सुपरलॉय

From Vigyanwiki

निकेल सुपरअलॉय जेट इंजन (RB199 ) टर्बाइन ब्लेड

एक सुपरऑलॉय, या उच्च-प्रदर्शन मिश्र धातु , एक मिश्र धातु है जो इसके गलनांक के एक उच्च अंश पर काम करने की क्षमता रखता है।[1]एक सुपरएलॉय की प्रमुख विशेषताओं में यांत्रिक शक्ति, थर्मल रेंगना (विरूपण) प्रतिरोध, सतह स्थिरता और जंग और ऑक्सीकरण प्रतिरोध शामिल हैं।

क्रिस्टल संरचना आम तौर पर चेहरा केंद्रित घन (FCC) ऑस्टेनिटिक होती है। इस तरह के मिश्र धातुओं के उदाहरण हैं हास्टेलॉय, इनकोनेल, वास्पलोय , रेने 41 , इंकोलॉय , एमपी98टी , टीएमएस मिश्र सीएमएसएक्स एकल क्रिस्टल मिश्र धातु

सुपरअलॉय विकास रासायनिक और प्रक्रिया नवाचारों पर निर्भर करता है। गामा प्राइम और कार्बाइड जैसे माध्यमिक चरण अवक्षेपण से ठोस समाधान सुदृढ़ीकरण और वर्षा सुदृढ़ीकरण के माध्यम से सुपरलॉइज़ उच्च तापमान शक्ति विकसित करते हैं। अल्युमीनियम और क्रोमियम जैसे तत्वों द्वारा ऑक्सीकरण या संक्षारण प्रतिरोध प्रदान किया जाता है। सुपरऑलॉयज को अक्सर एक क्रिस्टल के रूप में डाला जाता है - जबकि अनाज की सीमाएं कम तापमान पर शक्ति प्रदान कर सकती हैं, वे रेंगने के प्रतिरोध को कम करते हैं।

इस तरह के मिश्र धातुओं के लिए प्राथमिक अनुप्रयोग एयरोस्पेस और समुद्री टरबाइन इंजनों में है। रेंगना आमतौर पर गैस टरबाइन ब्लेड में आजीवन सीमित करने वाला कारक है।[2] सुपर मिश्र धातुओं ने बहुत अधिक उच्च तापमान वाली इंजीनियरिंग प्रौद्योगिकी को संभव बनाया है।[1]


रासायनिक विकास

क्योंकि ये मिश्रधातु उच्च तापमान अनुप्रयोगों के लिए अभिप्रेत हैं(अर्थात उनके गलनांक के पास तापमान पर उनके आकार को धारण करना), इसलिए उनका रेंगना (विरूपण) और ऑक्सीकरण प्रतिरोध प्राथमिक महत्व का है। निकल (नी)-आधारित सुपरऑलॉय इन अनुप्रयोगों के लिए पसंद की सामग्री के रूप में उभरे हैं क्योंकि उनके अद्वितीय γ' अवक्षेप हैं।[1][3][page needed] इन नी-आधारित सुपरऑलॉयज़ के गुणों को एक निश्चित सीमा तक विभिन्न अन्य तत्वों, सामान्य और असाधारण दोनों के योग के माध्यम से कुछ हद तक तैयार किया जा सकता है, जिसमें न केवल धातुओं , बल्कि धातु के रूप-रंग का एक अधातु पदार्थ अधातु भी शामिल हैं; क्रोमियम, लोहा , कोबाल्ट , मोलिब्डेनम , टंगस्टन , टैंटलम , एल्यूमीनियम, टाइटेनियम , जिरकोनियम, नाइओबियम , रेनीयाम , येट्रियम, वैनेडियम , कार्बन , बोरान या हेफ़नियम उपयोग किए गए मिश्र धातु परिवर्धन के कुछ उदाहरण हैं। प्रत्येक जोड़ वा गुणों को अनुकूलित करने में एक विशेष उद्देश्य प्रदान करता है।


रेंगना प्रतिरोध एक क्रिस्टल संरचना के भीतर अव्यवस्था गति की गति को धीमा करने पर, आंशिक रूप से निर्भर है। आधुनिक नी-आधारित सुपरऑलॉयज में, γ'-Ni3(Al,Ti) चरण अव्यवस्था के लिए बाधा के रूप में कार्य करता है। इस कारण से, यह γ ' इंटरमेटेलिक चरण, जब उच्च मात्रा के अंशों में उपस्थित होता है, तो इसकी आदेशित प्रकृति और γ मैट्रिक्स के साथ उच्च सुसंगतता के कारण इन मिश्र धातुओं की ताकत बढ़ जाती है। अल्युमीनियम और टाइटेनियम के रासायनिक जोड़ γ' चरण के निर्माण को बढ़ावा देते हैं। γ' चरण के आकार को गर्मी उपचार को मजबूत करने वाली सावधान वर्षा द्वारा ठीक से नियंत्रित किया जा सकता है। दो-चरण ताप उपचार का उपयोग करके कई सुपरऑलॉयज़ का उत्पादन किया जाता है जो प्राथमिक चरण के रूप में जाने वाले क्यूबाइडल γ' कणों का फैलाव बनाता है, इनके बीच द्वितीयक γ' के रूप में जाना जाता है। इन मिश्र धातुओं के ऑक्सीकरण प्रतिरोध को बेहतर बनाने के लिए अल, सीआर, बी और वाई को जोड़ा जाता है। अल और सीआर ऑक्साइड परतें बनाते हैं जो सतह को निष्क्रिय करते हैं और सुपरऑलॉय को आगे के ऑक्सीकरण से बचाते हैं जबकि बी और वाई का उपयोग इस ऑक्साइड स्केल के आसंजन को सब्सट्रेट में सुधारने के लिए किया जाता है।[4] Cr, Fe, Co, Mo और Re सभी तरजीही रूप से γ मैट्रिक्स का विभाजन करते हैं जबकि Al, Ti, Nb, Ta, और V तरजीही रूप से γ' के अवक्षेप और ठोस विलयन मैट्रिक्स को मजबूत करते हैं और क्रमशः अवक्षेपित होते हैं। ठोस समाधान सुदृढ़ीकरण के अलावा, यदि अनाज की सीमाएं मौजूद हैं, तो कुछ तत्वों को अनाज की सीमा को मजबूत करने के लिए चुना जाता है। B और Zr अनाज की सीमाओं को अलग करने की प्रवृत्ति रखते हैं जो अनाज की सीमा ऊर्जा को कम करता है और इसके परिणामस्वरूप बेहतर अनाज सीमा सामंजस्य और लचीलापन होता है।[5] अनाज की सीमा को मजबूत करने का एक अन्य रूप C और एक कार्बाइड फॉर्मर, जैसे Cr, Mo, W, Nb, Ta, Ti, या Hf के अतिरिक्त के माध्यम से प्राप्त किया जाता है, जो अनाज की सीमाओं पर कार्बाइड की वर्षा को बढ़ाता है और इस तरह अनाज की सीमा फिसलने को कम करता है।

Ni-based superalloy compositions[1][6][7]
Element Composition range
(weight %)
Purpose
Ni, Fe, Co 50-70% These elements form the base matrix γ phase of the superalloy. Ni is necessary because it also forms γ' (Ni3Al).
Fe and Co have higher melting points than Ni and offer solid solution strengthening. Fe is also much cheaper than Ni or Co.
Cr 5-20% Cr is necessary for oxidation and corrosion resistance; it forms a protective oxide Cr2O3.
Al 0.5-6% Al is the main γ' former. It also forms a protective oxide Al2O3, which provides oxidation resistance at higher temperature than Cr2O3.
Ti 1-4% Ti forms γ'.
C 0.05-0.2% MC and M23C6 (M ⁠= ⁠metal) carbides are the strengthening phase in the absence of γ'.
B,Zr 0-0.1% Boron and zirconium provide strength to grain boundaries. This is not essential in single-crystal turbine blades, because there are no grain boundaries.
Nb 0-5% Nb can form γ'', a strengthening phase at lower (below 700 °C) temperatures.
Re, W, Hf, Mo, Ta 1-10% Refractory metals, added in small amounts for solid solution strengthening (and carbide formation). They are heavy, but have extremely high melting points.


सक्रिय अनुसंधान

जबकि नी-आधारित सुपरऑलॉय उत्कृष्ट उच्च तापमान सामग्री हैं और बहुत उपयोगी साबित हुए हैं, सह-आधारित सुपरऑलॉय में संभावित रूप से बेहतर गर्म जंग, ऑक्सीकरण, और नी-आधारित सुपरऑलॉय की तुलना में प्रतिरोध होता है। इस कारण से, पिछले कई वर्षों में सह-आधारित सुपरलॉइज़ विकसित करने के प्रयास भी किए गए हैं। इसके बावजूद, पारंपरिक सह-आधारित सुपरऑलॉयज का व्यापक उपयोग नहीं हुआ है क्योंकि उनके पास नी-आधारित सुपरऑलॉयज की तुलना में उच्च तापमान पर कम ताकत है।[8] इसका मुख्य कारण यह है कि—हाल ही में—उनमें γ’ अवक्षेपण प्रबलन की कमी प्रतीत होती थी जो नी-आधारित सुपरऑलॉयज की उच्च तापमान शक्ति में बहुत महत्वपूर्ण है। मेटास्टेबल γ'-Co पर 2006 की एक रिपोर्ट3(Al,W) L1 के साथ इंटरमेटेलिक यौगिक2 संरचना सह-आधारित मिश्र धातुओं को पारंपरिक नी-आधारित सुपरलॉइज़ के विकल्प के रूप में सुझाती है। हालांकि 1971 में सीएस ली द्वारा पीएचडी थीसिस में मिश्र धातुओं के इस वर्ग की सूचना दी गई थी।[9] दो-चरण की सूक्ष्म संरचना में घनाकार γ' अवक्षेप होते हैं जो एक सतत γ मैट्रिक्स में सन्निहित होते हैं और इसलिए रूपात्मक रूप से नी-आधारित सुपरऑलॉयज़ में देखी गई सूक्ष्म संरचना के समान होते हैं। नी-आधारित प्रणाली की तरह, दो चरणों के बीच उच्च स्तर की सुसंगतता होती है, जो मुख्य कारकों में से एक है जिसके परिणामस्वरूप उच्च तापमान पर बेहतर शक्ति होती है।

