अण्डाकार ज्यामिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 13: Line 13:


बिंदुओं की एक जोड़ी के बीच की दूरी उनके पूर्ण ध्रुवों के बीच के कोण के समानुपाती होती है।<ref name="DS" />{{rp|101}}जैसा कि एचएसएम कॉक्सेटर द्वारा समझाया गया है:
बिंदुओं की एक जोड़ी के बीच की दूरी उनके पूर्ण ध्रुवों के बीच के कोण के समानुपाती होती है।<ref name="DS" />{{rp|101}}जैसा कि एचएसएम कॉक्सेटर द्वारा समझाया गया है:
: अण्डाकार नाम संभवतः भ्रामक है। यह एक दीर्घवृत्त नामक वक्र के साथ कोई सीधा संबंध नहीं दर्शाता है, बल्कि केवल एक दूरगामी सादृश्य है। एक केंद्रीय शंकु को दीर्घवृत्त या अतिपरवलय कहा जाता है क्योंकि इसमें कोई स्पर्शोन्मुख या दो स्पर्शोन्मुख नहीं होते हैं। अनुरूप रूप से, एक गैर-यूक्लिडियन विमान को अण्डाकार या अतिशयोक्तिपूर्ण कहा जाता है क्योंकि इसकी प्रत्येक [[ रेखा (ज्यामिति) ]] में अनंत पर कोई बिंदु या अनंत पर दो बिंदु नहीं होते हैं।<ref>Coxeter 1969 94</ref>
: अण्डाकार नाम संभवतः भ्रामक है। यह एक दीर्घवृत्त नामक वक्र के साथ कोई सीधा संबंध नहीं दर्शाता है, बल्कि केवल एक दूरगामी सादृश्य है। एक केंद्रीय शंकु को दीर्घवृत्त या अतिपरवलय कहा जाता है क्योंकि इसमें कोई स्पर्शोन्मुख या दो स्पर्शोन्मुख नहीं होते हैं। अनुरूप रूप से, एक गैर-यूक्लिडियन समतल को अण्डाकार या अतिशयोक्तिपूर्ण कहा जाता है क्योंकि इसकी प्रत्येक [[ रेखा (ज्यामिति) ]] में अनंत पर कोई बिंदु या अनंत पर दो बिंदु नहीं होते हैं।<ref>Coxeter 1969 94</ref>




== दो आयाम ==
== दो आयाम ==


=== अण्डाकार विमान ===
=== अण्डाकार समतल ===
दीर्घ[[ वृत्त ]] तल एक [[ मीट्रिक (गणित) ]] के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है: [[ केपलर ]] और [[ डाउनलोड ]] ने [[ ग्नोमोनिक प्रक्षेपण ]] का उपयोग एक समतल σ को स्फेयर स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P एक रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ एक समतल OL निर्धारित करती है जो गोलार्ध को एक बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से एक विमान से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर एक रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से एक विमान से मेल खाती है, और चूंकि इस तरह के विमानों की कोई भी जोड़ी ओ के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: चौराहे का बिंदु जहां विमान स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए विमान में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।<ref>[[H. S. M. Coxeter]] (1965) Introduction to Geometry, page 92</ref>
दीर्घ[[ वृत्त ]] तल एक [[ मीट्रिक (गणित) ]] के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है: [[ केपलर ]] और [[ डाउनलोड ]] ने [[ ग्नोमोनिक प्रक्षेपण ]] का उपयोग एक समतल σ को स्फेयर स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P एक रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ एक समतल OL निर्धारित करती है जो गोलार्ध को एक बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से एक समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर एक रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से एक समतल के समान है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी ओ के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: प्रतिच्छेद का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।<ref>[[H. S. M. Coxeter]] (1965) Introduction to Geometry, page 92</ref>
σ में P और Q दिया हुआ है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। [[ आर्थर केली ]] ने अण्डाकार ज्यामिति का अध्ययन तब शुरू किया जब उन्होंने दूरी की परिभाषा पर लिखा।<ref>{{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title= A sixth memoir upon quantics | jstor=108690 | year=1859 | journal=[[Philosophical Transactions of the Royal Society of London]] | issn=0080-4614 | volume=149 | pages=61–90 | doi=10.1098/rstl.1859.0004| url=https://zenodo.org/record/1432432 | doi-access=free }}</ref>{{rp|82}} ज्यामिति में अमूर्तता में इस उद्यम के बाद [[ फेलिक्स क्लेन ]] और [[ बर्नहार्ड रीमैन ]] ने [[ गैर-यूक्लिडियन ज्यामिति ]] और रीमैनियन ज्यामिति का नेतृत्व किया।
 
