आणविक हैमिल्टनियन
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
परमाणु, आणविक और ऑप्टिकल भौतिकी और क्वांटम रसायन विज्ञान में, आणविक हैमिल्टनियन एक अणु में इलेक्ट्रॉन और परमाणु नाभिक की ऊर्जा का प्रतिनिधित्व करने वाला हैमिल्टनियन ऑपरेटर होता है। यह ऑपरेटर और संबंधित श्रोडिंगर समीकरण, थर्मल चालकता, विशिष्ट उर्जा, विद्युत चालकता, प्रकाशिकी और चुंबकत्व, और प्रतिक्रियाशीलता (रसायन विज्ञान) जैसे अणुओं और अणुओं के समुच्चय के गुणों की गणना के लिए कम्प्यूटेशनल रसायन विज्ञान और कम्प्यूटेशनल भौतिकी में एक केंद्रीय भूमिका निभाते हैं।
एक अणु के प्राथमिक भाग नाभिक होते हैं, जो उनके परमाणु क्रमांक, Z और इलेक्ट्रॉनों द्वारा चिह्नित होते हैं, जिनका प्राथमिक चार्ज -e नकारात्मक होता है। उनकी परस्पर क्रिया Z + q का परमाणु प्रभार देती है, जहां q = −eN होता, जिसमें N इलेक्ट्रॉनों की संख्या के समांतर होता है। इलेक्ट्रॉन और नाभिक, एक बहुत अच्छे प्राक्लन के अनुसार, बिंदु आवेश और बिंदु द्रव्यमान होते हैं। आणविक हैमिल्टनियन कई शब्दों का योग होता है: इसके प्रमुख शब्द इलेक्ट्रॉनों की गतिज ऊर्जा और दो प्रकार के आवेशित कणों के मध्य कूलम्ब (इलेक्ट्रोस्टैटिक) अंतःक्रिया हैं। हैमिल्टनियन जिसमें मात्र इलेक्ट्रॉनों और नाभिकों की गतिज ऊर्जा और उनके मध्य कूलम्ब अंतःक्रिया सम्मिलित होती है, जिसको कूलम्ब हैमिल्टनियन के रूप में जाना जाता है। इसमें से कई छोटे शब्द लुप्त होतेहैं, जिनमें से अधिकांश इलेक्ट्रॉनिक और परमाणु स्पिन के कारण होते हैं।
यद्यपि सामान्यतः यह माना जाता है कि कूलम्ब हैमिल्टनियन से जुड़े समय-स्वतंत्र श्रोडिंगर समीकरण का समाधान अणु के अधिकांश गुणों की भविष्यवाणी करेगा, जिसमें इसके आकार (त्रि-आयामी संरचना) भी सम्मिलित होते है, पूर्ण कूलम्ब हैमिल्टनियन पर आधारित गणना बहुत दुर्लभ होती है। इसका मुख्य कारण यह है कि इसके श्रोडिंगर समीकरण को हल करना बहुत कठिन होता है। अनुप्रयोग हाइड्रोजन अणु जैसी छोटी प्रणालियों तक ही सीमित होते हैं।
आणविक तरंग कार्यों की लगभग सभी गणनाएँ बोर्न-ओपेनहाइमर सन्निकटन द्वारा निर्मित किए गए कूलम्ब हैमिल्टनियन के पृथक्करण पर आधारित होता हैं। परमाणु गतिज ऊर्जा उद्देश्य को कूलम्ब हैमिल्टनियन से हटा दिया जाता है और शेष हैमिल्टनियन को मात्र इलेक्ट्रॉनों का हैमिल्टनियन माना जाता है। स्थिर नाभिक मात्र विद्युत क्षमता के जनरेटर के रूप में समस्या में प्रवेश करते हैं जिसमें इलेक्ट्रॉन क्वांटम यांत्रिक विधि से चलते हैं। इस ढांचे के भीतर आणविक हैमिल्टनियन को तथाकथित क्लैम्प्ड न्यूक्लियस हैमिल्टनियन में सरलीकृत किया जाता है, जिसे इलेक्ट्रॉनिक हैमिल्टनियन भी कहा जाता है, जो मात्र इलेक्ट्रॉनिक निर्देशांक के कार्यों पर कार्य करता है।
