में देखते हैं, इस काल्पनिक समय-उलट ब्रह्मांड के निवासी भविष्य को उसी तरह से देखेंगे जैसे हम अतीत को देखते हैं, और इसके विपरीत।
ये समरूपता निकट-समरूपता हैं क्योंकि प्रत्येक वर्तमान ब्रह्मांड में टूटा हुआ है। हालाँकि, मानक मॉडल भविष्यवाणी करता है कि तीनों का संयोजन (अर्थात, तीनों परिवर्तनों का एक साथ अनुप्रयोग) एक समरूपता होनी चाहिए, जिसे CPT समरूपता कहा जाता है। सीपी उल्लंघन, सी- और पी-समरूपता के संयोजन का उल्लंघन, ब्रह्मांड में महत्वपूर्ण मात्रा में बैरोनिक पदार्थ की उपस्थिति के लिए आवश्यक है। सीपी उल्लंघन कण भौतिकी में वर्तमान शोध का एक उपयोगी क्षेत्र है।
सुपरसिमेट्री
मानक मॉडल में सैद्धांतिक प्रगति करने की कोशिश करने के लिए सुपरसिमेट्री के रूप में जाना जाने वाला समरूपता का उपयोग किया गया है। सुपरसममिति इस विचार पर आधारित है कि मानक मॉडल में पहले से ही विकसित समरूपता से परे एक और भौतिक समरूपता है, विशेष रूप से बोसॉन और फर्मियन के बीच एक समरूपता। सुपरसिममेट्री का दावा है कि प्रत्येक प्रकार के बोसोन में एक सुपरसिमेट्रिक पार्टनर के रूप में, एक फ़र्मियन, जिसे सुपरपार्टनर कहा जाता है, और इसके विपरीत। सुपरसममिति अभी तक प्रयोगात्मक रूप से सत्यापित नहीं हुई है: किसी भी ज्ञात कण में किसी अन्य ज्ञात कण का सुपरपार्टनर होने के लिए सही गुण नहीं हैं। वर्तमान में LHC एक ऐसे रन की तैयारी कर रहा है जो सुपरसिमेट्री का परीक्षण करता है।
भौतिक समरूपता का गणित
भौतिक समरूपता का वर्णन करने वाले रूपांतरण आमतौर पर एक गणितीय समूह (गणित) बनाते हैं। भौतिकविदों के लिए समूह सिद्धांत गणित का एक महत्वपूर्ण क्षेत्र है।
सतत समरूपता गणितीय रूप से सतत समूहों (जिन्हें लाई समूह कहा जाता है) द्वारा निर्दिष्ट किया जाता है। कई भौतिक समरूपताएं आइसोमेट्री हैं और समरूपता समूहों द्वारा निर्दिष्ट की जाती हैं। कभी-कभी इस शब्द का प्रयोग अधिक सामान्य प्रकार की सममितियों के लिए किया जाता है। एक गोले के किसी भी अक्ष के माध्यम से सभी उचित घुमावों (किसी भी कोण के बारे में) का सेट एक लाइ समूह बनाता है जिसे विशेष ऑर्थोगोनल समूह SO(3) कहा जाता है। ('3' एक साधारण गोले के त्रि-आयामी स्थान को संदर्भित करता है।) इस प्रकार, उचित घुमाव वाले गोले का समरूपता समूह SO(3) है। कोई भी घुमाव गेंद की सतह पर दूरियों को बनाए रखता है। सभी लोरेंत्ज़ परिवर्तनों का सेट एक समूह बनाता है जिसे लोरेंत्ज़ समूह कहा जाता है (इसे पॉइनकेयर समूह के लिए सामान्यीकृत किया जा सकता है)।
असतत समूह असतत समरूपता का वर्णन करते हैं। उदाहरण के लिए, एक समबाहु त्रिभुज की सममितियों की विशेषता सममित समूह S3 है।