P और Q को σ में दिया गया है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। [[ आर्थर केली | आर्थर केली]] ने अण्डाकार ज्यामिति के अध्ययन की प्रारंभ तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।<ref>{{Citation | last1=Cayley | first1=Arthur | author1-link=Arthur Cayley | title= A sixth memoir upon quantics | jstor=108690 | year=1859 | journal=[[Philosophical Transactions of the Royal Society of London]] | issn=0080-4614 | volume=149 | pages=61–90 | doi=10.1098/rstl.1859.0004| url=https://zenodo.org/record/1432432 | doi-access=free }}</ref>{{rp|82}} ज्यामिति में अमूर्तता में इस उद्यम के बाद [[ फेलिक्स क्लेन | फेलिक्स क्लेन]] और [[ बर्नहार्ड रीमैन | बर्नहार्ड रीमैन]] ने [[ गैर-यूक्लिडियन ज्यामिति | गैर-यूक्लिडियन ज्यामिति]] और रीमैनियन ज्यामिति का नेतृत्व किया।


=== यूक्लिडियन ज्यामिति के साथ तुलना ===
=== यूक्लिडियन ज्यामिति के साथ तुलना ===

Revision as of 13:14, 7 January 2023

अण्डाकार ज्यामिति एक ज्यामिति का उदाहरण है जिसमें यूक्लिड की समानांतर अभिधारणा धारण नहीं करती है। इसके अतिरिक्त, गोलाकार ज्यामिति की तरह, कोई समानांतर रेखाएँ नहीं हैं क्योंकि किन्हीं भी दो रेखाओं को एक दूसरे को काटना चाहिए। चूंकि, गोलाकार ज्यामिति के विपरीत, दो रेखाओं को सामान्यतः एक बिंदु (दो के अतिरिक्त) पर प्रतिच्छेद करने के लिए माना जाता है। इस कारण से, इस लेख में वर्णित अण्डाकार ज्यामिति को कभी-कभी एकल अण्डाकार ज्यामिति कहा जाता है जबकि गोलाकार ज्यामिति को कभी-कभी डबल अण्डाकार ज्यामिति कहा जाता है।

उन्नीसवीं शताब्दी में इस ज्यामिति की उपस्थिति ने सामान्यतः गैर-यूक्लिडियन ज्यामिति के विकास को प्रेरित किया, जिसमें अतिशयोक्तिपूर्ण ज्यामिति भी शामिल थी।

अण्डाकार ज्यामिति में विभिन्न प्रकार के गुण होते हैं जो मौलिक यूक्लिडियन समतल ज्यामिति से भिन्न होते हैं। उदाहरण के लिए, किसी त्रिभुज के आंतरिक कोणों का योग हमेशा 180° से अधिक होता है।

परिभाषाएँ

अण्डाकार ज्यामिति में, दी गई रेखा के लंबवत दो रेखाएँ प्रतिच्छेद करती हैं। वास्तविक में, एक ओर के सभी लंब एक ही बिंदु पर प्रतिच्छेद करते हैं जिसे उस रेखा का निरपेक्ष ध्रुव कहा जाता है। दूसरी ओर के लंब भी एक बिंदु पर प्रतिच्छेद करते हैं। चूंकि, गोलीय ज्यामिति के विपरीत, दोनों ओर ध्रुव समान होते हैं। ऐसा इसलिए है क्योंकि अण्डाकार ज्यामिति में कोई एंटीपोडल बिंदु नहीं होते हैं। उदाहरण के लिए, यह हमारे ज्यामिति में "बिंदुओं" को वास्तविक में एक गोले पर विपरीत बिंदुओं के जोड़े बनाकर हाइपरस्फेरिकल मॉडल (नीचे वर्णित) में प्राप्त किया जाता है। ऐसा करने का कारण यह है कि यह अण्डाकार ज्यामिति को इस स्वयंसिद्ध को संतुष्ट करने की अनुमति देता है कि किन्हीं दो बिंदुओं से निकलने वाली एक अद्वितीय रेखा है।

