सदिश-मूल्यवान अवकल रूप

From Vigyanwiki
Revision as of 16:30, 8 July 2023 by alpha>Saurabh

गणित में, मैनिफोल्ड M पर सदिश - मान विभेदक रूप है जिसमे कि एक सदिश स्थल है जो कि V में मानों के साथ M पर विभेदक रूप है। तथा अधिक सामान्यतः, यह है की M के ऊपर कुछ सदिश मान E में मानों के साथ विभेदक रूप है। साधारण विभेदक रूपों को R-मान विभेदक रूपों के रूप में देखा जा सकता है।

सदिश -मान विभेदक रूपों का महत्वपूर्ण स्तिथि बीजगणित-मान रूप हैं। (एक कनेक्शन प्रपत्र ऐसे रूप का उदाहरण है।)

परिभाषा

मान लीजिए कि M एक स्मूथ मैनिफोल्ड है और E → M, M के ऊपर स्मूथ सदिश मान है। हम मान E के अनुभाग (फाइबर मान) के स्थान को Γ(E) से निरूपित करते हैं। डिग्री P का 'ई-मान विभेदक रूप' Λp(T M), के साथ ई के टेंसर उत्पाद मान का स्मूथ खंड है M के कोटैंजेंट मान की p-th बाहरी शक्ति। ऐसे रूपों का स्थान निम्न द्वारा दर्शाया गया है

क्योंकि Γ स्ट्रोंग मोनोइडल फ़ैक्टर है,[1]इसका अर्थ इस प्रकार भी निकाला जा सकता है

जहां बाद के दो टेंसर उत्पाद रिंग के ऊपर मॉड्यूल के टेंसर उत्पाद हैं जिसमे (गणित) Ω0(M) M पर सुचारू 'R'-मान वाले फलन (सातवां उदाहरण मॉड्यूल देखें (गणित)#उदाहरण)। परंपरा के अनुसार, E-मान 0-रूप मान E का सिर्फ खंड है। यानी,

समान रूप से, E-मान विभेदक रूप को सदिश मान आकारिकी के रूप में परिभाषित किया जा सकता है

जो पूरी तरह से तिरछा-सममित मैट्रिक्स| तिरछा-सममित है।

मान लीजिए V निश्चित सदिश समष्टि है। डिग्री P का 'V-मान विभेदक रूप' तुच्छ मान M × V में मानों के साथ डिग्री P का विभेदक रूप है। ऐसे रूपों का स्थान ΩP(M, V) दर्शाया गया है जब V = 'R' साधारण विभेदक रूप की परिभाषा को पुनः प्राप्त करता है। तो कोई यह भी दिखा सकता है कि प्राकृतिक समरूपता V परिमित-आयामी है|

एक समरूपता वह है, जहां पहला टेंसर उत्पाद R पर सदिश रिक्त स्थानों का है,

सदिश -मान रूपों पर संचालन

पुलबैक

कोई सामान्य रूपों की तरह ही स्मूथ मानचित्रों द्वारा सदिश -मान रूपों के पुलबैक (विभेदक ज्यामिति) को परिभाषित कर सकता है। सहज मानचित्र द्वारा N पर E-मान रूप का पुलबैक φ : M → N, M पर (φ*E)-मान रूप है, जहां φ*E, φ द्वारा E का पुलबैक मान है।

सूत्र सामान्य स्तिथि की तरह ही दिया गया है। N पर किसी भी E-मान P-रूप ω के लिए पुलबैक φ*ω द्वारा दिया जाता है


वेज उत्पाद

सामान्य विभेदक रूपों की तरह है , कोई सदिश -मान रूपों के वेज उत्पाद को परिभाषित कर सकता है। E1 का वेज उत्पाद -E2 के साथ मान P -फॉर्म -मान Q-फॉर्म स्वाभाविक रूप से (E1⊗E2) है| तथा मूल्यांकित (p+q)-रूप होता है |

यह परिभाषा सामान्य रूपों की तरह ही है, इस अपवाद के साथ कि वास्तविक गुणन को टेंसर उत्पाद से बदल दिया जाता है:

विशेष रूप से, -मान क्यू-फॉर्म के साथ साधारण (आर-मान) पी-फॉर्म का वेज उत्पाद स्वाभाविक रूप से -मान होता है ( p+q)-रूप (चूंकि तुच्छ मान M × R के साथ E का टेंसर उत्पाद स्वाभाविक रूप से E के समरूपी है)। ω ∈ Ω के लिएपी(एम) और η ∈ Ωक्यू(एम, ई) में सामान्य क्रमपरिवर्तन संबंध होता है:

सामान्य तौर पर, दो ई-मान रूपों का वेज उत्पाद और ई-मान रूप नहीं है, बल्कि (E⊗E)-मान रूप है। हालाँकि, यदि E बीजगणित मान है (अर्थात केवल सदिश रिक्त स्थान के बजाय फ़ील्ड पर बीजगणित का मान) तो कोई E-मान रूप प्राप्त करने के लिए E में गुणन के साथ रचना कर सकता है। यदि ई क्रमविनिमेय बीजगणित, साहचर्य बीजगणित का मान है, तो इस संशोधित पच्चर उत्पाद के साथ, सभी ई-मान विभेदक रूपों का सेट

एक श्रेणीबद्ध-क्रमविनिमेय साहचर्य बीजगणित बन जाता है। यदि E के तंतु क्रमविनिमेय नहीं हैं तो Ω(M,E) श्रेणीबद्ध-क्रमविनिमेय नहीं होंगे।

बाहरी व्युत्पन्न

किसी भी सदिश समष्टि V के लिए V-मान रूपों के समष्टि पर प्राकृतिक बाह्य व्युत्पन्न होता है। यह वी के किसी भी आधार (रैखिक बीजगणित) के सापेक्ष घटक-वार सामान्य बाहरी व्युत्पन्न अभिनय है। स्पष्ट रूप से, यदि {ईα} V के लिए आधार है तो V-मान पी-फॉर्म ω = ω का अंतरα द्वारा दिया गया है

वी-मान रूपों पर बाहरी व्युत्पन्न पूरी तरह से सामान्य संबंधों द्वारा विशेषता है:

अधिक आम तौर पर, उपरोक्त टिप्पणियाँ ई-मान रूपों पर लागू होती हैं जहां ई एम पर कोई फ्लैट सदिश मान है (यानी सदिश मान जिसका संक्रमण कार्य स्थिर है)। ई के किसी भी स्थानीय तुच्छीकरण पर बाहरी व्युत्पन्न को उपरोक्त के रूप में परिभाषित किया गया है।

यदि ई समतल नहीं है तो ई-मान रूपों पर अभिनय करने वाले बाहरी व्युत्पन्न की कोई प्राकृतिक धारणा नहीं है। ई पर कनेक्शन (सदिश मान) के विकल्प की आवश्यकता है। ई पर कनेक्शन रैखिक विभेदक ऑपरेटर है जो ई के अनुभागों को ई-मान रूप में लेता है:

यदि E कनेक्शन ∇ से सुसज्जित है तो अद्वितीय सहसंयोजक बाहरी व्युत्पन्न है

विस्तार ∇. सहसंयोजक बाहरी व्युत्पन्न रैखिकता और समीकरण द्वारा विशेषता है

जहां ω ई-मान पी-फॉर्म है और η सामान्य क्यू-फॉर्म है। सामान्य तौर पर, किसी को d होना आवश्यक नहीं है2 = 0. वास्तव में, ऐसा तभी होता है जब कनेक्शन ∇ समतल हो (अर्थात लुप्त हो रही वक्रता का रूप हो)।

प्रमुख बंडलों पर मूल या तन्य रूप

मान लीजिए E → M, M के ऊपर रैंक k का सहज सदिश मान है और π : F(E) → M, E का (संबद्ध मान) फ़्रेम मान है, जो प्रमुख मान GL हैk(आर) एम पर मान। E का π द्वारा पुलबैक मान विहित रूप से F(E) × के समरूपी हैρ Rk [u, v] →u(v) के व्युत्क्रम के माध्यम से, जहां ρ मानक प्रतिनिधित्व है। इसलिए, एम पर ई-वैल्यू फॉर्म के π द्वारा पुलबैक 'आर' निर्धारित करता हैk-F(E) पर मूल्यांकित रूप। यह जाँचना कठिन नहीं है कि यह खींचा हुआ रूप जीएल की प्राकृतिक समूह क्रिया (गणित) के संबंध में समतुल्य|दाएँ-समतुल्य है।k(आर) एफ() × आर परk और ऊर्ध्वाधर मान (F(E) के स्पर्शरेखा सदिश जो dπ के कर्नेल में स्थित हैं) पर गायब हो जाता है। एफ(ई) पर ऐसे सदिश -मान रूप विशेष शब्दावली की गारंटी देने के लिए काफी महत्वपूर्ण हैं: उन्हें एफ(ई) पर मूल या टेंसोरियल फॉर्म कहा जाता है।