यह गंभीर वातावरण में अनुप्रयोग के लिए लोड-बेयरिंग सह-आधारित सुपरलॉइज़ के एक नए वर्ग के विकास के लिए एक मार्ग प्रदान करता है।[10] इन मिश्रधातुओं में, W 'इंटरमेटेलिक यौगिक' बनाने के लिए महत्वपूर्ण जोड़ है; यह उन्हें अधिक सघन बनाता है (>9.6 g/cm3) नी-आधारित सुपरऑलॉयज़ की तुलना में। हाल ही में γ - γ' कोबाल्ट-आधारित सुपरऑलॉयज़ का एक नया वर्ग विकसित किया गया है जो डब्ल्यू-मुक्त हैं और निकेल-आधारित सुपरलॉइज़ की तुलना में बहुत कम घनत्व है।[11][12][13][14] इस तथ्य के अलावा कि इन नए सह-आधारित सुपरऑलॉय के कई गुण पारंपरिक Ni-आधारित वाले की तुलना में बेहतर हो सकते हैं, Co का भी Ni की तुलना में उच्च पिघलने का तापमान है। इसलिए, यदि उच्च तापमान शक्ति में सुधार किया जा सकता है, तो उपन्यास सह-आधारित सुपरलॉइज़ का विकास जेट इंजन के संचालन तापमान में वृद्धि की अनुमति दे सकता है जिसके परिणामस्वरूप दक्षता में वृद्धि हो सकती है।

चरण गठन

नए तत्वों को जोड़ना आमतौर पर ठोस समाधान को मजबूत करने के कारण अच्छा होता है, लेकिन इंजीनियरों को इस बात से सावधान रहने की जरूरत है कि कौन से चरण अवक्षेपित होते हैं। अवक्षेपों को ज्यामितीय रूप से निकट-संकुलित (GCP), फ्रैंक-कैस्पर चरणों | स्थलाकृतिक रूप से निकट-संकुलित (TCP), या कार्बाइड के रूप में वर्गीकृत किया जा सकता है। जीसीपी चरण आमतौर पर यांत्रिक गुणों के लिए अच्छे होते हैं, लेकिन टीसीपी चरण अक्सर हानिकारक होते हैं। चूंकि टीसीपी चरण वास्तव में बंद पैक नहीं होते हैं, उनके पास कुछ स्लिप सिस्टम होते हैं और बहुत भंगुर होते हैं। वे अतिरिक्त रूप से खराब हैं क्योंकि वे तत्वों को GCP चरणों से दूर करते हैं। कई तत्व जो γ' बनाने के लिए अच्छे हैं या ठोस समाधान मजबूत करने के लिए टीसीपी अवक्षेपित कर सकते हैं। इंजीनियरों को टीसीपी से परहेज करते हुए जीसीपी को बढ़ावा देने वाले संतुलन को खोजने की जरूरत है।

टीसीपी चरण गठन के साथ मिश्र धातु का एक क्षेत्र कमजोर होगा क्योंकि:[15][16]

  • टीसीपी चरण में स्वाभाविक रूप से खराब यांत्रिक गुण हैं
  • टीसीपी चरण γ मैट्रिक्स के साथ असंगत है
  • टीसीपी चरण एक कमी क्षेत्र से घिरा हुआ है जहां कोई γ' नहीं है
  • टीसीपी चरण आमतौर पर तेज प्लेट या सुई जैसी आकारिकी बनाता है जो आसानी से दरारों को न्यूक्लियेट करता है

मुख्य जीसीपी चरण γ' है। इस चरण के कारण लगभग सभी सुपरऑलॉय नी-आधारित हैं। γ' एक आदेशित L1 है2 (उच्चारण एल-एक-दो), जिसका अर्थ है कि यूनिट सेल के चेहरे पर इसका एक निश्चित परमाणु है, और यूनिट सेल के कोनों पर एक निश्चित परमाणु है। नी-आधारित सुपरऑलॉयज के लिए, इसका मतलब आमतौर पर चेहरों पर नी और कोनों पर टीआई या अल होता है।

एक और अच्छा GCP चरण γ है। यह γ के साथ सुसंगत भी है, लेकिन यह उच्च तापमान पर घुल जाता है।

Superalloy phases[15][16]
Phase Classification Structure Composition(s) Appearance Effect
γ matrix disordered FCC Ni, Co, Fe and other elements in solid solution The background for other precipitates The matrix phase, provides ductility and a structure for precipitates
γ' GCP L12 (ordered FCC) Ni3(Al,Ti) cubes, rounded cubes, spheres, or platelets (depending on lattice mismatch) The main strengthening phase. γ' is coherent with γ, which allows for ductility.
Carbide Carbide FCC mC, m23C6, and m6C (m ⁠= ⁠metal) string-like clumps, like strings of pearls There are many carbides, but they all provide dispersion strengthening and grain boundary stabilization.
γ'' GCP D022 (ordered BCT) Ni3Nb very small disks This precipitate is coherent with γ'. It is the main strengthening phase in IN-718, but γ'' dissolves at high temperatures.
η GCP D024 (ordered HCP) Ni3Ti may form cellular or Widmanstätten patterns The phase is not the worst, but it is not as good as γ'. It can be useful in controlling grain boundaries.
δ not close-packed orthorhombic Ni3Nb acicular (needle-like) The main issue with this phase is that it's not coherent with γ, but it is not inherently weak. It typically forms from decomposing γ'', but sometimes it's intentionally added in small amounts for grain boundary refinement.
σ TCP tetrahedral FeCr, FeCrMo, CrCo elongaged globules This TCP is usually considered to have the worst mechanical properties.[17] It is never desirable for mechanical properties.
μ TCP hexagonal Fe2Nb, Co2Ti, Fe2Ti globules or platelets This phase has typical TCP issues. It is never desirable for mechanical properties.
Laves TCP rhombohedral (Fe,Co)7(Mo,W)6 coarse Widmanstätten platelets This phase has typical TCP issues. It is never desirable for mechanical properties.


सुपरऑलॉयज के परिवार

नी-आधारित सुपरऑलॉयज का इतिहास और विकास

संयुक्त राज्य अमेरिका 1905 के आसपास गैस टर्बाइन के विकास में दिलचस्पी लेने लगा।[1]1910-1915 से, गैस टर्बाइनों में उच्च तापमान के लिए ऑस्टेनिटिक (γ चरण) स्टेनलेस स्टील्स विकसित किए गए थे। 1929 तक, 80Ni-20Cr मिश्र धातु मानक था, जिसमें Ti और Al के छोटे जोड़ थे। हालांकि प्रारंभिक धातुविज्ञानी इसे अभी तक नहीं जानते थे, वे नी-आधारित सुपरऑलॉयज में छोटे γ' अवक्षेप बना रहे थे। इन मिश्र धातुओं ने जल्दी ही Fe- और सह-आधारित सुपर मिश्रधातुओं को पीछे छोड़ दिया, जो कार्बाइड और ठोस समाधान को मजबूत बनाने से मजबूत हुई थीं।

हालांकि सीआर मिश्र धातुओं को ऑक्सीकरण और 700 डिग्री सेल्सियस तक जंग से बचाने के लिए बहुत अच्छा था, लेकिन धातुविदों ने अल के पक्ष में सीआर को कम करना शुरू कर दिया, जिसमें बहुत अधिक तापमान पर ऑक्सीकरण प्रतिरोध था। Cr की कमी के कारण गर्म क्षरण की समस्या उत्पन्न हो जाती है, इसलिए कोटिंग्स को विकसित करने की आवश्यकता होती है।

1950 के आसपास, वैक्यूम प्रेरण पिघलने का व्यवसायीकरण हो गया, जिससे धातुकर्मियों को अधिक सटीक संरचना के साथ उच्च शुद्धता वाले मिश्र धातु बनाने की अनुमति मिली।

60 और 70 के दशक में, धातुविदों ने मिश्र धातु रसायन से मिश्र धातु प्रसंस्करण पर ध्यान केंद्रित किया। स्तंभकार या एकल-क्रिस्टल टरबाइन ब्लेड की अनुमति देने के लिए दिशात्मक ठोसकरण विकसित किया गया था। ऑक्साइड फैलाव-मजबूत मिश्र धातु बहुत महीन दाने और सुपरप्लास्टी प्राप्त कर सकती है।

नी-आधारित सुपरऑलॉय चरण

  • गामा (γ): यह चरण नी-आधारित सुपरऑलॉय के मैट्रिक्स की रचना करता है। यह मिश्र धातु तत्वों का एक ठोस समाधान एफसीसी ऑस्टेनिटिक चरण है।[17][18] अधिकांश वाणिज्यिक नी-आधारित मिश्र धातुओं में पाए जाने वाले मिश्र धातु तत्व हैं, C, Cr, Mo, W, Nb, Fe, Ti, Al, V, और Ta। इन सामग्रियों के निर्माण के दौरान, जैसे ही नी-मिश्र धातुओं को पिघल से ठंडा किया जाता है, कार्बाइड अवक्षेपित होने लगते हैं, और भी कम तापमान पर γ' चरण अवक्षेपित हो जाता है।[18][19]
  • गामा प्राइम (γ'): इस चरण में मिश्रधातु को मजबूत करने के लिए उपयोग किए जाने वाले वेग का गठन होता है। यह नी पर आधारित एक इंटरमेटेलिक चरण है3(टीआई, अल) जिनके पास आदेशित एफसीसी एल1 है2 संरचना।[17]γ' चरण सुपरऑलॉय के मैट्रिक्स के साथ सुसंगत है जिसमें जाली पैरामीटर होता है जो लगभग 0.5% भिन्न होता है। नी3(Ti,Al) क्यूब चेहरों पर Ni परमाणुओं के साथ आदेशित सिस्टम हैं और क्यूब किनारों पर Al या Ti परमाणु हैं। जैसे ही γ' के कण एकत्रित होते हैं, वे घनाकार संरचनाओं को बनाने वाली <100> दिशाओं के साथ संरेखित करके अपनी ऊर्जा अवस्थाओं को कम कर देते हैं।[18]इस चरण में 600 डिग्री सेल्सियस और 850 डिग्री सेल्सियस के बीच अस्थिरता की एक खिड़की है, जिसके अंदर γ' एचसीपी η चरण में बदल जाएगा। 650 डिग्री सेल्सियस से नीचे के तापमान पर अनुप्रयोगों के लिए, γ चरण को मजबूत करने के लिए उपयोग किया जा सकता है।[20]
γ के लिए क्रिस्टल संरचना (नी3नायब) (बॉडी सेंटर्ड टेट्रागोनल)

