ग्रेडियेंट प्रमेय
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
ग्रेडिएंट प्रमेय, जिसे रेखा संपूर्ण के लिए गणना के मौलिक प्रमेय के रूप में भी जाना जाता है, ग्रेडिएंट प्रमेय का कहना है कि अनुपात संवाहक क्षेत्र के माध्यम से एक संपूर्ण रेखा का मूल्यांकन वक्र के अंतिम बिंदुओं पर मूल अदिश क्षेत्र का मूल्यांकन करके किया जा सकता है। प्रमेय मात्र वास्तविक रेखा के बजाय किसी समतल या अंतराल (आम तौर पर एन-आयामी) में किसी भी वक्र के लिए कलन के मौलिक प्रमेय का सामान्यीकरण है।
φ : U ⊆ Rn → R को एक अवकलनीय फलन के रूप में और γ को U में किसी सतत वक्र के रूप में, जो एक बिंदु p से शुरू होता है और एक बिंदु q पर समाप्त होता है, तब
ग्रेडिएंट प्रमेय का तात्पर्य है कि ग्रेडिएंट क्षेत्र के माध्यम से रेखा संपूर्ण पथ स्वतंत्र हैं। भौतिकी में यह प्रमेय एक अनुपात बल को परिभाषित करने के तरीकों में से एक है। φ को संभावित के रूप में रखने से ∇φ एक अनुपात क्षेत्र है। अनुपात बलों के माध्यम से किया गया कार्य (भौतिकी) उद्देश्य के माध्यम से अपनाए गए पथ पर निर्भर नहीं करता है, बल्कि केवल अंतिम बिंदुओं पर निर्भर करता है, जैसा कि उपरोक्त समीकरण से पता चलता है।
ग्रेडिएंट प्रमेय का एक दिलचस्प विपरीत भी है: किसी भी पथ-स्वतंत्र संवाहक क्षेत्र को अदिश क्षेत्र के ग्रेडिएंट के रूप में व्यक्त किया जा सकता है। ग्रेडिएंट प्रमेय की तरह ही इस परिवर्तन के स्पष्ट और व्यावहारिक गणित दोनों में अनेक आश्चर्यजनक परिणाम और अनुप्रयोग हैं।
प्रमाण
यदि φ पूर्णतया संवृत उपसमुच्चय U ⊆ Rn से R तक एक भिन्न कार्य है, और r अल्प विवृत अंतराल (गणित) [a, b] से U तक एक भिन्न कार्य है (ध्यान दें कि r अंतराल समापन बिंदु a और b पर भिन्न है। ऐसा करने के लिए, r को एक ऐसे अंतराल पर परिभाषित किया जाता है, जो इससे बृहत्तर होता है और इसमें [a, b] शामिल होता है।), ततपश्चात् बहुभिन्न रूपी श्रृंखला नियम के माध्यम से समग्र फ़ंक्शन φ ∘ r [a, b] पर भिन्न होता है:
अब मान लीजिए कि φ के कार्यक्षेत्र U में अंतिम बिंदु p और q के साथ अवकलनीय वक्र γ शामिल है। (यह p को q की दिशा में उन्मुख है)। यदि r [a, b] में t के लिए γ को प्राचलीकरण (ज्यामिति) करता है (यानी, r, t के एक फलन के रूप में γ को दर्शाता है), तब
यद्यपि ग्रेडिएंट प्रमेय (जिसे रेखा संपूर्ण के लिए गणना का मौलिक प्रमेय भी कहा जाता है) को अब तक एक विभेदक (इसलिए सहज दिखता है) वक्र के लिए सिद्ध किया गया है, प्रमेय एक खंड अनुसार सहज वक्र के लिए भी सिद्ध किया गया है क्योंकि यह वक्र जुड़कर बना है एकाधिक अवकलनीय वक्र इसलिए इस वक्र का प्रमाण प्रति अवकलनीय वक्र घटक के प्रमाण के माध्यम से बनाया जाता है।[2]
उदाहरण
उदाहरण 1