एक बार जब क्लैम्प्ड न्यूक्लियस हैमिल्टनियन के श्रोडिंगर समीकरण को पर्याप्त संख्या में नाभिक के तारामंडल के लिए हल कर लिया गया है, तो एक उपयुक्त आइगेनमूल्य (सामान्यतः सबसे कम) को परमाणु निर्देशांक के एक फलन के रूप में देखा जा सकता है, जो एक संभावित ऊर्जा को सतह की ओर ले जाता है। व्यावहारिक गणनाओं में सतह सामान्यतः कुछ विश्लेषणात्मक कार्यों के संदर्भ में न्यूनतम वर्ग होती है। बोर्न-ओपेनहाइमर सन्निकटन के दूसरे चरण में पूर्ण कूलम्ब हैमिल्टनियन का वह भाग जो इलेक्ट्रॉनों पर निर्भर करता है, संभावित ऊर्जा सतह द्वारा प्रतिस्थापित किया जाता है। यह कुल आणविक हैमिल्टनियन को दूसरे हैमिल्टनियन में परिवर्तित करता है जो मात्र परमाणु निर्देशांक पर कार्य करता है। बोर्न-ओपेनहाइमर सन्निकटन के पृथक की स्थिति में - जो तब होता है जब विभिन्न इलेक्ट्रॉनिक स्थितियों की ऊर्जाएँ समीप होती हैं - समीपस्थ संभावित ऊर्जा सतहों की आवश्यकता होती है, इस पर अधिक विवरण के लिए बोर्न-ओपेनहाइमर सन्निकटन देखें।
परमाणु गति श्रोडिंगर समीकरण को एक स्थान-निर्धारित (प्रयोगशाला) संदर्भ फ्रेम में हल किया जा सकता है, यघपि तब अनुवाद (भौतिकी) और घूर्णी (बाहरी) ऊर्जाओं का परिकलन नहीं दिया जाता है। मात्र (आंतरिक) परमाणु कंपन ही समस्या में प्रवेश करते हैं। इसके अतिरिक्त, त्रिपरमाण्विक अणुओं से बड़े अणुओं के लिए, हार्मोनिक सन्निकटन का परिचय देना अधिक आम है, जो परमाणु विस्थापन के द्विघात फलन के रूप में संभावित ऊर्जा सतह का प्राक्लन लगाता है। यह हार्मोनिक न्यूक्लियर मोशन हैमिल्टनियन देता है। हार्मोनिक सन्निकटन बनाते हुए, हम हैमिल्टनियन को अयुग्मित एक-आयामी लयबद्ध दोलक हैमिल्टनियन के योग में परिवर्तित कर सकते हैं। एक-आयामी हार्मोनिक ऑसिलेटर उन कुछ प्रणालियों में से एक है जो श्रोडिंगर समीकरण के स्पष्ट समाधान की अनुमति देता है।
वैकल्पिक रूप से, परमाणु गति (रोविब्रेशनल) श्रोडिंगर समीकरण को एक विशेष फ्रेम (एक एकार्ट स्थितियों) में हल किया जा सकता है जो अणु के साथ घूमता है और अनुवाद करता है। इस शरीर-स्थिर फ्रेम के संबंध में निर्मित हैमिल्टनियन नाभिक के घूर्णन, अनुवाद और कंपन के लिए उत्तरदायी होता है। चूंकि वॉटसन ने 1968 में इस हैमिल्टनियन के लिए एक महत्वपूर्ण सरलीकरण प्रस्तुत किया था, इसलिए इसे अधिकांशतः वॉटसन की परमाणु गति हैमिल्टन के रूप में जाना जाता है। यघपि इसे एकार्ट हैमिल्टनियन के नाम से भी जाना जाता है।