* गामा डबल प्राइम (γ ): इस चरण में आमतौर पर नी की संरचना होती है3नायब या नी3V और इसका उपयोग γ' के सापेक्ष कम तापमान (<650 °C) पर Ni-आधारित सुपरऑलॉयज़ को मजबूत करने के लिए किया जाता है। γ की क्रिस्टल संरचना शरीर-केंद्रित टेट्रागोनल (बीसीटी) है, और चरण γ में {001} परिवार के समानांतर γ में (001) विमानों के साथ 60 एनएम x 10 एनएम डिस्क के रूप में अवक्षेपित होता है। ये असमदिग्वर्ती होने की दशा डिस्क शरीर-केंद्रित टेट्रागोनल अवक्षेप और चेहरे-केंद्रित क्यूबिक मैट्रिक्स के बीच जाली स्थिरांक के परिणामस्वरूप बनती हैं। यह जाली स्थिरांक उच्च वर्षा को सख्त बनाता है, जो एक साथ आदेश सख्त होने के साथ-साथ प्राथमिक सुदृढ़ीकरण तंत्र को शामिल करता है। γ चरण लगभग 650 डिग्री सेल्सियस से ऊपर अस्थिर है।[20]

  • कार्बाइड चरण: कार्बाइड के निर्माण को आमतौर पर हानिकारक माना जाता है, हालांकि नी-आधारित सुपरऑलॉयज में इनका उपयोग उच्च तापमान पर विरूपण के खिलाफ सामग्री की संरचना को स्थिर करने के लिए किया जाता है। अनाज की सीमा गति को रोकते हुए कार्बाइड अनाज की सीमाओं पर बनते हैं।[17][18]*टोपोलॉजिकली क्लोज़-पैक्ड (टीसीपी) चरण: शब्द फ्रैंक कैस्पर चरण | टीसीपी चरण चरणों के परिवार के किसी भी सदस्य को संदर्भित करता है (σ चरण, χ चरण, μ चरण, और लेव चरण सहित) जो परमाणु रूप से बंद-पैक नहीं होते हैं लेकिन हेक्सागोनल क्लोज-पैक स्टैकिंग के साथ कुछ करीबी पैक वाले विमान होते हैं। . टीसीपी चरणों की उनकी प्रवृत्ति अत्यधिक भंगुर होने और मजबूत बनाने, ठोस समाधान मजबूत करने वाले दुर्दम्य तत्वों (सीआर, सह, डब्ल्यू, और मो सहित) के γ मैट्रिक्स को समाप्त करने की विशेषता है। उच्च तापमान (>750 डिग्री सेल्सियस) पर लंबे समय (हजारों घंटे) के बाद कैनेटीक्स के परिणामस्वरूप ये चरण बनते हैं।[20]


सह-आधारित सुपरऑलॉयज का इतिहास और विकास

ऐतिहासिक रूप से, सह-आधारित सुपरलॉइज़ यांत्रिक गुणों के लिए कार्बाइड अवक्षेपण और ठोस समाधान सुदृढ़ीकरण पर निर्भर रहे हैं। जबकि ये सुदृढ़ीकरण तंत्र गामा प्राइम (γ') वर्षण सुदृढ़ीकरण से कमतर हैं,[1]कोबाल्ट में वर्तमान में सर्वव्यापी निकल-आधारित सुपर मिश्र धातुओं की तुलना में एक उच्च गलनांक है और इसमें बेहतर गर्म संक्षारण प्रतिरोध और तापीय थकान है। नतीजतन, कार्बाइड-मजबूत सह-आधारित सुपरलोय का उपयोग कम तनाव, उच्च तापमान अनुप्रयोगों जैसे गैस टर्बाइनों में स्थिर वैन में किया जाता है।[21] हालांकि, हाल के शोध से पता चला है कि कोबाल्ट γ' चरण प्रदर्शित कर सकता है। वास्तव में, γ' के अस्तित्व की पहली रिपोर्ट 1971 के पीएचडी शोध प्रबंध में हुई,[9]लेकिन कभी प्रकाशित नहीं हुआ था। γ/γ' माइक्रोस्ट्रक्चर को फिर से खोजा गया और पहली बार 2006 में Sato et al द्वारा प्रकाशित किया गया।[8]वह γ' चरण कंपनी थी3(अल, डब्ल्यू)। यह भी पाया गया कि Mo, Ti, Nb, V, और Ta विभाजन γ' चरण में, जबकि Fe, Mn, और Cr मैट्रिक्स γ में विभाजन।

2015 में मकिनेनी एट अल द्वारा सह-आधारित सुपरलॉइज़ के अगले परिवार की खोज की गई थी। इस परिवार में एक समान γ/γ' माइक्रोस्ट्रक्चर है, लेकिन टंगस्टन मुक्त है और Co का γ' चरण है3(अल, मो, नायब)।[11]चूंकि टंगस्टन एक बहुत भारी तत्व है, टंगस्टन का उन्मूलन सह-आधारित मिश्र धातुओं को विमान के टर्बाइनों में तेजी से व्यवहार्य बनाता है, जहां कम घनत्व विशेष रूप से महत्वपूर्ण होता है।

निशाधम एट अल द्वारा एक उच्च थ्रूपुट अध्ययन में सुपरलॉइज़ के सबसे हाल ही में खोजे गए परिवार की कम्प्यूटेशनल रूप से भविष्यवाणी की गई थी।[22] 2017 में, और रेयेस टिराडो एट अल द्वारा प्रयोगशाला में प्रदर्शित किया गया। 2018 में।[14]यह γ' चरण फिर से टंगस्टन मुक्त है और इसकी रचना Co है3(नायब, वी) और कं3(टा, बी)।

सह-आधारित सुपरअलॉय चरण

  • गामा (γ): नी-आधारित सुपरऑलॉयज की तरह, यह मैट्रिक्स चरण है। जबकि नी-आधारित सुपरऑलॉयज की सीमा तक सह-आधारित सुपरऑलॉयज का व्यावसायिक रूप से उपयोग नहीं किया जाता है, अनुसंधान सह-आधारित एलॉय में पाए जाने वाले मिश्र धातु तत्व सी, सीआर, डब्ल्यू, नी, टीआई, अल, आईआर और टा हैं।[8][23] स्टेनलेस स्टील्स की तरह, क्रोमियम का उपयोग (कभी-कभी 20 wt.% तक) Cr के गठन के माध्यम से ऑक्सीकरण और जंग के प्रतिरोध में सुधार करने के लिए किया जाता है।2O3 निष्क्रिय परत, जो गैस टर्बाइनों में उपयोग के लिए महत्वपूर्ण है, लेकिन Co और Cr की परमाणु त्रिज्या में बेमेल के कारण ठोस-समाधान को मजबूत करती है, और MC-प्रकार के कार्बाइड के निर्माण के कारण वर्षा होती है। [24]
  • गामा प्राइम (γ'): नी-आधारित सुपरऑलॉयज के रूप में, यह चरण मिश्रधातु को मजबूत करने के लिए उपयोग किए जाने वाले अवक्षेपण का निर्माण करता है। यह आमतौर पर L1 के साथ क्लोज-पैक होता है2 कंपनी की संरचना3Ti या FCC Co3टा, हालांकि डब्ल्यू और अल दोनों को इन घनाकार अवक्षेपों में काफी अच्छी तरह से एकीकृत पाया गया है। तत्व टा, एनबी और टीआई γ' चरण में एकीकृत होते हैं और उच्च तापमान पर इसे स्थिर करने में काफी प्रभावी होते हैं। [8][25]
  • कार्बाइड चरण: जैसा कि कार्बाइड के गठन के साथ आम है, कार्बाइड मिश्र धातु को वर्षा के सख्त होने के माध्यम से मजबूत करता है लेकिन कम तापमान की लचीलापन कम करता है।[23]* टोपोलॉजिकली क्लोज़-पैक्ड (टीसीपी) चरण कुछ विकासात्मक सह-आधारित सुपरलॉइज़ में भी दिखाई दे सकते हैं, लेकिन मिश्रधातु को भंगुर कर देते हैं और इस प्रकार अवांछनीय हैं।

फ़े-आधारित सुपरअलॉय चरण

सुपरऑलॉय अनुप्रयोगों में स्टील्स का उपयोग रुचि का है क्योंकि कुछ स्टील मिश्र धातुओं ने नी-आधारित सुपरऑलॉयज के समान रेंगना और ऑक्सीकरण प्रतिरोध दिखाया है, जबकि उत्पादन करने के लिए बहुत कम खर्चीला है।