स्थानीय समरूपता पर आधारित एक प्रकार के भौतिक सिद्धांत को गेज सिद्धांत कहा जाता है और ऐसे सिद्धांत के लिए प्राकृतिक समरूपता को गेज समरूपता कहा जाता है। मानक मॉडल में गेज समरूपता, तीन मूलभूत अंतःक्रियाओं का वर्णन करने के लिए उपयोग की जाती है, जो SU(3) × SU(2) × U(1) समूह पर आधारित हैं। (मोटे तौर पर, एसयू (3) समूह की समरूपता मजबूत बल का वर्णन करती है, एसयू (2) समूह कमजोर बातचीत का वर्णन करता है और यू (1) समूह विद्युत चुम्बकीय बल का वर्णन करता है।)
इसके अतिरिक्त, एक समूह द्वारा कार्रवाई के तहत कार्यात्मक ऊर्जा की समरूपता में कमी और सममित समूहों के परिवर्तनों के सहज समरूपता को तोड़ना कण भौतिकी में विषयों को स्पष्ट करने के लिए प्रकट होता है (उदाहरण के लिए, विद्युत चुंबकत्व का एकीकरण और भौतिक ब्रह्मांड विज्ञान में कमजोर बल)।
संरक्षण कानून और समरूपता
एक भौतिक प्रणाली के समरूपता गुण उस प्रणाली की विशेषता वाले संरक्षण कानूनों से घनिष्ठ रूप से संबंधित हैं। नोएदर का प्रमेय इस संबंध का सटीक विवरण देता है। प्रमेय कहता है कि भौतिक प्रणाली की प्रत्येक सतत समरूपता का तात्पर्य है कि उस प्रणाली की कुछ भौतिक संपत्ति संरक्षित है। इसके विपरीत, प्रत्येक संरक्षित मात्रा में एक समान समरूपता होती है। उदाहरण के लिए, स्थानिक अनुवाद समरूपता (यानी अंतरिक्ष की एकरूपता) (रैखिक) संवेग के संरक्षण को जन्म देती है, और लौकिक अनुवाद समरूपता (यानी समय की एकरूपता) ऊर्जा के संरक्षण को जन्म देती है।
निम्न तालिका कुछ मौलिक समरूपता और संबंधित संरक्षित मात्रा का सारांश देती है।
Class | Invariance | Conserved quantity |
---|---|---|
Proper orthochronous Lorentz symmetry |
translation in time (homogeneity) |
energy E |
translation in space (homogeneity) |
linear momentum p | |
rotation in space (isotropy) |
angular momentum L = r × p | |
Lorentz-boost (isotropy) |
boost 3-vector N = tp − Er | |
Discrete symmetry | P, coordinate inversion | spatial parity |
C, charge conjugation | charge parity | |
T, time reversal | time parity | |
CPT | product of parities | |
Internal symmetry (independent of spacetime coordinates) |
U(1) gauge transformation | electric charge |
U(1) gauge transformation | lepton generation number | |
U(1) gauge transformation | hypercharge | |
U(1)Y gauge transformation | weak hypercharge | |
U(2) [ U(1) × SU(2) ] | electroweak force | |
SU(2) gauge transformation | isospin | |
SU(2)L gauge transformation | weak isospin | |
P × SU(2) | G-parity | |
SU(3) "winding number" | baryon number | |
SU(3) gauge transformation | quark color | |
SU(3) (approximate) | quark flavor | |
S(U(2) × U(3)) [ U(1) × SU(2) × SU(3) ] |
Standard Model |
गणित
भौतिकी में सतत समरूपता परिवर्तनों को संरक्षित करती है। एक बहुत छोटा परिवर्तन विभिन्न कण क्षेत्रों (भौतिकी) को कैसे प्रभावित करता है, यह दिखा कर एक समरूपता निर्दिष्ट कर सकता है। इन अपरिमेय परिवर्तनों में से दो का कम्यूटेटर एक ही प्रकार के तीसरे अतिसूक्ष्म परिवर्तन के बराबर है इसलिए वे एक लाई बीजगणित बनाते हैं।