कूलम्ब हैमिल्टनियन
कई वेधशालाओं का बीजगणितीय रूप - अर्थात्, अवलोकन योग्य मात्राओं का प्रतिनिधित्व करने वाले हर्मिटियन ऑपरेटर्स - निम्नलिखित कैनोनिकल परिमाणीकरण क्वांटम यांत्रिकी द्वारा प्राप्त किया जाता है:
- अवलोकन योग्य के मौलिक रूप को हैमिल्टन रूप में लिखें (संवेग पी और स्थिति क्यू के एक फलन के रूप में)। दोनों सदिशों को एक अनैतिक जड़त्वीय फ्रेम के संबंध में व्यक्त किया जाता है, जिसे सामान्यतः प्रयोगशाला-फ्रेम या स्पेस-फिक्स्ड फ्रेम कहा जाता है।
- p को इसके द्वारा बदलें और q की गुणात्मक संचालिका के रूप में व्याख्या करें। यहाँ डेल ऑपरेटर होता है, एक सदिश ऑपरेटर जिसमें प्रथम व्युत्पन्न सम्मिलित होते हैं। पी और क्यू ऑपरेटरों के लिए प्रसिद्ध रूपान्तरण संबंध सीधे विभेदन नियमों का पालन करते हैं।
मौलिक रूप से एक अणु में इलेक्ट्रॉनों और नाभिकों में p2/(2 m) रूप की गतिज ऊर्जा होती है। औरकूलम्ब के नियम के माध्यम से परस्पर क्रिया करें, जो कण i और j के मध्य की दुरी rij के व्युत्क्रमानुपाती होते हैं।
हैमिल्टन रूप में मौलिक ऊर्जा की मात्रा निर्धारित करके एक आणविक हैमिल्टन ऑपरेटर प्राप्त किया जाता है जिसे अधिकांशतः कूलम्ब हैमिल्टनियन के रूप में जाना जाता है। यह हैमिल्टनियन पाँच पदों का योग होता है। जो निम्न प्रकार होता है।
- प्रणाली में प्रत्येक नाभिक के लिए गतिज ऊर्जा संचालक;
- प्रणाली में प्रत्येक इलेक्ट्रॉन के लिए गतिज ऊर्जा संचालक;
- इलेक्ट्रॉनों और नाभिक के मध्य संभावित ऊर्जा - प्रणाली में कुल इलेक्ट्रॉन-नाभिक कूलम्बिक आकर्षण;
- कूलॉमिक इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा
- कूलॉमिक नाभिक-नाभिक प्रतिकर्षण से उत्पन्न होने वाली संभावित ऊर्जा - जिसे परमाणु प्रतिकर्षण ऊर्जा के रूप में भी जाना जाता है। अधिक विवरण के लिए विद्युत क्षमता देखें।
यहां Mi नाभिक का द्रव्यमान i होता है, Zi नाभिक का परमाणु क्रमांक और me इलेक्ट्रॉन का द्रव्यमान होता है। कण i का लाप्लास संचालिका निम्न प्रकार होता है:। चूंकि गतिज ऊर्जा ऑपरेटर एक आंतरिक उत्पाद है, यह कार्टेशियन फ्रेम के घूर्णन के कारण अपरिवर्तनीय होता है जिसके संबंध में xi, yi, और zi व्यक्त किये जाते हैं।
लघु शब्द