गामा (γ): नी-आधारित सुपरऑलॉयज में पाए जाने वाले चरणों की तरह, Fe-आधारित मिश्र धातुओं में ऑस्टेनाइट आयरन (FCC) का एक मैट्रिक्स चरण होता है। इन स्टेनलेस स्टील मिश्र धातुओं में आमतौर पर पाए जाने वाले मिश्र धातु तत्वों में शामिल हैं: अल, बी, सी, सह, सीआर, मो, नी, एनबी, सी, टीआई, डब्ल्यू और वाई।[26] जबकि अल को इसके ऑक्सीकरण लाभों के लिए पेश किया गया है, अल परिवर्धन को कम वजन वाले अंशों (wt।%) पर रखा जाना चाहिए क्योंकि अल एक फेरिटिक (बीसीसी) प्राथमिक चरण मैट्रिक्स को स्थिर करता है, जो कि सुपरएलॉय माइक्रोस्ट्रक्चर में एक अवांछनीय चरण है, क्योंकि यह निम्न से कम है। ऑस्टेनिटिक (एफसीसी) प्राथमिक चरण मैट्रिक्स द्वारा प्रदर्शित उच्च तापमान शक्ति।[27] गामा-प्राइम (γ'): मिश्र धातु को मजबूत करने के लिए इस चरण को अवक्षेप के रूप में पेश किया जाता है। नी-आधारित मिश्रधातुओं की तरह, γ'-Ni3Al अवक्षेप को Al, Ni, Nb, और Ti योगों के उचित संतुलन के साथ पेश किया जा सकता है।

=== Fe-आधारित सुपरऑलॉयज === की सूक्ष्म संरचना दो प्रमुख प्रकार के ऑस्टेनिटिक स्टेनलेस स्टील्स मौजूद हैं और स्टील की सतह पर बनने वाली ऑक्साइड परत की विशेषता है: क्रोमिया बनाने वाला या एल्यूमिना बनाने वाला स्टेनलेस स्टील। क्रोमिया बनाने वाला स्टेनलेस स्टील उत्पादित स्टेनलेस स्टील का सबसे आम प्रकार है। हालांकि, नी-आधारित सुपरऑलॉयज की तुलना में, क्रोमिया बनाने वाले स्टील उच्च ऑपरेटिंग तापमान पर उच्च रेंगना प्रतिरोध प्रदर्शित नहीं करते हैं, विशेष रूप से जल वाष्प वाले वातावरण में। उच्च ऑपरेटिंग तापमान पर जल वाष्प के संपर्क में आने से क्रोमिया बनाने वाली मिश्र धातुओं में आंतरिक ऑक्सीकरण में वृद्धि हो सकती है और वाष्पशील Cr (ऑक्सी) हाइड्रॉक्साइड का तेजी से निर्माण हो सकता है, जो दोनों मिश्र धातु के स्थायित्व और जीवनकाल को कम कर सकते हैं।[27]

एल्यूमिना बनाने वाले ऑस्टेनिटिक स्टेनलेस स्टील्स में स्टील की सतह पर एल्यूमिना ऑक्साइड के साथ ऑस्टेनाइट आयरन (FCC) का सिंगल-फेज मैट्रिक्स होता है। एल्युमिना क्रोमिया की तुलना में ऑक्सीजन में अधिक थर्मोडायनामिक रूप से स्थिर है। अधिक सामान्यतः, हालांकि, शक्ति और रेंगने के प्रतिरोध को बढ़ाने के लिए वेग चरणों को पेश किया जाता है। एल्युमिना बनाने वाले स्टील्स में, सुरक्षात्मक एल्यूमिना परत को बनाए रखने के लिए NiAl अवक्षेप को Al जलाशयों के रूप में कार्य करने के लिए पेश किया जाता है। इसके अलावा, Nb और Cr जोड़ NiAl के वेग आयतन अंशों को बढ़ाकर एल्युमिना को बनाने और स्थिर करने में मदद करते हैं।[27]

एल्युमिना बनाने वाले, Fe-बेस सुपरऑलॉय के विकास के लिए अनुसंधान प्रयासों ने एल्युमिना बनाने वाले ऑस्टेनिटिक (AFA) मिश्र धातु के कम से कम 5 ग्रेड दिखाए हैं, हवा में ऑक्सीकरण + 10% जल वाष्प पर अलग-अलग ऑपरेटिंग तापमान के साथ:[28]

  • AFA ग्रेड: (50-60)Fe-(20-25)Ni-(14-15)Cr-(2.5-3.5)Al-(1-3)Nb wt.% आधार
    • हवा में ऑक्सीकरण + 10% जल वाष्प पर 750-800 डिग्री सेल्सियस ऑपरेटिंग तापमान
  • लो निकेल AFA ग्रेड: 63Fe-12Ni-14Cr-2.5Al-0.6Nb-5Mn3Cu wt.% बेस
    • 650 डिग्री सेल्सियस हवा में ऑक्सीकरण पर ऑपरेटिंग तापमान + 10% जल वाष्प
  • हाई परफॉरमेंस AFA ग्रेड: (45-55)Fe-(25-30)Ni-(14-15)Cr(3.5-4.5)Al-(1-3)Nb-(0.02-0.1)Hf/Y wt. % आधार
    • 850-900 डिग्री सेल्सियस हवा में ऑक्सीकरण पर ऑपरेटिंग तापमान + 10% जल वाष्प
  • कास्ट AFA ग्रेड: (35-50)Fe-(25-35)Ni-14Cr-(3.5-4)Al-1Nb wt.% बेस
    • 750-1100 °C हवा में ऑक्सीकरण पर ऑपरेटिंग तापमान + 10% जल वाष्प, Ni wt.% पर निर्भर करता है
  • AFA सुपरअलॉय (40-50)Fe-(30-35)Ni-(14-19)Cr-(2.5-3.5)Al-3Nb
    • 750-850 डिग्री सेल्सियस हवा में ऑक्सीकरण + 10% जल वाष्प पर ऑपरेटिंग तापमान

हवा में ऑक्सीकरण के साथ ऑपरेटिंग तापमान और कोई जल वाष्प अधिक होने की उम्मीद नहीं है। इसके अलावा, एक AFA सुपरऑलॉय ग्रेड को निकेल-आधारित मिश्र धातु UNS N06617 के पास रेंगने की शक्ति प्रदर्शित करने के लिए दिखाया गया था।

सुपरलॉइज़ की सूक्ष्म संरचना

शुद्ध नी में3एल्यूमीनियम के अल चरण परमाणुओं को क्यूबिक सेल के कोने पर रखा जाता है और सबलेटिस ए बनाता है। निकल के परमाणु चेहरे के केंद्रों पर स्थित होते हैं और सबलेटिस बी बनाते हैं। चरण सख्ती से रससमीकरणमितीय नहीं है। एक सबलेटिस में रिक्तियों की अधिकता मौजूद हो सकती है, जो स्टोइकोमेट्री से विचलन की ओर ले जाती है। γ'-चरण के सबलैटिस ए और बी अन्य तत्वों के काफी अनुपात को विलेय कर सकते हैं। मिश्रधातु तत्व γ-चरण में भी घुल जाते हैं। γ'-चरण मिश्र धातु को एक असामान्य तंत्र के माध्यम से कठोर करता है जिसे उपज शक्ति विसंगति कहा जाता है। अव्यवस्थाएं γ'-चरण में अलग हो जाती हैं, जिससे एक क्रिस्टलोग्राफिक दोष | विरोधी चरण सीमा का निर्माण होता है। ऊंचे तापमान पर, एंटी-फेज बाउंड्री (APB) से जुड़ी मुक्त ऊर्जा काफी कम हो जाती है अगर यह किसी विशेष तल पर स्थित हो, जो संयोग से अनुमत स्लिप प्लेन नहीं है। APB क्रॉस-स्लिप्स को सीमित करने वाले आंशिक अव्यवस्थाओं का एक सेट ताकि APB निम्न-ऊर्जा तल पर स्थित हो, और चूंकि यह निम्न-ऊर्जा तल अनुमत स्लिप तल नहीं है, इसलिए पृथक अव्यवस्था अब प्रभावी रूप से बंद है। इस तंत्र द्वारा, γ'-चरण नी की उपज शक्ति3अल वास्तव में तापमान के साथ लगभग 1000 डिग्री सेल्सियस तक बढ़ जाता है, जिससे सुपरअलॉय को उनकी वर्तमान में बेजोड़ उच्च तापमान शक्ति मिलती है।

गैस टर्बाइन इंजनों में ब्लेड अनुप्रयोगों के लिए प्रारंभिक सामग्री चयन में 1940 के दशक में निमोनिक श्रृंखला मिश्र धातु जैसे मिश्र धातु शामिल थे।[3][page needed] शुरुआती निमोनिक श्रृंखला में γ' Ni शामिल था3(Al, Ti) एक γ मैट्रिक्स में वर्षण (रसायन विज्ञान), साथ ही साथ विभिन्न धातु-कार्बन करबैड (जैसे Cr23C6) अनाज की सीमा पर[29] अतिरिक्त अनाज सीमा शक्ति के लिए। 1950 के दशक में वैक्यूम इंडक्शन मेल्टिंग ढलाई तकनीक आने तक टर्बाइन ब्लेड घटक लोहारी कर रहे थे।[3][page needed] इस प्रक्रिया ने सफाई में काफी सुधार किया, दोषों को कम किया और सामग्री की ताकत और तापमान क्षमता में वृद्धि की।