प्रत्येक बिंदु एक पूर्ण ध्रुवीय रेखा के समान होता है जिसका यह पूर्ण ध्रुव है। इस ध्रुवीय रेखा पर कोई भी बिंदु ध्रुव के साथ एक निरपेक्ष संयुग्मी युग्म बनाता है। बिंदुओं का ऐसा युग्म लंबकोणीय होता है, और उनके बीच की दूरी चतुर्थांश होती है।[1]: 89 

बिंदुओं की एक जोड़ी के बीच की दूरी उनके पूर्ण ध्रुवों के बीच के कोण के समानुपाती होती है।[1]: 101 जैसा कि एचएसएम कॉक्सेटर द्वारा समझाया गया है:

अण्डाकार नाम संभवतः भ्रामक है। यह एक दीर्घवृत्त नामक वक्र के साथ कोई सीधा संबंध नहीं दर्शाता है, बल्कि केवल एक दूरगामी सादृश्य है। एक केंद्रीय शंकु को दीर्घवृत्त या अतिपरवलय कहा जाता है क्योंकि इसमें कोई स्पर्शोन्मुख या दो स्पर्शोन्मुख नहीं होते हैं। अनुरूप रूप से, एक गैर-यूक्लिडियन समतल को अण्डाकार या अतिशयोक्तिपूर्ण कहा जाता है क्योंकि इसकी प्रत्येक रेखा (ज्यामिति) में अनंत पर कोई बिंदु या अनंत पर दो बिंदु नहीं होते हैं।[2]


दो आयाम

अण्डाकार समतल

दीर्घवृत्त तल एक मीट्रिक (गणित) के साथ प्रदान किया गया वास्तविक प्रक्षेपी तल है: केपलर और डाउनलोड ने ग्नोमोनिक प्रक्षेपण का उपयोग एक समतल σ को स्फेयर स्पर्शरेखा पर बिंदुओं से संबंधित करने के लिए किया। O के गोलार्ध के केंद्र के साथ, σ में एक बिंदु P एक रेखा OP निर्धारित करता है जो गोलार्ध को काटती है, और कोई भी रेखा L ⊂ σ एक समतल OL निर्धारित करती है जो गोलार्ध को एक बड़े वृत्त के आधे हिस्से में काटती है। गोलार्द्ध O के माध्यम से एक समतल से घिरा है और σ के समानांतर है। σ की कोई साधारण रेखा इस तल से मेल नहीं खाती; इसके अतिरिक्त अनंत पर एक रेखा σ से जोड़ दी जाती है। चूंकि σ के इस विस्तार में कोई भी रेखा ओ के माध्यम से एक समतल के समान है, और चूंकि इस तरह के समतलों की कोई भी जोड़ी ओ के माध्यम से एक रेखा में प्रतिच्छेद करती है, इसलिए यह निष्कर्ष निकाला जा सकता है कि विस्तार में रेखाओं की कोई भी जोड़ी प्रतिच्छेद करती है: प्रतिच्छेद का बिंदु जहां समतल स्थित है प्रतिच्छेदन σ या रेखा से अनंत पर मिलता है। इस प्रकार प्रक्षेपी ज्यामिति का स्वयंसिद्ध, जिसके लिए समतल में रेखाओं के सभी युग्मों को प्रतिच्छेद करने की आवश्यकता होती है, की पुष्टि की जाती है।[3]

P और Q को σ में दिया गया है, उनके बीच 'अण्डाकार दूरी' कोण POQ का माप है, जिसे सामान्यतः रेडियन में लिया जाता है। आर्थर केली ने अण्डाकार ज्यामिति के अध्ययन की प्रारंभ तब की जब उन्होंने "ऑन द डेफिनिशन ऑफ डिस्टेंस" लिखा।[4]: 82  ज्यामिति में अमूर्तता में इस उद्यम के बाद फेलिक्स क्लेन और बर्नहार्ड रीमैन ने गैर-यूक्लिडियन ज्यामिति और रीमैनियन ज्यामिति का नेतृत्व किया।