सामान्य क्षेत्र (जिसे डिफियोमोर्फिज्म भी कहा जाता है) के रूप में वर्णित एक सामान्य समन्वय परिवर्तन का अदिश पर अतिसूक्ष्म प्रभाव होता है। स्पिनर या वेक्टर क्षेत्र जिसे व्यक्त किया जा सकता है (आइंस्टीन सारांश सम्मेलन का उपयोग करके):
गुरुत्वाकर्षण के बिना केवल पोंकारे समरूपता संरक्षित रहती है जो को इस रूप में प्रतिबंधित करती है:
जहाँ M एक एंटीसिमेट्रिक मैट्रिक्स है (लोरेंत्ज़ और घूर्णी समरूपता दे रहा है) और P एक सामान्य वेक्टर है (ट्रांसलेशनल समरूपता दे रहा है)। अन्य समरूपताएँ एक साथ कई क्षेत्रों को प्रभावित करती हैं। उदाहरण के लिए, स्थानीय गेज परिवर्तन वेक्टर और स्पिनर फ़ील्ड दोनों पर लागू होते हैं:
जहां एक विशेष लाई समूह के जनक हैं। अब तक दाईं ओर के रूपांतरणों में केवल उसी प्रकार के फ़ील्ड शामिल किए गए हैं। सुपरसिमेट्री को विभिन्न प्रकार के मिश्रण क्षेत्रों के अनुसार परिभाषित किया गया है।
एक अन्य समरूपता जो भौतिकी के कुछ सिद्धांतों का हिस्सा है और अन्य में नहीं है, स्केल इनवेरियन है जिसमें निम्न प्रकार के वेइल परिवर्तन शामिल हैं:
यदि खेतों में यह समरूपता है तो यह दिखाया जा सकता है कि क्षेत्र सिद्धांत लगभग निश्चित रूप से अनुरूप रूप से अपरिवर्तनीय भी है। इसका मतलब यह है कि गुरुत्वाकर्षण के अभाव में h(x) फॉर्म तक ही सीमित रहेगा:
D जनरेटिंग स्केल ट्रांसफ़ॉर्मेशन और K जनरेटिंग स्पेशल कन्फ़र्मल ट्रांसफ़ॉर्मेशन के साथ। उदाहरण के लिए, एन = 4 सुपर-यांग-मिल्स सिद्धांत में यह समरूपता है, जबकि सामान्य सापेक्षता में नहीं है, हालांकि गुरुत्वाकर्षण के अन्य सिद्धांत जैसे अनुरूप गुरुत्व करते हैं। क्षेत्र सिद्धांत की 'कार्रवाई' सिद्धांत की सभी समरूपताओं के तहत एक अपरिवर्तनीय (भौतिकी) है। अधिकांश आधुनिक सैद्धांतिक भौतिकी ब्रह्मांड में मौजूद विभिन्न समरूपताओं पर अनुमान लगाने और मॉडल के रूप में क्षेत्र सिद्धांतों का निर्माण करने के लिए आक्रमणकारियों को खोजने के लिए है।
स्ट्रिंग सिद्धांतों में, चूँकि एक स्ट्रिंग को अनंत संख्या में कण क्षेत्रों में विघटित किया जा सकता है, स्ट्रिंग वर्ल्ड शीट पर समरूपता विशेष परिवर्तनों के बराबर होती है जो अनंत संख्या में फ़ील्ड को मिलाते हैं।
यह भी देखें
- संरक्षित करंट और चार्ज (भौतिकी)
- समन्वय मुक्त
- सहप्रसरण और सदिशों का प्रतिप्रसरण
- बनावटी बल
- गैलिलियन आक्रमण
- सहप्रसरण का सिद्धांत
- सामान्य सहप्रसरण
- हार्मोनिक समन्वय स्थिति
- संदर्भ के जड़त्वीय फ्रेम
- सापेक्षता में गणितीय विषयों की सूची
- मानक मॉडल (गणितीय सूत्रीकरण)
- व्हीलर-फेनमैन अवशोषक सिद्धांत
संदर्भ
सामान्य पाठक
- Lederman, L.; Hill, C.T. (2011) [2005]. Symmetry and the Beautiful Universe. Prometheus Books. ISBN 9781615920419.