1980 के दशक में आधुनिक सुपरलॉइज़ विकसित किए गए थे। इन मिश्र धातुओं में γ' आयतन अंश को बढ़ाने के लिए पहली पीढ़ी के सुपर मिश्र धातु में एल्यूमीनियम, टाइटेनियम, टैंटलम और नाइओबियम सामग्री को शामिल किया गया। पहली पीढ़ी के सुपर मिश्रधातुओं के उदाहरणों में शामिल हैं: PWA1480, रेने N4 और SRR99। इसके अतिरिक्त, एकल क्रिस्टल, या मोनोक्रिस्टल, ठोसीकरण तकनीकों (देखें ब्रिजमैन-स्टॉकबर्गर तकनीक) के आगमन के साथ γ' अवक्षेप का आयतन अंश लगभग 50-70% तक बढ़ गया, जो कि कास्टिंग से अनाज की सीमाओं को पूरी तरह से समाप्त करने में सक्षम बनाता है। क्योंकि सामग्री में कोई अनाज की सीमा नहीं थी, कार्बाइड अनाज की सीमा को मजबूत करने वाले के रूप में अनावश्यक थे और इस प्रकार समाप्त हो गए थे।[3][page needed] दूसरी और तीसरी पीढ़ी के सुपरअलॉयज ने तापमान क्षमता में वृद्धि के लिए लगभग 3 और 6 वजन प्रतिशत रेनियम पेश किया। रे एक धीमा विसारक है और आमतौर पर γ मैट्रिक्स के लिए विभाजन, प्रसार की दर को कम करता है (और इस तरह उच्च तापमान रेंगना (विरूपण)) और उच्च तापमान प्रदर्शन में सुधार करता है और दूसरी और तीसरी पीढ़ी में 30 डिग्री सेल्सियस और 60 डिग्री सेल्सियस तक सेवा तापमान बढ़ाता है। सुपरलॉइज़, क्रमशः।[30] रे को γ' चरण के राफ्ट के गठन को बढ़ावा देने के लिए भी दिखाया गया है (जैसा कि घनाभ अवक्षेप के विपरीत)। राफ्ट की उपस्थिति विस्थापन क्रीप में क्रीप दर को कम कर सकती है | पावर-लॉ शासन (अव्यवस्था चढ़ाई द्वारा नियंत्रित), लेकिन यदि प्रमुख तंत्र कण कर्तन है तो क्रीप दर को संभावित रूप से बढ़ा सकता है। इसके अलावा, रे भंगुर फ्रैंक कैस्पर चरणों के गठन को बढ़ावा देता है, जिसके कारण Co, W, Mo और विशेष रूप से Cr को कम करने की रणनीति बनाई गई है। नी-आधारित सुपरऑलॉयज की नई पीढ़ियों ने इस कारण से सीआर सामग्री को काफी कम कर दिया है, हालांकि सीआर में कमी से क्षरण में कमी आती है। घटी हुई Cr सामग्री के साथ जंग के नुकसान की भरपाई के लिए अब उन्नत कोटिंग तकनीकों का उपयोग किया जाता है।[20][31] दूसरी पीढ़ी के सुपरलॉइज़ के उदाहरणों में PWA1484, CMSX-4 और रेने N5 शामिल हैं। तीसरी पीढ़ी के मिश्र धातुओं में CMSX-10 और रेने N6 शामिल हैं। चौथी, पांचवीं और यहां तक ​​कि छठी पीढ़ी के सुपरऑलॉयज विकसित किए गए हैं जिनमें दयाता मिलाए गए हैं, जो उन्हें पिछली पीढ़ी के री-कंटेनिंग एलॉयज की तुलना में अधिक महंगा बनाते हैं। टीसीपी चरणों के प्रचार पर आरयू का प्रभाव अच्छी तरह से निर्धारित नहीं है। प्रारंभिक रिपोर्टों ने निर्धारित किया कि आरयू ने मैट्रिक्स में रे के सुपरसेटेशन को कम कर दिया और जिससे टीसीपी चरण गठन की संवेदनशीलता कम हो गई।[32] अधिक हाल के अध्ययनों ने विपरीत प्रभाव का उल्लेख किया है। चेन, एट अल।, ने पाया कि दो मिश्र धातुओं में केवल आरयू सामग्री (यूएसटीबी-एफ 3 और यूएसटीबी-एफ 6) में काफी भिन्नता है कि आरयू के अतिरिक्त विभाजन अनुपात के साथ-साथ सीआर और रे के γ मैट्रिक्स में सुपरसेटेशन दोनों में वृद्धि हुई है। और इस तरह टीसीपी चरणों के गठन को बढ़ावा दिया।[33] मौजूदा चलन बहुत महंगे और बहुत भारी तत्वों से बचने का है। एक उदाहरण एग्लिन स्टील है, जो समझौता तापमान सीमा और रासायनिक प्रतिरोध के साथ एक बजट सामग्री है। इसमें रेनियम या रूथेनियम नहीं होता है और इसकी निकेल सामग्री सीमित होती है। निर्माण लागत को कम करने के लिए, इसे रासायनिक रूप से एक करछुल में पिघलाने के लिए डिज़ाइन किया गया था (हालांकि वैक्यूम क्रूसिबल में बेहतर गुणों के साथ)। इसके अलावा, गर्मी उपचार से पहले पारंपरिक वेल्डिंग और कास्टिंग संभव है। मूल उद्देश्य उच्च-प्रदर्शन, सस्ती बम केसिंग का उत्पादन करना था, लेकिन सामग्री कवच ​​सहित संरचनात्मक अनुप्रयोगों के लिए व्यापक रूप से लागू साबित हुई है।

सिंगल-स्फटिक सुपरलॉइज़

सिंगल-क्रिस्टल सुपरलॉइज़ (एसएक्स या एससी सुपरलॉइज़) दिशात्मक ठोसकरण तकनीक के संशोधित संस्करण का उपयोग करके एकल क्रिस्टल के रूप में बनते हैं, इसलिए सामग्री में कोई क्रिस्टलीय नहीं होता है। अधिकांश अन्य मिश्र धातुओं के यांत्रिक गुण अनाज की सीमाओं की उपस्थिति पर निर्भर करते हैं, लेकिन उच्च तापमान पर, वे रेंगने (विरूपण) में भाग लेंगे और उन्हें अन्य तंत्रों द्वारा प्रतिस्थापित किया जाना चाहिए। ऐसे कई मिश्रधातुओं में, एक आदेशित इंटरमेटेलिक्स चरण के द्वीप अव्यवस्थित चरण के एक मैट्रिक्स में बैठते हैं, सभी एक ही क्रिस्टलीय जाली के साथ। यह संरचना में किसी भी अनाकार ठोस को पेश किए बिना, अनाज की सीमाओं के अव्यवस्था-पिनिंग व्यवहार का अनुमान लगाता है।

गुणों और प्रदर्शन के अद्वितीय संयोजन के कारण एयरो और औद्योगिक गैस टरबाइन इंजनों के उच्च दबाव वाले टर्बाइन सेक्शन में सिंगल क्रिस्टल (एसएक्स) सुपरअलॉयज का व्यापक अनुप्रयोग है। एकल क्रिस्टल कास्टिंग प्रौद्योगिकी की शुरुआत के बाद से, एसएक्स मिश्र धातु विकास ने तापमान क्षमता में वृद्धि पर ध्यान केंद्रित किया है, और मिश्र धातु के प्रदर्शन में प्रमुख सुधार रेनियम (रे) और रूथेनियम (आरयू) सहित नए मिश्र धातु तत्वों की शुरूआत से जुड़े हैं।[34] बढ़ते टरबाइन प्रवेश तापमान के साथ, इस तरह की चरम स्थिति (यानी उच्च तापमान और उच्च तनाव) के तहत सिंगल क्रिस्टल सुपरलॉइज़ के रेंगने वाले विरूपण के दौरान होने वाली भौतिक घटनाओं की एक बुनियादी समझ हासिल करना महत्वपूर्ण है। सुपरअलॉय सिंगल क्रिस्टल का रेंगना विरूपण व्यवहार दृढ़ता से तापमान, तनाव, अभिविन्यास और मिश्र धातु पर निर्भर है। सिंगल-क्रिस्टल सुपरअलॉय के लिए, विभिन्न तापमान और तनाव के शासन के तहत क्रीप विरूपण के 3 अलग-अलग तरीके हैं: राफ्टिंग, तृतीयक और प्राथमिक।[35][page needed] कम तापमान (~750 डिग्री सेल्सियस) पर, एसएक्स मिश्रधातु ज्यादातर प्राथमिक रेंगने वाले व्यवहार को प्रदर्शित करते हैं। मटन एट अल। निष्कर्ष निकाला कि प्राथमिक रेंगना विरूपण की सीमा तन्यता अक्ष और <001>/<011> समरूपता सीमा के बीच के कोण पर दृढ़ता से निर्भर करती है।[36] 850 °C से ऊपर के तापमान पर, तृतीयक रेंगना हावी होता है और तनाव को कम करने वाले व्यवहार को बढ़ावा देता है।[3][page needed] जब तापमान 1000 डिग्री सेल्सियस से अधिक हो जाता है, तो राफ्टिंग प्रभाव प्रचलित होता है जहां क्यूबिक कण तन्यता तनाव के तहत फ्लैट आकार में परिवर्तित हो जाते हैं[37] राफ्ट भी तन्यता अक्ष के लंबवत बनेंगे, क्योंकि γ चरण ऊर्ध्वाधर चैनलों से और क्षैतिज वाले में ले जाया गया था। 1105 °C और 100 MPa, रीड एट अल पर <001> उन्मुख CMSX-4 सिंगल क्रिस्टल सुपरऑलॉय के अक्षीय क्रीप विरूपण का संचालन करने के बाद। ने स्थापित किया है कि राफ्टिंग रेंगने वाले जीवन के लिए फायदेमंद है क्योंकि यह रेंगने वाले तनाव के विकास में देरी करता है। इसके अलावा, राफ्टिंग जल्दी से घटित होगी और रेंगने वाले तनाव के संचय को तब तक दबा देगी जब तक कि एक महत्वपूर्ण तनाव नहीं पहुंच जाता।[38]


सुपरऑलॉयज में ऑक्सीकरण

उच्च तापमान पर काम करने वाले और संक्षारक वातावरण के संपर्क में आने वाले सुपरलॉइज़ के लिए, ऑक्सीकरण व्यवहार सर्वोपरि चिंता का विषय है। ऑक्सीकरण में आम तौर पर धातु की सतह पर नए ऑक्साइड चरण बनाने के लिए ऑक्सीजन के साथ मिश्रित तत्वों की रासायनिक प्रतिक्रियाएं शामिल होती हैं। यदि असंतुलित किया जाता है, तो ऑक्सीकरण विभिन्न तरीकों से मिश्रधातु को समय के साथ नीचा दिखा सकता है, जिसमें शामिल हैं:[39][40]