यूक्लिडियन ज्यामिति के साथ तुलना

Comparison of elliptic, Euclidean and hyperbolic geometries in two dimensions

यूक्लिडियन ज्यामिति में, एक आकृति को अनिश्चित काल तक बढ़ाया या घटाया जा सकता है, और परिणामी आंकड़े समान होते हैं, अर्थात, उनके समान कोण और समान आंतरिक अनुपात होते हैं। अण्डाकार ज्यामिति में, ऐसा नहीं है। उदाहरण के लिए, गोलाकार मॉडल में हम देख सकते हैं कि किन्हीं भी दो बिंदुओं के बीच की दूरी गोले की परिधि के आधे से भी कम होनी चाहिए (क्योंकि एंटीपोडल बिंदुओं की पहचान की जाती है)। इसलिए एक रेखा खंड को अनिश्चित काल तक बढ़ाया नहीं जा सकता है। जिस स्थान पर वह निवास करता है, उसके ज्यामितीय गुणों को मापने वाला एक जियोमीटर माप के माध्यम से यह पता लगा सकता है कि एक निश्चित दूरी का पैमाना है जो अंतरिक्ष की संपत्ति है। इससे बहुत छोटे पैमाने पर, अंतरिक्ष लगभग सपाट है, ज्यामिति लगभग यूक्लिडियन है, और आंकड़े लगभग समान रहते हुए ऊपर और नीचे बढ़ाए जा सकते हैं।

यूक्लिडियन ज्यामिति का एक बड़ा हिस्सा सीधे अण्डाकार ज्यामिति पर ले जाता है। उदाहरण के लिए, यूक्लिड की पहली और चौथी अवधारणा, कि किन्हीं दो बिंदुओं के बीच एक अद्वितीय रेखा होती है और यह कि सभी समकोण समान होते हैं, अण्डाकार ज्यामिति में धारण करते हैं। अभिधारणा 3, कि कोई किसी भी दिए गए केंद्र और त्रिज्या के साथ एक वृत्त का निर्माण कर सकता है, विफल रहता है यदि किसी त्रिज्या को किसी वास्तविक संख्या के रूप में लिया जाता है, लेकिन यदि इसे किसी दिए गए रेखा खंड की लंबाई के रूप में लिया जाता है तो यह धारण करता है। इसलिए यूक्लिडियन ज्यामिति में कोई भी परिणाम जो इन तीन अभिधारणाओं से अनुसरण करता है, अण्डाकार ज्यामिति में धारण करेगा, जैसे कि तत्वों की पुस्तक I से प्रस्ताव 1, जिसमें कहा गया है कि किसी भी रेखा खंड को दिए जाने पर, एक समबाहु त्रिभुज का निर्माण इसके आधार के रूप में खंड के साथ किया जा सकता है।

अण्डाकार ज्यामिति भी यूक्लिडियन ज्यामिति की तरह होती है, जिसमें अंतरिक्ष निरंतर, सजातीय, आइसोट्रोपिक और बिना सीमाओं के होता है। समदैशिकता की गारंटी चौथी अभिधारणा द्वारा दी जाती है, कि सभी समकोण बराबर होते हैं। समरूपता के एक उदाहरण के लिए, ध्यान दें कि यूक्लिड के प्रस्ताव I.1 का अर्थ है कि समान समबाहु त्रिभुज किसी भी स्थान पर बनाया जा सकता है, न कि केवल उन स्थानों में जो किसी तरह से विशेष हैं। सीमाओं की कमी दूसरी अभिधारणा, एक रेखा खंड की विस्तारशीलता से उत्पन्न होती है।

यूक्लिडियन ज्यामिति से दीर्घवृत्तीय ज्यामिति के अलग होने का एक तरीका यह है कि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री से अधिक होता है। गोलाकार मॉडल में, उदाहरण के लिए, एक त्रिभुज का निर्माण उन स्थानों पर शीर्षों के साथ किया जा सकता है जहां तीन धनात्मक कार्तीय समन्वय अक्ष गोले को काटते हैं, और इसके तीनों आंतरिक कोण 90 डिग्री हैं, जो 270 डिग्री के बराबर हैं। पर्याप्त रूप से छोटे त्रिभुजों के लिए, 180 डिग्री से अधिक के आधिक्य को मनमाने ढंग से छोटा किया जा सकता है।

पाइथागोरस प्रमेय अण्डाकार ज्यामिति में विफल रहता है। ऊपर वर्णित 90°–90°–90° त्रिभुज में, तीनों भुजाओं की लंबाई समान होती है, और फलस्वरूप संतुष्ट नहीं होती हैं . पायथागॉरियन परिणाम छोटे त्रिकोणों की सीमा में पुनर्प्राप्त किया जाता है।