1920 के समय में कई स्पेक्ट्रोस्कोपिक साक्ष्यों ने यह स्पष्ट कर दिया कि कूलम्ब हैमिल्टनियन में कुछ शब्द लुप्त हैं। विशेष रूप से भारी परमाणुओं वाले अणुओं के लिए, ये शब्द, यघपि गतिज और कूलम्ब ऊर्जा से बहुत छोटे हैं, नगण्य हैं। इन स्पेक्ट्रोस्कोपिक अवलोकनों ने इलेक्ट्रॉनों और नाभिकों, अर्थात् स्पिन के लिए स्वतंत्रता की एक नई डिग्री का प्रारम्भ किया। इस अनुभवजन्य अवधारणा को पॉल डिराक द्वारा सैद्धांतिक आधार दिया गया था जब उन्होंने एक-कण श्रोडिंगर समीकरण का सापेक्षिक रूप से सही (लोरेंत्ज़ सहसंयोजक) रूप में प्रस्तुत किया था। डिराक समीकरण भविष्यवाणी करता है कि एक कण की स्पिन और स्थानिक गति स्पिन-ऑर्बिट युग्मन के माध्यम से अंतःक्रिया करती है। सादृश्य में स्पिन-ऑर्बिट युग्मन प्रस्तुत किया गया था। तथ्य यह है कि कण स्पिन में चुंबकीय द्विध्रुव की कुछ विशेषताएं होती हैं, जिसके कारण स्पिन-स्पिन युग्मन होता है। मौलिक समकक्ष के बिना आगे की उद्देश्य फर्मी-संपर्क शब्द (नाभिक के साथ एक सीमित आकार के नाभिक पर इलेक्ट्रॉनिक घनत्व की अंतःक्रिया), और परमाणु चतुर्भुज युग्मन (इलेक्ट्रॉनों के कारण विद्युत क्षेत्र के साथ परमाणु चतुर्भुज की अंतःक्रिया) हैं। अंत में मानक मॉडल द्वारा अनुमानित समता का उल्लंघन करने वाले शब्द का उल्लेख किया जाना चाहिए। यघपि यह एक अत्यधिक लघु अंतःक्रिया होती है, इसने वैज्ञानिक साहित्य में अधिक ध्यान आकर्षित किया है क्योंकि यह चिरल अणुओं में एनैन्टीओमर्स के लिए अलग-अलग ऊर्जा देता है।
इस लेख का शेष भाग स्पिन उद्देशों की उपेक्षा करेगा और कूलम्ब हैमिल्टनियन के आइगेनवैल्यू (समय-स्वतंत्र श्रोडिंगर) समीकरण के समाधान पर विचार करेगा।
कूलम्ब हैमिल्टनियन का श्रोडिंगर समीकरण
सजातीय स्थान में अणु के द्रव्यमान केंद्र (COM) गति के कारण कूलम्ब हैमिल्टनियन में एक सतत स्पेक्ट्रम होता है। मौलिक यांत्रिकी में बिंदु द्रव्यमानों की एक प्रणाली की COM गति को अलग करना आसान है। मौलिक रूप से COM की गति अन्य गतियों से अयुग्मित है। COM स्थान में समान रूप से (अर्थात्, स्थिर वेग के साथ) इस तरह गति करता है जैसे कि यह एक बिंदु कण हो जिसका द्रव्यमान सभी कणों के द्रव्यमान के योग Mtot के बराबर हो।
क्वांटम यांत्रिकी में एक मुक्त कण की अवस्था में एक समतल तरंग फलन होता है, जो अच्छी तरह से परिभाषित गति का एक गैर-वर्ग-अभिन्न कार्य है। गतिज ऊर्जा इस कण का कोई भी धनात्मक मान हो सकता है। हाइजेनबर्ग अनिश्चितता सिद्धांत के अनुरूप, COM की स्थिति हर जगह समान रूप से संभावित है।
प्रणाली की स्वतंत्रता की तीन डिग्री के रूप में द्रव्यमान के केंद्र के समन्वय सदिशों निर्देशांक के सभी कणों (नाभिक और इलेक्ट्रॉन) के पुराने निर्देशांक के रैखिक संयोजन हैं। श्रृंखला नियम प्रयुक्त करके कोई यह दिखा सकता है