  • अनुक्रमिक ऑक्सीकरण, क्रैकिंग और सतह का फैलाव, समय के साथ मिश्र धातु का क्षरण होता है
  • ऑक्साइड चरणों की शुरूआत के माध्यम से सतह का उत्सर्जन, दरार गठन और थकान (सामग्री) की विफलता को बढ़ावा देना
  • प्रमुख मिश्रधातु तत्वों का अवक्षय क्षेत्र, सुपरएलॉय के यांत्रिक गुणों को प्रभावित करता है और संभवतः इसके प्रदर्शन से समझौता करता है

इन हानिकारक प्रक्रियाओं को सीमित करने के लिए इस्तेमाल की जाने वाली प्राथमिक रणनीति को चयनात्मक ऑक्सीकरण कहा जाता है। बस, मिश्र धातु को इस तरह से डिज़ाइन किया गया है कि मिश्र धातु तत्वों का अनुपात एक विशिष्ट ऑक्साइड चरण के गठन को बढ़ावा देता है जो आगे ऑक्सीकरण के लिए एक बाधा के रूप में कार्य कर सकता है। आमतौर पर, इस भूमिका में एल्यूमीनियम और क्रोमियम का उपयोग किया जाता है, क्योंकि वे एल्यूमिना (Al) की अपेक्षाकृत पतली और निरंतर ऑक्साइड परतें बनाते हैं।2O3) और क्रोमियम (III) ऑक्साइड (Cr2O3), क्रमश। इसके अलावा, उनके पास कम ऑक्सीजन द्रव्यमान विसारकता होती है, जो इस परत के नीचे आगे ऑक्सीकरण को प्रभावी ढंग से रोकती है। आदर्श स्थिति में, ऑक्सीकरण दो चरणों से होकर गुजरता है। सबसे पहले, क्षणिक ऑक्सीकरण में विभिन्न तत्वों का रूपांतरण शामिल होता है, विशेष रूप से बहुसंख्यक तत्व (जैसे निकल या कोबाल्ट)। क्षणिक ऑक्सीकरण तब तक आगे बढ़ता है जब तक कि बलि तत्व का चयनात्मक ऑक्सीकरण एक पूर्ण अवरोधक परत नहीं बना लेता।[39]

चयनात्मक ऑक्सीकरण के सुरक्षात्मक प्रभाव को कई तंत्रों द्वारा कम किया जा सकता है। पतली बलि ऑक्साइड परत की निरंतरता को तनाव (यांत्रिकी) के कारण यांत्रिक व्यवधान से समझौता किया जा सकता है या ऑक्सीकरण के कैनेटीक्स (गतिकी) के परिणामस्वरूप बाधित हो सकता है (उदाहरण के लिए यदि ऑक्सीजन का प्रसार बहुत तेज है)। यदि परत निरंतर नहीं है, तो ऑक्सीजन के प्रसार अवरोध के रूप में इसकी प्रभावशीलता काफी कम हो जाती है। अन्य अल्पसंख्यक तत्वों की उपस्थिति से ऑक्साइड परत की स्थिरता भी दृढ़ता से प्रभावित होती है। उदाहरण के लिए, सुपरअलॉयज में बोरॉन, सिलिकॉन और येट्रियम को मिलाने से ऑक्साइड परत के आसंजन को बढ़ावा मिलता है, स्पैलिंग कम होती है और सुरक्षात्मक ऑक्साइड परत की अखंडता बनी रहती है।[41] ऑक्सीकरण केवल रासायनिक क्षरण का सबसे बुनियादी रूप है जो सुपरऑलॉयज अनुभव कर सकते हैं। अधिक जटिल संक्षारण प्रक्रियाएं सामान्य होती हैं जब ऑपरेटिंग वातावरण में लवण और सल्फर यौगिक शामिल होते हैं, या रासायनिक परिस्थितियों में जो समय के साथ नाटकीय रूप से बदलते हैं। इन मुद्दों और बुनियादी ऑक्सीकरण के मुद्दों को अक्सर पतली कोटिंग्स के माध्यम से भी संबोधित किया जाता है।

सुपरअलॉय प्रोसेसिंग

सुपरअलॉय प्रसंस्करण में ऐतिहासिक विकास से सुपर अलॉय ऑपरेटिंग तापमान में काफी वृद्धि हुई है। 1940 के दशक से पहले सुपरऑलॉय मूल रूप से आयरन-आधारित और कोल्ड पिट थे। 1940 के दशक में कोबाल्ट बेस एलॉय की निवेश कास्टिंग ने ऑपरेटिंग तापमान में काफी वृद्धि की। 1950 के दशक में वैक्यूम इंडक्शन मेल्टिंग के विकास ने सुपरऑलॉयज की रासायनिक संरचना के बहुत अच्छे नियंत्रण और संदूषण में कमी की अनुमति दी और बदले में मिश्र धातुओं और एकल क्रिस्टल सुपरऑलॉयज के दिशात्मक ठोसकरण जैसी प्रसंस्करण तकनीकों में क्रांति आई।[42][page needed] गैस टर्बाइन इंजन के भीतर सुपरऑलॉय के कई रूप मौजूद हैं, और प्रत्येक विशिष्ट भाग के आवश्यक गुणों के आधार पर प्रसंस्करण के तरीके व्यापक रूप से भिन्न होते हैं।

कास्टिंग और फोर्जिंग

कास्टिंग और फोर्जिंग पारंपरिक धातुकर्म प्रसंस्करण तकनीकें हैं जिनका उपयोग पॉलीक्रिस्टलाइन और मोनोक्रिस्टलाइन दोनों उत्पादों को उत्पन्न करने के लिए किया जा सकता है। पॉलीक्रिस्टलाइन कास्ट में फ्रैक्चर प्रतिरोध अधिक होता है, जबकि मोनोक्रिस्टलाइन कास्ट में रेंगना प्रतिरोध अधिक होता है।

जेट टर्बाइन इंजन अपनी व्यक्तिगत ताकत का लाभ उठाने के लिए पॉली और मोनो क्रिस्टलीय घटकों दोनों को नियोजित करते हैं। हाई-प्रेशर टर्बाइन के डिस्क, जो इंजन के सेंट्रल हब के पास होते हैं, पॉलीक्रिस्टलाइन होते हैं। टर्बाइन ब्लेड, जो इंजन आवास में रेडियल रूप से विस्तारित होते हैं, एक बहुत अधिक केन्द्रापसारक बल का अनुभव करते हैं, रेंगना प्रतिरोध की आवश्यकता होती है। नतीजतन, टर्बाइन ब्लेड आमतौर पर पसंदीदा क्रिस्टल ओरिएंटेशन के साथ मोनोक्रिस्टलाइन या पॉलीक्रिस्टलाइन होते हैं।

निवेश कास्टिंग

निवेश कास्टिंग एक धातुकर्म प्रसंस्करण तकनीक है जिसमें एक मोम का रूप गढ़ा जाता है और सिरेमिक मोल्ड के लिए एक टेम्पलेट के रूप में उपयोग किया जाता है। संक्षेप में, मोम के रूप में एक सिरेमिक मोल्ड डाला जाता है, मोम फॉर्म को सिरेमिक मोल्ड से पिघलाया जाता है, और पिघला हुआ धातु मोम द्वारा छोड़े गए शून्य में डाला जाता है। यह धातु के रूप को मूल मोम के रूप में उसी आकार में ले जाता है। निवेश कास्टिंग एक पॉलीक्रिस्टलाइन अंतिम उत्पाद की ओर जाता है, क्योंकि पूरे ठोस मैट्रिक्स में कई स्थानों पर न्यूक्लिएशन और क्रिस्टल अनाज की वृद्धि होती है। आम तौर पर, पॉलीक्रिस्टलाइन उत्पाद में कोई पसंदीदा अनाज अभिविन्यास नहीं होता है।

दिशात्मक दृढ़ीकरण

दिशात्मक दृढ़ीकरण की योजनाबद्ध

दिशात्मक ठोसकरण कम तापमान की सतह पर धातु अनाज के न्यूक्लियेशन को बढ़ावा देने के साथ-साथ तापमान ढाल के साथ उनके विकास को बढ़ावा देने के लिए थर्मल ढाल का उपयोग करता है। इससे अनाज तापमान ढाल के साथ बढ़ जाता है, और लंबे अनाज की दिशा के समानांतर काफी अधिक रेंगना प्रतिरोध होता है। पॉलीक्रिस्टलाइन टर्बाइन ब्लेड में, दिशात्मक ठोसकरण का उपयोग केंद्रीय बल के समानांतर अनाज को उन्मुख करने के लिए किया जाता है। इसे डेन्ड्रिटिक सॉलिडिफिकेशन के नाम से भी जाना जाता है।

सिंगल क्रिस्टल ग्रोथ

एकल क्रिस्टल एक बीज क्रिस्टल से शुरू होता है जिसका उपयोग बड़े क्रिस्टल के टेम्पलेट विकास के लिए किया जाता है। समग्र प्रक्रिया लंबी है, और एकल क्रिस्टल उगाए जाने के बाद मशीनिंग के माध्यम से अतिरिक्त प्रसंस्करण आवश्यक है।

पाउडर धातु विज्ञान

पाउडर धातु विज्ञान आधुनिक प्रसंस्करण तकनीकों का एक वर्ग है जिसमें धातुओं को पहले पाउडर के रूप में परिवर्तित किया जाता है, और फिर गलनांक से नीचे गर्म करके वांछित आकार में बनाया जाता है। यह ढलाई के विपरीत है, जो पिघली हुई धातु के साथ होता है। सुपर अलॉय मैन्युफैक्चरिंग अक्सर इसकी भौतिक दक्षता के कारण पाउडर धातु विज्ञान को नियोजित करता है - आमतौर पर बहुत कम अपशिष्ट धातु को अंतिम उत्पाद से दूर किया जाना चाहिए - और यांत्रिक मिश्र धातु की सुविधा के लिए इसकी क्षमता। मैकेनिकल मिश्र धातु एक ऐसी प्रक्रिया है जिसके द्वारा मजबूत कणों को बार-बार फ्रैक्चर और वेल्डिंग द्वारा सुपरअलॉय मैट्रिक्स सामग्री में शामिल किया जाता है।[43][failed verification]