एक वृत्त की परिधि का उसके क्षेत्रफल से अनुपात यूक्लिडियन ज्यामिति की तुलना में छोटा होता है। सामान्य तौर पर, क्षेत्र और मात्रा रैखिक आयामों की दूसरी और तीसरी शक्तियों के रूप में स्केल नहीं करते हैं।

अण्डाकार स्थान (3डी मामला)

नोट: यह खंड विशेष रूप से 3-आयामी अण्डाकार ज्यामिति को संदर्भित करने के लिए अण्डाकार स्थान शब्द का उपयोग करता है। यह पिछले खंड के विपरीत है, जो लगभग 2-आयामी अण्डाकार ज्यामिति था। इस स्थान को स्पष्ट करने के लिए चतुष्कोणों का उपयोग किया जाता है।

अण्डाकार स्थान का निर्माण त्रि-आयामी वेक्टर अंतरिक्ष के निर्माण के समान ही किया जा सकता है: तुल्यता वर्ग ों के साथ। एक गोले के बड़े घेरे पर निर्देशित चाप का उपयोग करता है। जैसा कि निर्देशित रेखा खंड समानता (ज्यामिति) होते हैं, जब वे समानांतर होते हैं, समान लंबाई के होते हैं, और समान रूप से उन्मुख होते हैं, इसलिए बड़े वृत्तों पर पाए जाने वाले निर्देशित चाप समतुल्य होते हैं, जब वे समान लंबाई, अभिविन्यास और बड़े वृत्त के होते हैं। समतुल्यता के ये संबंध क्रमशः 3डी सदिश स्थान और अण्डाकार स्थान उत्पन्न करते हैं।

विलियम रोवन हैमिल्टन के वेक्टर बीजगणित के माध्यम से अण्डाकार अंतरिक्ष संरचना तक पहुंच प्रदान की जाती है: उन्होंने एक क्षेत्र को ऋणात्मक एक के वर्गमूल के डोमेन के रूप में देखा। फिर यूलर का सूत्र (जहाँ r गोले पर है) 1 और r वाले समतल में बड़े वृत्त का प्रतिनिधित्व करता है। विपरीत बिंदु r और –r विपरीत दिशाओं वाले हलकों के अनुरूप हैं। θ और φ के बीच एक चाप 0 और φ - θ के बीच एक के साथ समतुल्य है। अण्डाकार स्थान में, चाप की लंबाई π से कम है, इसलिए चापों को [0, π) या (-π/2, π/2] में θ के साथ पैरामीट्रिज किया जा सकता है।[5] के लिए ऐसा कहा जाता है कि z का मापांक या मानदंड एक है (हैमिल्टन ने इसे z का टेन्सर कहा है)। लेकिन चूँकि r 3-स्पेस में एक गोले के ऊपर है, exp(θ r) 4-स्पेस में एक गोले के ऊपर है, जिसे अब 3-गोला कहा जाता है, क्योंकि इसकी सतह के तीन आयाम हैं। हैमिल्टन ने अपने बीजगणित चतुष्कोणों को बुलाया और यह जल्दी से गणित का एक उपयोगी और प्रसिद्ध उपकरण बन गया। इसका चार आयामों का स्थान ध्रुवीय निर्देशांक में विकसित होता है धनात्मक वास्तविक संख्या में t के साथ।

पृथ्वी या आकाश ीय गोले पर त्रिकोणमिति करते समय, त्रिभुजों की भुजाएँ बड़े वृत्ताकार चाप होती हैं। चतुष्कोणों की पहली सफलता बीजगणित के लिए गोलाकार त्रिकोणमिति का प्रतिपादन था।[6] हैमिल्टन ने मानदंड के चतुर्भुज को एक छंद कहा, और ये अण्डाकार स्थान के बिंदु हैं।

साथ r निश्चित, छंद

एक अण्डाकार रेखा बनाएँ। से दूरी से 1 है a. एक मनमाना छंद के लिएu, दूरी वह θ होगी जिसके लिए cos θ = (u + u)/2 चूँकि यह किसी भी चतुष्कोण के अदिश भाग का सूत्र है।