मान लीजिए π : P → M (सुचारू) प्रिंसिपल मान है|प्रिंसिपल G-मान है और मान लीजिए कि V समूह प्रतिनिधित्व ρ : G → GL(V) के साथ निश्चित सदिश स्पेस है। P पर ρ प्रकार का 'बेसिक' या 'टेन्सोरिअल फॉर्म', P पर V-वैल्यू फॉर्म ω है जो इस अर्थ में 'समतुल्य' और 'क्षैतिज' है

  1. सभी जी ∈ जी के लिए, और
  2. जब भी कम से कम वीi ऊर्ध्वाधर हैं (अर्थात्, dπ(vi) = 0).

यहां आरg कुछ g ∈ G के लिए P पर G की सही क्रिया को दर्शाता है। ध्यान दें कि 0-रूपों के लिए दूसरी शर्त शून्य रूप से सत्य है।

उदाहरण: यदि ρ ली बीजगणित पर G का संयुक्त प्रतिनिधित्व है, तो कनेक्शन फॉर्म ω पहली शर्त को संतुष्ट करता है (लेकिन दूसरी नहीं)। संबंधित वक्रता रूप Ω दोनों को संतुष्ट करता है; इसलिए Ω आसन्न प्रकार का तन्य रूप है। दो कनेक्शन रूपों का विभेदक तन्य रूप है।

उपरोक्त P और ρ को देखते हुए कोई संबंधित सदिश मान E = P × का निर्माण कर सकता हैρ V. P पर टेन्सोरिअल q-फॉर्म, M पर E-मूल्य वाले q-फॉर्म के साथ प्राकृतिक एक-से-एक पत्राचार में हैं। जैसा कि ऊपर प्रमुख मान F(E) के स्तिथि में है, q-फॉर्म दिया गया है E में मानों के साथ M पर, P पर φ को फ़ाइबरवाइज द्वारा परिभाषित करें, मान लीजिए u पर,

जहां यू को रैखिक समरूपता के रूप में देखा जाता है . φ तो प्रकार ρ का तन्य रूप है। इसके विपरीत, प्रकार ρ का तन्य रूप φ दिया गया है, वही सूत्र ई-मान रूप को परिभाषित करता है एम पर (सीएफ. चेर्न-वेइल होमोमोर्फिज्म।) विशेष रूप से, सदिश रिक्त स्थान का प्राकृतिक आइसोमोर्फिज्म है

.

उदाहरण: मान लीजिए E, M का स्पर्शरेखा मान है। फिर पहचान मान मानचित्र आईडीE: ई → ई, एम पर ई-वैल्यू वन फॉर्म है। टॉटोलॉजिकल वन-फॉर्म ई के फ्रेम मान पर अद्वितीय वन-फॉर्म है जो आईडी से मेल खाता हैE. θ द्वारा निरूपित, यह मानक प्रकार का तन्य रूप है। अब, मान लीजिए कि पी पर कनेक्शन है ताकि पी पर (विभिन्न) सदिश -मान रूपों पर बाहरी सहसंयोजक भेदभाव डी हो। उपरोक्त पत्राचार के माध्यम से, डी ई-मान रूपों पर भी कार्य करता है: ∇ द्वारा परिभाषित करें

विशेष रूप से शून्य-रूपों के लिए,

.

यह बिल्कुल कनेक्शन (सदिश मान) के लिए सहसंयोजक व्युत्पन्न है।[2]


उदाहरण

सील मॉड्यूलर रूप सीगल मॉड्यूलर किस्म पर सदिश -मान विभेदक रूपों के रूप में उत्पन्न होते हैं।[3]


टिप्पणियाँ

  1. "स्मूथ मैनिफोल्ड पर वेक्टर बंडलों के टेंसर उत्पाद के वैश्विक खंड". math.stackexchange.com. Retrieved 27 October 2014.
  2. Proof: for any scalar-valued tensorial zero-form f and any tensorial zero-form φ of type ρ, and Df = df since f descends to a function on M; cf. this Lemma 2.
  3. Hulek, Klaus; Sankaran, G. K. (2002). "सीगल मॉड्यूलर किस्मों की ज्यामिति". Advanced Studies in Pure Mathematics. 35: 89–156.


संदर्भ