सिंटरिंग और गर्म आइसोस्टैटिक दबाने

सिंटरिंग और हॉट आइसोस्टैटिक प्रेसिंग प्रसंस्करण तकनीकें हैं जिनका उपयोग भौतिक रूप से मर्ज किए गए अनाज के साथ एक ठोस वस्तु में ढीले पैक वाले हरे शरीर से सामग्री को सघन करने के लिए किया जाता है। सिंटरिंग गलनांक के नीचे होता है, और आसन्न कणों को उनकी सीमाओं पर विलय करने का कारण बनता है, जिससे उनके बीच एक मजबूत बंधन बन जाता है। गर्म आइसोस्टैटिक प्रेसिंग में, एक निसादित सामग्री को दबाव पोत में रखा जाता है और घनत्व को प्रभावित करने के लिए एक निष्क्रिय वातावरण में सभी दिशाओं (आइसोस्टैटिक रूप से) से संपीड़ित किया जाता है।[44]


योगात्मक निर्माण

चयनात्मक लेजर मेल्टिंग (पाउडर बेड फ्यूजन के रूप में भी जाना जाता है) एक एडिटिव मैन्युफैक्चरिंग प्रक्रिया है जिसका उपयोग CAD फाइल से जटिल रूप से विस्तृत फॉर्म बनाने के लिए किया जाता है। CAD में, एक आकृति को डिज़ाइन किया जाता है और फिर उसे स्लाइस में परिवर्तित किया जाता है। अंतिम उत्पाद को प्रिंट करने के लिए इन स्लाइस को लेजर लेखक के पास भेजा जाता है। संक्षेप में, धातु पाउडर का एक बिस्तर तैयार किया जाता है, और पाउडर बिस्तर में एक उच्च ऊर्जा लेजर द्वारा कणों को एक साथ सिंटर करके सीएडी डिजाइन का पहला टुकड़ा बनाया जाता है। इस पहली स्लाइस के उत्पन्न होने के बाद, पाउडर बेड नीचे की ओर जाता है, और धातु पाउडर का एक नया बैच स्लाइस के शीर्ष पर लुढ़का होता है। फिर दूसरी परत को लेज़र से सिंटर किया जाता है, और यह प्रक्रिया तब तक दोहराई जाती है जब तक कि CAD फ़ाइल के सभी स्लाइस संसाधित नहीं हो जाते।[45] कई योज्य निर्माण प्रक्रियाओं की प्रकृति के कारण, चुनिंदा लेजर पिघलने से बने उत्पादों में सरंध्रता मौजूद हो सकती है। उत्पाद को सघन बनाने और सरंध्रता को कम करने के लिए कई उत्पादों को अक्सर हीट ट्रीटमेंट या हॉट आइसोस्टैटिक प्रेसिंग प्रक्रिया से गुजरना पड़ता है, जिसके परिणामस्वरूप क्रैकिंग हो सकती है।[46] इसलिए इन अनुप्रयोगों के लिए योज्य निर्माण विशेष रूप से चुनौतीपूर्ण है।

सुपरलोय की कोटिंग

आधुनिक गैस टर्बाइन में, टर्बाइन प्रवेश तापमान (~1750K) सरफेस इंजीनियरिंग की मदद से सुपरऑलॉयज (~1600K) के शुरुआती पिघलने के तापमान को पार कर गया है। ऐसी अत्यधिक काम करने की स्थिति में, कोटिंग की योग्यता महत्वपूर्ण हो जाती है।[47][page needed]


विभिन्न प्रकार के लेप

ऐतिहासिक रूप से, कोटिंग्स की तीन पीढ़ियां विकसित की गई हैं: प्रसार कोटिंग्स, ओवरले कोटिंग्स और थर्मल बैरियर कोटिंग्स। प्रसार कोटिंग्स, मुख्य रूप से एल्युमिनाइड या प्लैटिनम-एल्युमिनाइड के साथ गठित, अभी भी सतह संरक्षण का सबसे आम रूप है। संक्षारण और ऑक्सीकरण के प्रतिरोध को और बढ़ाने के लिए, MCrAlX-आधारित ओवरले कोटिंग्स (M=Ni or Co, X=Y, Hf, Si) को सुपर-मिश्र धातुओं की सतह पर जमा किया जाता है। प्रसार कोटिंग्स की तुलना में, ओवरले कोटिंग्स सब्सट्रेट की संरचना पर कम निर्भर होती हैं, लेकिन अधिक महंगी भी होती हैं, क्योंकि उन्हें हवा या वैक्यूम प्लाज्मा छिड़काव (एपीएस / वीपीएस) द्वारा किया जाना चाहिए।[48][page needed] या फिर इलेक्ट्रॉन बीम भौतिक वाष्प जमाव (ईबी-पीवीडी)।[49] थर्मल बैरियर कोटिंग्स कार्य तापमान और कोटिंग जीवन में अब तक की सबसे अच्छी वृद्धि प्रदान करती हैं। यह अनुमान लगाया गया है कि 300 माइक्रोन मोटाई के आधुनिक टीबीसी, यदि एक खोखले घटक और ठंडी हवा के संयोजन के साथ प्रयोग किया जाता है, तो धातु की सतह के तापमान को कुछ सौ डिग्री तक कम करने की क्षमता होती है।[50]


थर्मल बैरियर कोटिंग्स

घटक जीवन और इंजन के प्रदर्शन को बढ़ाने के लिए वाणिज्यिक और सैन्य गैस टरबाइन इंजन दोनों में सुपरअलॉय की सतह पर थर्मल बैरियर कोटिंग्स (TBCs) का बड़े पैमाने पर उपयोग किया जाता है।[51] लगभग 1-200 माइक्रोमीटर की परत सुपरअलॉय सतह पर तापमान को 200K तक कम कर सकती है। टीबीसी वास्तव में कोटिंग्स की एक प्रणाली है जिसमें एक बॉन्ड कोट, एक थर्मली ग्रो ऑक्साइड (टीजीओ) और एक थर्मली इंसुलेटिंग सिरेमिक टॉप कोट होता है। अधिकांश अनुप्रयोगों में, बॉन्ड कोट या तो एक MCrAlY (जहाँ M=Ni या NiCo) या एक Pt संशोधित एल्युमिनाइड कोटिंग होता है। ऑक्सीकरण और गर्म जंग के हमले से सुपरअलॉय सब्सट्रेट की सुरक्षा प्रदान करने और इसकी सतह पर एक अनुयायी, धीमी गति से बढ़ने वाले टीजीओ बनाने के लिए एक घने बंधन कोट की आवश्यकता होती है। टीजीओ बॉन्ड कोट में निहित एल्यूमीनियम के ऑक्सीकरण द्वारा बनता है। वर्तमान (पहली पीढ़ी) थर्मल इन्सुलेशन परत 100–300 माइक्रोन की विशिष्ट मोटाई के साथ 7wt% yttria-स्थिर ज़िरकोनिया (7YSZ) से बना है। Yttria स्थिर zirconia का उपयोग इसकी कम तापीय चालकता (2.6W / mK पूरी तरह से सघन सामग्री के लिए), थर्मल विस्तार के अपेक्षाकृत उच्च गुणांक और अच्छे उच्च तापमान स्थिरता के कारण किया जाता है। इलेक्ट्रॉन बीम निर्देशित वाष्प जमाव (ईबी-डीवीडी) प्रक्रिया का उपयोग टीबीसी को टर्बाइन एयरफॉइल्स पर लागू करने के लिए किया जाता है, जो छिद्र के कई स्तरों के साथ एक स्तंभकार माइक्रोस्ट्रक्चर का उत्पादन करता है। स्तंभों के बीच सरंध्रता तनाव सहनशीलता प्रदान करने के लिए महत्वपूर्ण है (बहुत कम इन-प्लेन मापांक के माध्यम से), क्योंकि यह अन्यथा थर्मल साइकलिंग पर फैलेगी, जो कि सुपरऑलॉय सब्सट्रेट के साथ थर्मल विस्तार बेमेल के कारण होगा। स्तंभों के भीतर सरंध्रता कोटिंग की तापीय चालकता को कम करती है।