चतुष्कोणीय मानचित्रण द्वारा एक अण्डाकार गति का वर्णन किया गया है

कहां u और v निश्चित वर्सेज हैं।

बिंदुओं के बीच की दूरियां दीर्घवृत्तीय गति के छवि बिंदुओं के समान होती हैं। उस मामले में u और v चतुर्धातुक एक दूसरे के संयुग्म हैं, गति एक चतुष्कोणीय और स्थानिक घुमाव है, और उनका सदिश भाग घूर्णन की धुरी है। यदि u = 1 अण्डाकार गति को बाएँ और दाएँ (बीजगणित) आइसोक्लिनिक रोटेशन, या पैराटेक्सी कहा जाता है। मुकदमा v = 1 बाएं क्लिफर्ड अनुवाद के अनुरूप है।

छंद के माध्यम से अण्डाकार रेखाएँu स्वरूप का हो सकता है

या एक निश्चित के लिएr.

वे क्लिफोर्ड के दाएं और बाएं अनुवाद हैंu 1 के माध्यम से दीर्घवृत्त रेखा के साथ। अण्डाकार स्थान से बनता है S3 एंटीपोडल बिंदुओं की पहचान करके।[7] अण्डाकार अंतरिक्ष में विशेष संरचनाएं होती हैं जिन्हें क्लिफर्ड समानताएं और क्लिफर्ड समानांतर #क्लिफर्ड सतह कहा जाता है।

अण्डाकार स्थान के छंद बिंदुओं को केली रूपांतरण द्वारा ℝ में मैप किया जाता है3 अंतरिक्ष के वैकल्पिक प्रतिनिधित्व के लिए।

उच्च-आयामी स्थान

हाइपरस्फेरिकल मॉडल

हाइपरस्फेरिकल मॉडल उच्च आयामों के लिए गोलाकार मॉडल का सामान्यीकरण है। एन-डायमेंशनल एलिप्टिक स्पेस के बिंदु यूनिट वैक्टर के जोड़े हैं (x, −x) आर मेंn+1, यानी यूनिट बॉल की सतह पर एंटीपोडल बिंदुओं के जोड़े (n + 1)-डायमेंशनल स्पेस (एन-डायमेंशनल हाइपरस्फीयर)। इस मॉडल में रेखाएँ महान वृत्त हैं, अर्थात्, हाइपरस्फीयर के चौराहों के साथ डायमेंशन n के फ्लैट हाइपरसर्फ्स मूल से गुजरते हैं।

प्रक्षेपी अण्डाकार ज्यामिति

अण्डाकार ज्यामिति के प्रक्षेपी मॉडल में, एन-डायमेंशनल वास्तविक प्रक्षेप्य स्थान के बिंदुओं को मॉडल के बिंदुओं के रूप में उपयोग किया जाता है। यह एक अमूर्त अण्डाकार ज्यामिति का मॉडल करता है जिसे प्रक्षेपी ज्यामिति के रूप में भी जाना जाता है।

एन-डायमेंशनल प्रोजेक्टिव स्पेस के बिंदुओं को मूल के माध्यम से लाइनों के साथ पहचाना जा सकता है (n + 1)-विमीय स्थान, और आर में गैर-शून्य वैक्टर द्वारा गैर-विशिष्ट रूप से प्रदर्शित किया जा सकता हैn+1, इस समझ के साथ कि u और λu, किसी भी अशून्य अदिश के लिएλ, एक ही बिंदु का प्रतिनिधित्व करते हैं। दूरी को मीट्रिक का उपयोग करके परिभाषित किया गया है

अर्थात्, दो बिंदुओं के बीच की दूरी R में उनकी संगत रेखाओं के बीच का कोण हैएन+1. दूरी सूत्र प्रत्येक चर में सजातीय है, के साथ du, μv) = d(u, v) यदि λ और μ गैर-शून्य स्केलर हैं, इसलिए यह प्रोजेक्टिव स्पेस के बिंदुओं पर दूरी को परिभाषित करता है।

प्रक्षेपी अण्डाकार ज्यामिति की एक उल्लेखनीय संपत्ति यह है कि समतल जैसे आयामों के लिए भी ज्यामिति गैर-उन्मुख है। यह उनकी पहचान करके दक्षिणावर्त और वामावर्त घुमाव के बीच के अंतर को मिटा देता है।