मान लीजिए γ ⊂ R2 (5, 0) से (−4, 3) तक वामावर्त दिशा में उन्मुख गोलाकार चाप है। एक रेखा समाकलन की परिभाषा का उपयोग करते हुए
उदाहरण 2
अधिक सारगर्भित उदाहरण के लिए, मान लीजिए कि γ ⊂ Rn में अंतिम बिंदु p, q, है, जिसका अभिविन्यास p को q की ओर है। Rn में आपके लिए, |u| u के यूक्लिडियन मानदंड को निरूपित करें। यदि α ≥ 1 एक वास्तविक संख्या है, तो
यदि α < 1 है तो अधिकांश मामलों में यह समानता अभी भी स्थिर रहेगी, लेकिन यदि γ मूल बिंदु से होकर गुजरता है या परिवृत्त करता है तो सावधानी बरतनी चाहिए, क्योंकि एकीकृत संवाहक क्षेत्र |x|α − 1x वहां परिभाषित होने में विफल रहेगा। हालाँकि, मामला α = −1 कुछ प्रथक है, इस मामले में एकीकृत बन जाता है |x|−2x = ∇(log |x|) जिससे कि अंतिम समानता log |q| − log |p| बन जाती है।
ध्यान दें कि यदि n = 1 है, तो यह उदाहरण एकल-चर गणना से परिचित घात नियम का एक छोटा सा संस्करण है।
उदाहरण 3
मान लीजिए कि वहाँ हैं nबिंदु कण#बिंदु आवेश त्रि-आयामी अंतरिक्ष में व्यवस्थित, और i-वें बिंदु आवेश में विद्युत आवेश होता है Qi और स्थिति पर स्थित है pi में R3. हम आवेश के एक कण पर किए गए कार्य (भौतिकी) की गणना करना चाहेंगे q क्योंकि यह एक बिंदु से यात्रा करता है a एक स्तर तक b में R3. कूलम्ब के नियम का उपयोग करके, हम आसानी से यह निर्धारित कर सकते हैं कि कण की स्थिति पर कितना बल है r होगा
होने देना γ ⊂ R3 − {p1, ..., pn} से एक मनमाना अवकलनीय वक्र बनें a को b. तब कण पर किया गया कार्य है
ग्रेडिएंट प्रमेय का व्युत्क्रम
ग्रेडिएंट प्रमेय बताता है कि यदि संवाहक क्षेत्र F कुछ अदिश -वैल्यू फ़ंक्शन का ग्रेडिएंट है (यानी, यदि F कंजर्वेटिव संवाहक क्षेत्र है), तो F एक पथ-स्वतंत्र संवाहक क्षेत्र है (यानी, का अभिन्न अंग)। F कुछ टुकड़े-टुकड़े-प्रथक -प्रथक वक्र मात्र अंतिम बिंदुओं पर निर्भर होते हैं)। इस प्रमेय का एक शक्तिशाली व्युत्क्रम है:
Theorem — If F is a path-independent vector field, then F is the gradient of some scalar-valued function.[3]
यह दिखाना सीधा है कि एक संवाहक क्षेत्र पथ-स्वतंत्र है यदि और मात्र तभी जब उसके कार्यक्षेत्र में प्रत्येक विवृत लूप पर संवाहक क्षेत्र का अभिन्न अंग शून्य हो। इस प्रकार व्युत्क्रम को वैकल्पिक रूप से इस प्रकार कहा जा सकता है: यदि का अभिन्न अंग F के क्षेत्र में प्रत्येक विवृत लूप पर F तो ततपश्चात् शून्य है F कुछ अदिश-मूल्यवान फ़ंक्शन का ग्रेडिएंट है।
व्युत्क्रम का प्रमाण
कल्पना करना U एक ओपन सेट है, कनेक्टेड स्पेस#पाथ कनेक्टिविटी|पाथ-कनेक्टेड सबसेट Rn, और F : U → Rn एक सतत फ़ंक्शन और पथ-स्वतंत्र संवाहक क्षेत्र है। कुछ तत्व ठीक करें a का U, और परिभाषित करें f : U → R के माध्यम से
होने देना v कोई भी अशून्य सदिश हो Rn. दिशात्मक व्युत्पन्न की परिभाषा के अनुसार,