- Schumm, B. (2004). Deep Down Things: The Breathtaking Beauty of Particle Physics. Johns Hopkins University Press. ISBN 978-0-8018-7971-5.
- Stenger, V.J. (2000). Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Prometheus Books. ISBN 9781573928595. Chapter 12 is a gentle introduction to symmetry, invariance, and conservation laws.
- Zee, A. (2007). Fearful Symmetry: The search for beauty in modern physics (2nd ed.). Princeton University Press. ISBN 978-0-691-00946-9.
तकनीकी पाठक
- Brading, K.; Castellani, E. (2003). भौतिकी में समरूपता: दार्शनिक प्रतिबिंब. Cambridge University Press. ISBN 978-1-139-44202-2.
- Brading, K.; Castellani, E. (2007). "Symmetries and Invariances in Classical Physics". In Butterfield, J.; Earman, J. (eds.). फिजिक्स पार्ट बी फिलॉसफी. North Holland. pp. 1331–68. ISBN 978-0-08-046665-1.
- Debs, T.; Redhead, M. (2007). ऑब्जेक्टिविटी, इनवेरिएंस एंड कन्वेंशन: फिजिकल साइंस में सिमिट्री. Harvard University Press. ISBN 978-0-674-03413-6.
- Earman, J. (2002), Laws, Symmetry, and Symmetry Breaking: Invariance, Conservations Principles, and Objectivity. (PDF) विज्ञान संघ के दर्शनशास्त्र की 2002 की बैठक में संबोधन।
- Mainzer, K. (1996). प्रकृति की समरूपता: प्रकृति और विज्ञान के दर्शनशास्त्र के लिए एक पुस्तिका. de Gruyter. ISBN 978-3-11-088693-1.
- Mouchet, A. (2013). "समरूपता के चार पहलुओं पर प्रतिबिंब: कैसे भौतिकी तर्कसंगत सोच का उदाहरण देती है". European Physical Journal H. 38 (5): 661–702. arXiv:1111.0658. Bibcode:2013EPJH...38..661M. CiteSeerX 10.1.1.400.2867. doi:10.1140/epjh/e2013-40018-4. S2CID 14475702.
- Thompson, William J. (1994). एंगुलर मोमेंटम: एन इलस्ट्रेटेड गाइड टू रोटेशनल सिमिट्रीज़ फॉर फिजिकल सिस्टम्स. Wiley. ISBN 0-471-55264-X.
- Van Fraassen, B. (1989). कानून और समरूपता. Oxford University Press. ISBN 978-0-19-151999-4.
- Wigner, E. (1970) [1967]. समरूपता और प्रतिबिंब. M.I.T. Press. ISBN 978-0-262-73021-1.
बाहरी कड़ियाँ
- The Feynman Lectures on Physics Vol. I Ch. 52: Symmetry in Physical Laws
- Stanford Encyclopedia of Philosophy: "Symmetry"—by K. Brading and E. Castellani.
- Pedagogic Aids to Quantum Field Theory Click on link to Chapter 6: Symmetry, Invariance, and Conservation for a simplified, step-by-step introduction to symmetry in physics.
श्रेणी:भौतिकी की अवधारणा श्रेणी:संरक्षण कानून श्रेणी: डिफियोमॉर्फिज्म श्रेणी:विभेदक ज्यामिति श्रेणी:समरूपता