का पहला कार्यकाल COM गति की गतिज ऊर्जा है, जिसे तब से अलग से माना जा सकता है जब से X पर निर्भर नहीं होता है। जैसा कि अभी कहा गया है, इसकी मूल तरंगें समतल तरंगें होती हैं। संभावित V(t) में नए निर्देशांक में व्यक्त कूलम्ब शब्द सम्मिलित होता हैं। में गतिज ऊर्जा संचालक की सामान्य उपस्थिति होती है। दूसरे शब्द को सामूहिक ध्रुवीकरण शब्द के रूप में जाना जाता है। अनुवादात्मक रूप से अपरिवर्तनीय हैमिल्टनियन स्वयं से जुड़ा हुआ तथा नीचे से घिरा हुआ दिखाया जा सकता है। अर्थात्, इसका निम्नतम आइगेनमूल्य वास्तविक और परिमित है। यद्यपि समान कणों के क्रमपरिवर्तन के अनुसार आवश्यक रूप से अपरिवर्तनीय होता है (चूंकि और COM गतिज ऊर्जा अपरिवर्तनीय है), इसकी अपरिवर्तनीयता प्रकट नहीं होती है।
के बहुत से वास्तविक आणविक अनुप्रयोग उपस्थित नहीं होता हैं; यघपि, प्रारंभिक अनुप्रयोग के लिए हाइड्रोजन अणु पर मौलिक कार्य देखें[1] आणविक तरंगों की अधिकांश गणनाओं में इलेक्ट्रॉनिक समस्या का समाधान बोर्न-ओपेनहाइमर सन्निकटन के पहले चरण में उत्पन्न होने वाले क्लैम्प्ड न्यूक्लियस हैमिल्टनियन के साथ हल किया जाता है।
[2] कूलम्ब हैमिल्टनियन के गणितीय गुणों की गहन चर्चा के लिए। इस पेपर में इस बात पर भी चर्चा की गई है कि क्या कोई अकेले कूलम्ब हैमिल्टनियन के गुणों से एक अणु (एक अच्छी तरह से परिभाषित ज्यामिति के साथ इलेक्ट्रॉनों और नाभिक की एक स्थिर प्रणाली के रूप में) की अवधारणा पर पहुंच सकता है।
क्लैंप्ड न्यूक्लियस हैमिल्टनियन
क्लैंप्ड न्यूक्लियस हैमिल्टनियन नाभिक के इलेक्ट्रोस्टैटिक क्षेत्र में इलेक्ट्रॉनों की ऊर्जा का वर्णन करता है, जहां नाभिक को एक जड़त्वीय फ्रेम के संबंध में स्थिर माना जाता है। इलेक्ट्रॉनिक हैमिल्टनियन का रूप निम्न प्रकार है
चूँकि परमाणु स्थितियाँ स्थिर होती हैं, इलेक्ट्रॉनिक गतिज ऊर्जा ऑपरेटर किसी भी परमाणु सदिश पर अनुवाद के अनुसार अपरिवर्तनीय होता है। विभेदक सदिशों के आधार पर कूलम्ब विभव भी अपरिवर्तनीय होता है। परमाणु कक्षाओं के विवरण और परमाणु कक्षाओं पर अभिन्नों की गणना में इस अपरिवर्तनीयता का उपयोग अणु में सभी परमाणुओं को स्थान -निर्धारित फ्रेम के समानांतर अपने स्वयं के स्थानीयकृत फ्रेमों से लैस करके किया जाता है।
जैसा कि बोर्न-ओपेनहाइमर सन्निकटन पर लेख में बताया गया है, श्रोडिंगर समीकरण के पर्याप्त संख्या में समाधान संभावित ऊर्जा सतह (पीईएस) की ओर ले जाता है। यह माना जाता है कि इसके निर्देशांक पर V की कार्यात्मक निर्भरता निम्न प्रकार होती है
हार्मोनिक परमाणु गति हैमिल्टनियन
इस लेख के शेष भाग में हम मानते हैं कि अणु अर्ध-रिजिड अणु होता है। बीओ सन्निकटन के दूसरे चरण में परमाणु गतिज ऊर्जा Tn पुनः प्रस्तुत किया जाता है और हैमिल्टनियन के साथ श्रोडिंगर समीकरण निम्न प्रकार है