विपरीत सिद्धांत का उदाहरण
इस विपरीत सिद्धांत की शक्ति को स्पष्ट करने के लिए, हम एक उदाहरण देते हैं जिसके महत्वपूर्ण भौतिकी परिणाम हैं। शास्त्रीय विद्युत चुंबकत्व में, विद्युत बल एक पथ-स्वतंत्र बल है; यानी, एक कण पर किया गया कार्य (भौतिकी) जो विद्युत क्षेत्र के भीतर अपनी मूल स्थिति में लौट आया है, शून्य है (यह मानते हुए कि कोई बदलता चुंबकीय क्षेत्र मौजूद नहीं है)।
इसलिए, उपरोक्त प्रमेय का तात्पर्य है कि विद्युत बल क्षेत्र (भौतिकी) Fe : S → R3 अनुपात है (यहाँ)। S कुछ ओपन सेट है, कनेक्टेड स्पेस#पाथ कनेक्टिविटी|पाथ-कनेक्टेड सबसेट R3 जिसमें विद्युत आवेश वितरण शामिल है)। उपरोक्त प्रमाण के विचारों का अनुसरण करते हुए, हम कुछ संदर्भ बिंदु निर्धारित कर सकते हैं a में S, और एक फ़ंक्शन परिभाषित करें Ue: S → R के माध्यम से
सामान्यीकरण
संवाहक गणना के अनेक महत्वपूर्ण प्रमेय डिफरेंशियल फॉर्म#इंटीग्रेशन ऑन विभेदक अनेक गुना के बारे में बयानों को सुरुचिपूर्ण ढंग से सामान्यीकृत करते हैं। विभेदक रूपों और बाह्य व्युत्पन्नों की भाषा में, ग्रेडिएंट प्रमेय यह बताता है
इस कथन और सामान्यीकृत स्टोक्स प्रमेय के बीच हड़ताली समानता पर ध्यान दें। सामान्यीकृत स्टोक्स प्रमेय, जो कहता है कि किसी भी कॉम्पैक्ट समर्थन अंतर रूप का अभिन्न अंग ω कुछ ओरिएंटेशन (संवाहक स्पेस) की सीमा (टोपोलॉजी) पर अनेक गुना Ω इसके बाहरी व्युत्पन्न के अभिन्न अंग के बराबर है dω संपूर्ण के ऊपर Ω, अर्थात।,
ग्रेडिएंट प्रमेय के विपरीत कथन में अनेक गुना अंतर रूपों के संदर्भ में एक शक्तिशाली सामान्यीकरण भी है। विशेष रूप से, मान लीजिए ω एक संविदात्मक स्थान पर परिभाषित एक रूप है, और का अभिन्न अंग है ω किसी भी विवृत मैनिफोल्ड पर शून्य है। ततपश्चात् एक रूप मौजूद है ψ ऐसा है कि ω = dψ. इस प्रकार, एक अनुबंध योग्य कार्यक्षेत्र पर, प्रत्येक विवृत और सटीक अंतर रूप फॉर्म विवृत और सटीक अंतर रूप होता है। इस परिणाम को विवृत और सटीक अंतर रूपों#पोंकारे लेम्मा|पोंकारे लेम्मा के माध्यम से संक्षेपित किया गया है।
यह भी देखें
- राज्य समारोह
- अदिश विभव
- जॉर्डन वक्र प्रमेय
- किसी फ़ंक्शन का विभेदक
- शास्त्रीय यांत्रिकी
- Line integral § Path independence
- Conservative vector field § Path independence
संदर्भ
- ↑ Williamson, Richard and Trotter, Hale. (2004). Multivariable Mathematics, Fourth Edition, p. 374. Pearson Education, Inc.
- ↑ Stewart, James (2015). "16.3 The Fundamental Theorem for Line Integrals". गणना (in English) (8th ed.). Cengage Learning. pp. 1127–1128. ISBN 978-1-285-74062-1.
- ↑ 3.0 3.1 "Williamson, Richard and Trotter, Hale. (2004). Multivariable Mathematics, Fourth Edition, p. 410. Pearson Education, Inc."