स्टीरियोग्राफिक मॉडल

हाइपरस्फेरिकल मॉडल के समान स्थान का प्रतिनिधित्व करने वाला मॉडल त्रिविम प्रक्षेपण के माध्यम से प्राप्त किया जा सकता है। चलो ईn प्रतिनिधित्व करते हैं Rn ∪ {∞}, वह है, n-विमीय वास्तविक स्थान अनंत पर एक बिंदु द्वारा विस्तारित। हम एक मेट्रिक, कॉर्डल मेट्रिक को परिभाषित कर सकते हैं 'इ'एन द्वारा

कहां u और v R में कोई दो सदिश हैंएन और सामान्य यूक्लिडियन मानदंड है। हम भी परिभाषित करते हैं

परिणाम ई पर एक मीट्रिक स्थान हैn, जो हाइपरस्फेरिकल मॉडल पर संबंधित बिंदुओं की एक जीवा के साथ दूरी का प्रतिनिधित्व करता है, जिसके लिए यह स्टीरियोग्राफिक प्रोजेक्शन द्वारा विशेष रूप से मैप करता है। यदि हम मीट्रिक का उपयोग करते हैं तो हमें गोलीय ज्यामिति का एक मॉडल प्राप्त होता है

इससे प्रतिध्रुव बिन्दुओं की पहचान कर अण्डाकार ज्यामिति प्राप्त की जाती है u और u / ‖u2, और से दूरी बना रहा है v इस जोड़ी से दूरियों का न्यूनतम होना v इन दो बिंदुओं में से प्रत्येक के लिए।

स्व-संगति

क्योंकि गोलाकार दीर्घवृत्तीय ज्यामिति को मॉडल किया जा सकता है, उदाहरण के लिए, एक यूक्लिडियन अंतरिक्ष के एक गोलाकार उप-स्थान, यह इस प्रकार है कि यदि यूक्लिडियन ज्यामिति स्व-सुसंगत है, तो गोलाकार दीर्घवृत्तीय ज्यामिति भी है। इसलिए यूक्लिडियन ज्यामिति की अन्य चार अभिधारणाओं के आधार पर समानांतर अभिधारणा को सिद्ध करना संभव नहीं है।

अल्फ्रेड टार्स्की ने साबित किया कि प्रारंभिक यूक्लिडियन ज्यामिति पूर्ण सिद्धांत है: एक एल्गोरिदम है जो प्रत्येक प्रस्ताव के लिए इसे सही या गलत दिखा सकता है।[8] (यह गोडेल की अपूर्णता प्रमेय का उल्लंघन नहीं करता है। गोडेल की प्रमेय, क्योंकि यूक्लिडियन ज्यामिति प्रमेय को लागू करने के लिए पर्याप्त मात्रा में पीनो अंकगणित का वर्णन नहीं कर सकती है।[9]) इसलिए यह अनुसरण करता है कि प्राथमिक अण्डाकार ज्यामिति भी आत्मनिर्भर और पूर्ण है।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Duncan Sommerville (1914) The Elements of Non-Euclidean Geometry, chapter 3 Elliptic geometry, pp 88 to 122, George Bell & Sons
  2. Coxeter 1969 94
  3. H. S. M. Coxeter (1965) Introduction to Geometry, page 92
  4. Cayley, Arthur (1859), "A sixth memoir upon quantics", Philosophical Transactions of the Royal Society of London, 149: 61–90, doi:10.1098/rstl.1859.0004, ISSN 0080-4614, JSTOR 108690
  5. Rafael Artzy (1965) Linear Geometry, Chapter 3–8 Quaternions and Elliptic Three-space, pp. 186–94,Addison-Wesley
  6. W.R. Hamilton(1844 to 1850) On quaternions or a new system of imaginaries in algebra, Philosophical Magazine, link to David R. Wilkins collection at Trinity College, Dublin
  7. Lemaître, Georges (1948), "Quaternions et espace elliptique", Pontificia Academia Scientiarum, Acta, 12: 57–78, ISSN 0370-2138
  8. Tarski (1951)
  9. Franzén 2005, pp. 25–26.


संदर्भ


बाहरी कड़ियाँ

श्रेणी:मौलिक ज्यामिति श्रेणी: गैर-यूक्लिडियन ज्यामिति श्रेणी:मीट्रिक ज्यामिति