पृथक्करण प्राप्त करने के लिए हमें आंतरिक और बाह्य निर्देशांकों में अंतर करना होगा, जिसके अंत में एकार्ट ने निर्देशांकों से संतुष्ट होने के लिए एकार्ट उद्देशों का प्रारम्भ किया था। हम दिखाएंगे कि द्रव्यमान-भारित कार्टेशियन निर्देशांक में हार्मोनिक विश्लेषण से ये स्थितियां प्राकृतिक विधि से कैसे उत्पन्न होती हैं।
गतिज ऊर्जा के लिए अभिव्यक्ति को सरल बनाने के लिए हम द्रव्यमान-भारित विस्थापन निर्देशांक प्रस्तुत करते हैं
सामान्य निर्देशांक की प्रारम्भ के साथ
3N द्रव्यमान-भारित कार्टेशियन निर्देशांक में वर्णित परमाणु गति समस्या का यह अनुमान क्वांटम रसायन विज्ञान में मानक बन गया, उन दिनों (1980-1990 के समय) से जब हेसियन F की स्पष्ट गणना के लिए एल्गोरिदम उपलब्ध हो गए। हार्मोनिक सन्निकटन के अतिरिक्त, इसकी एक और कमी यह है कि अणु की बाहरी (घूर्णी और अनुवादात्मक) गतियों का ध्यान नहीं रखा जाता है। उनका वर्णन एक रोविब्रेशनल हैमिल्टनियन में किया गया है जिसे कभी-कभी वॉटसन का हैमिल्टनियन भी कहा जाता है।
वाटसन की परमाणु गति हैमिल्टनियन
आंतरिक (कंपन) गतियों से जुड़ी बाहरी (अनुवाद और घूर्णन) गतियों के लिए हैमिल्टनियन प्राप्त करने के लिए, इस बिंदु पर मौलिक यांत्रिकी पर लौटना और नाभिक की इन गतियों के अनुरूप मौलिक गतिज ऊर्जा निर्मित करना साधारण बात है। मौलिक रूप से अनुवादात्मक-द्रव्यमान-गति के केंद्र को अन्य गतियों से अलग करना सरल होता है। यघपि, कंपन गति से घूर्णी को अलग करना अधिक कठिन होता है और पूर्ण रूप से संभव नहीं होता है। यह रो-कंपन पृथक्करण सबसे पहले एकार्ट द्वारा प्राप्त किया गया था[3] 1935 में जिसे अब एकार्ट उद्देशों के नाम से जाना जाता है। चूँकि समस्या को एक फ्रेम (एक एकार्ट फ्रेम) में वर्णित किया जाता है जो अणु के साथ घूमता है, और इसलिए एक गैर-जड़त्वीय फ्रेम होता है, काल्पनिक बालों से जुड़ी ऊर्जाएं: केन्द्रापसारक बल और कोरिओलिस प्रभाव गतिज ऊर्जा में दिखाई देते हैं।
सामान्यतः, मौलिक गतिज ऊर्जा टी वक्ररेखीय निर्देशांक s = (si) से जुड़े मीट्रिक टेंसर g = (gij) को परिभाषित करती है।
परमाणु गति हैमिल्टनियन को 1936 में विल्सन और हॉवर्ड द्वारा प्राप्त किया गया था,[5] जिन्होंने इस प्रक्रिया का पालन किया और 1940 में डार्लिंग और डेनिसन द्वारा इसे और परिष्कृत किया गया था।[6] यह 1968 तक वॉटसन के समय तक मानक बना रहा[7] मीट्रिक टेंसर के निर्धारक को डेरिवेटिव के माध्यम से परिवर्तित करके इसे काफी सरल बनाने में सक्षम था। हम वॉटसन द्वारा प्राप्त रो-वाइब्रेशनल हैमिल्टनियन देंगे, जिसे अधिकांशतः वॉटसन हैमिल्टनियन के रूप में जाना जाता है। ऐसा करने से पहले हमें उल्लेख करना होगा। इस हैमिल्टनियन की व्युत्पत्ति कार्टेशियन रूप में लाप्लास ऑपरेटर से प्रारम्भ करके, समन्वय परिवर्तनों के अनुप्रयोग और कई चर के लिए चेन नियम के उपयोग से भी संभव होता है।[8]वॉटसन हैमिल्टनियन, N नाभिक की सभी गतियों का वर्णन करता है
संभावित-समान शब्द U वॉटसन शब्द निम्न प्रकार है:
वॉटसन हैमिल्टनियन में चौथा शब्द सामान्य निर्देशांक qs में व्यक्त परमाणुओं (नाभिक) के कंपन से जुड़ी गतिज ऊर्जा होती है, जैसा कि ऊपर बताया गया है, परमाणु विस्थापन ρiα के संदर्भ में दिए गए हैं
- ↑ W. Kołos & L. Wolniewicz (1963). "डायटोमिक अणुओं के लिए नॉनडायबेटिक सिद्धांत और हाइड्रोजन अणु पर इसका अनुप्रयोग". Reviews of Modern Physics. 35 (3): 473–483. Bibcode:1963RvMP...35..473K. doi:10.1103/RevModPhys.35.473.
- ↑ R. G. Woolley & B. T. Sutcliffe (2003). "P.-O. Löwdin and the Quantum Mechanics of Molecules". In E. J. Brändas & E. S. Kryachko (eds.). क्वांटम रसायन विज्ञान की मौलिक दुनिया. Vol. 1. Kluwer Academic Publishers. pp. 21–65.
- ↑ Eckart, C. (1935). "घूर्णनशील अक्षों और बहुपरमाणुक अणुओं से संबंधित कुछ अध्ययन". Physical Review. 47 (7): 552–558. Bibcode:1935PhRv...47..552E. doi:10.1103/PhysRev.47.552. Archived from the original on 26 June 2020. Retrieved 14 December 2019.
- ↑ Podolsky, B. (1928). "रूढ़िवादी प्रणाली के लिए हैमिल्टनियन फ़ंक्शन का क्वांटम-यांत्रिक रूप से सही रूप". Physical Review. 32 (5): 812. Bibcode:1928PhRv...32..812P. doi:10.1103/PhysRev.32.812.
- ↑ E. Bright Wilson Jr. & J. B. Howard (1936). "The Vibration–Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules". The Journal of Chemical Physics. 4 (4): 260–268. Bibcode:1936JChPh...4..260W. doi:10.1063/1.1749833.
- ↑ B. T. Darling & D. M. Dennison (1940). "जलवाष्प अणु". Physical Review. 57 (2): 128–139. Bibcode:1940PhRv...57..128D. doi:10.1103/PhysRev.57.128.
- ↑ Watson, James K.G. (1968). "आणविक कंपन-रोटेशन हैमिल्टनियन का सरलीकरण". Molecular Physics. 15 (5): 479–490. Bibcode:1968MolPh..15..479W. doi:10.1080/00268976800101381.
- ↑ Biedenharn, L. C.; Louck, J. D. (1981). "क्वांटम भौतिकी में कोणीय संवेग". Encyclopedia of Mathematics. Vol. 8. Reading: Addison–Wesley. ISBN 978-0-201-13507-7.