बॉन्ड कोट

बॉन्ड कोट थर्मल बैरियर कोटिंग को सुपरअलॉय सब्सट्रेट का पालन करता है। इसके अतिरिक्त, बांड कोट ऑक्सीकरण संरक्षण प्रदान करता है और पर्यावरण की ओर सब्सट्रेट परमाणुओं की गति के खिलाफ प्रसार बाधा के रूप में कार्य करता है। पाँच प्रमुख प्रकार के बॉन्ड कोट हैं, एल्युमिनाइड्स, प्लैटिनम-एल्युमिनाइड्स, MCrAlY, कोबाल्ट-सेरमेट्स और निकल-क्रोमियम। एल्युमिनाइड बॉन्ड कोटिंग्स के लिए, कोटिंग की अंतिम संरचना और संरचना सब्सट्रेट की संरचना पर निर्भर करती है। एल्युमिनाइड्स में भी 750 डिग्री सेल्सियस से नीचे लचीलापन नहीं होता है, और थर्मोमैकेनिकल थकान शक्ति द्वारा सीमित प्रदर्शित होता है। Pt-एल्युमिनाइड्स ब्लेड पर जमा Pt (5—10 μm) की एक परत को छोड़कर, एल्युमिनाइड बॉन्ड कोट के समान हैं। माना जाता है कि पीटी ऑक्साइड आसंजन में सहायता करता है और गर्म जंग में योगदान देता है। पीटी चढ़ाना की लागत बढ़े हुए ब्लेड जीवन काल से उचित है। MCrAlY बॉन्ड कोट की नवीनतम पीढ़ी है और सब्सट्रेट के साथ दृढ़ता से बातचीत नहीं करता है। आम तौर पर प्लाज्मा छिड़काव द्वारा लागू किया जाता है, MCrAlY कोटिंग्स माध्यमिक एल्यूमीनियम ऑक्साइड फॉर्मर्स हैं। इसका मतलब यह है कि कोटिंग्स क्रोमियम ऑक्साइड (क्रोमिया) की एक बाहरी परत और नीचे एक माध्यमिक एल्यूमीनियम ऑक्साइड (एल्यूमिना) परत बनाती हैं। ये ऑक्साइड संरचनाएं उन उच्च तापमानों की सीमा में होती हैं जो आमतौर पर सुपरऑलॉयज का सामना करते हैं।[52] क्रोमिया ऑक्सीकरण और गर्म-जंग प्रतिरोध प्रदान करता है। एल्युमिना ऑक्सीडेशन तंत्र को स्व-निष्क्रिय करके ऑक्साइड वृद्धि को सीमित करके नियंत्रित करता है। येट्रियम सब्सट्रेट के लिए ऑक्साइड पालन को बढ़ाता है, और अनाज की सीमाओं के विकास को सीमित करता है (जिससे कोटिंग के फ्लेकिंग हो सकते हैं)।[53] जांच से संकेत मिलता है कि रेनियम और टैंटलम को मिलाने से ऑक्सीकरण प्रतिरोध बढ़ जाता है। टंगस्टन कार्बाइड /कोबाल्ट जैसी सामग्रियों से युक्त कोबाल्ट-सिरमेट-आधारित कोटिंग्स का उपयोग घर्षण, संक्षारण, कटाव और गर्मी के उत्कृष्ट प्रतिरोध के कारण किया जा सकता है।[54][full citation needed] ये तरीके से सर्मेट cermet कोटिंग उन परिस्थितियों में अच्छा प्रदर्शन करते हैं जहां तापमान और ऑक्सीकरण क्षति महत्वपूर्ण चिंताएं हैं, जैसे बॉयलर। मिश्रण के भीतर कार्बाइड की ताकत के कारण, कोबाल्ट सरमेट कोटिंग्स के अनूठे फायदों में से एक समय के साथ कोटिंग द्रव्यमान का न्यूनतम नुकसान है। कुल मिलाकर, सीर्मेट कोटिंग्स उन स्थितियों में उपयोगी होती हैं जहां यांत्रिक मांगें सुपरऑलॉयज के लिए रासायनिक मांगों के बराबर होती हैं। जीवाश्म ईंधन , इलेक्ट्रिक फर्नेस (घर का ताप) , और अपशिष्ट भस्मीकरण भट्टियों द्वारा खिलाए गए बॉयलरों में निकेल-क्रोमियम कोटिंग्स का सबसे अधिक उपयोग किया जाता है, जहां वाष्प में ऑक्सीकरण एजेंटों और संक्षारक यौगिकों के खतरे से निपटा जाना चाहिए।[55] स्प्रे-कोटिंग की विशिष्ट विधि कोटिंग्स की संरचना पर निर्भर करती है। निकेल-क्रोमियम कोटिंग्स जिनमें आयरन या एल्युमिनियम भी होता है, जब वे स्प्रे किए जाते हैं और लेजर ग्लेज्ड होते हैं तो बेहतर प्रदर्शन करते हैं (जंग प्रतिरोध के संदर्भ में), जबकि शुद्ध निकल-क्रोमियम कोटिंग्स बेहतर प्रदर्शन करती हैं जब विशेष रूप से थर्मली स्प्रे किया जाता है।[56]


परत की प्रक्रिया के तरीके

सुपरअलॉय उत्पाद जो उच्च कार्य तापमान और संक्षारक वातावरण (जैसे जेट इंजनों के उच्च दबाव टरबाइन क्षेत्र) के अधीन होते हैं, विभिन्न प्रकार के कोटिंग के साथ लेपित होते हैं। कई प्रकार की कोटिंग प्रक्रिया लागू की जाती है: पैक सीमेंटेशन प्रक्रिया, गैस चरण कोटिंग (दोनों एक प्रकार के रासायनिक वाष्प जमाव (सीवीडी) हैं), थर्मल छिड़काव और भौतिक वाष्प जमाव। ज्यादातर मामलों में, कोटिंग प्रक्रिया के बाद भागों के निकट-सतह क्षेत्रों को एल्यूमीनियम से समृद्ध किया जाता है, कोटिंग का मैट्रिक्स निकल एल्युमिनाइड होता है।

पैक सीमेंटेशन प्रक्रिया

पैक सिमेंटेशन एक व्यापक रूप से इस्तेमाल की जाने वाली रासायनिक वाष्प जमाव तकनीक है जिसमें धातु पाउडर मिश्रण और अमोनियम हैलाइड एक्टिवेटर्स में लेपित होने वाले घटकों को विसर्जित करना और उन्हें मुंहतोड़ जवाब देना शामिल है। पूरे तंत्र को भट्टी के अंदर रखा जाता है और एक सुरक्षात्मक वातावरण में प्रसार के लिए सामान्य तापमान से कम तापमान पर गर्म किया जाता है, हलाइड लवण रासायनिक प्रतिक्रिया के कारण जो दो धातुओं के बीच एक यूटेक्टिक बंधन का कारण बनता है। थर्मल विसरित आयन प्रवासन के कारण बनने वाली नई सतह मिश्र धातु में सतह सब्सट्रेट के लिए एक धातुकर्म बंधन होता है और नई सतह मिश्र धातुओं की गामा परत में पाई जाने वाली एक वास्तविक इंटरमेटेलिक परत होती है।

पारंपरिक पैक में चार घटक होते हैं:

सब्सट्रेट या भागों-लौह और अलौह पाउडर मिश्र धातु- (Ti और/या Al, Si और/या Zn, B और/या Cr) हैलाइड साल्ट एक्टिवेटर- अमोनियम हैलाइड साल्ट अपेक्षाकृत अक्रिय भराव पाउडर (Al2O3, SiO2, या SiC) नीचे तापमान (750 डिग्री सेल्सियस) इस प्रक्रिया में शामिल है लेकिन यह तक सीमित नहीं है:

Aluminizing क्रोमाइज़िंग सिलिकोनाइजिंग शेरर्डाइजिंग बोरोनाइजिंग टाइटेनियम बनाना

पैक सीमेंटेशन का पिछले 10 वर्षों में पुनरुद्धार हुआ है क्योंकि इसे धातु के संयोजन के तापमान को और भी कम करने के लिए अन्य रासायनिक प्रक्रियाओं के साथ जोड़ा जा रहा है और सतह के उपचार के लिए विभिन्न मिश्र धातु संयोजनों को इंटरमेटेलिक गुण प्रदान करता है।

थर्मल स्प्रेइंग

थर्मल स्प्रेइंग प्रीकर्सर सामग्री के फीडस्टॉक को गर्म करके सतह पर छिड़काव करके कोटिंग्स लगाने की एक प्रक्रिया है। वांछित कण आकार, कोट की मोटाई, स्प्रे की गति, वांछित क्षेत्र आदि के आधार पर विभिन्न विशिष्ट तकनीकों का उपयोग किया जाता है।[57][full citation needed] हालांकि, किसी भी प्रकार के थर्मल स्प्रेइंग द्वारा लगाए गए कोटिंग्स सतह पर चिपकने पर निर्भर करते हैं। नतीजतन, थर्मल कोटिंग के आवेदन से पहले, सुपर मिश्र धातु की सतह को साफ और तैयार किया जाना चाहिए, आमतौर पर पॉलिश किया जाना चाहिए।[58]


प्लाज्मा छिड़काव

विभिन्न थर्मल स्प्रे विधियों में से, सुपरलॉइज़ कोटिंग के लिए अधिक आदर्श और आमतौर पर इस्तेमाल की जाने वाली तकनीकों में से एक प्लाज्मा स्प्रेइंग है। यह प्रयोग करने योग्य कोटिंग्स की बहुमुखी प्रतिभा और प्लाज्मा-स्प्रे किए गए कोटिंग्स के उच्च तापमान प्रदर्शन के कारण है।[59] प्लाज्मा छिड़काव सामग्री की एक बहुत विस्तृत श्रृंखला को समायोजित कर सकता है, अन्य तकनीकों की तुलना में बहुत अधिक। जब तक पिघलने और अपघटन तापमान के बीच का अंतर 300 केल्विन से अधिक है, तब तक एक सामग्री को पिघलाया जा सकता है और प्लाज्मा छिड़काव के माध्यम से एक कोटिंग के रूप में लगाया जा सकता है।[60][page needed]


गैस चरण कोटिंग

यह प्रक्रिया उच्च तापमान, लगभग 1080 डिग्री सेल्सियस पर की जाती है। कोटिंग सामग्री को आमतौर पर लेपित किए जाने वाले भागों के साथ भौतिक संपर्क के बिना विशेष ट्रे पर लोड किया जाता है। कोटिंग मिश्रण में सक्रिय कोटिंग सामग्री और एक्टिवेटर होता है, लेकिन आमतौर पर इसमें थर्मल गिट्टी नहीं होती है। जैसा कि पैक सीमेंटेशन प्रक्रिया में, गैसीय एल्यूमीनियम क्लोराइड (या फ्लोराइड) को भाग की सतह पर स्थानांतरित किया जाता है। हालाँकि, इस मामले में प्रसार बाहर की ओर है। इस तरह की कोटिंग के लिए डिफ्यूजन हीट ट्रीटमेंट की भी जरूरत होती है।

थर्मल बैरियर कोटिंग सिस्टम में विफलता तंत्र

थर्मल बैरियर कोटिंग की विफलता आमतौर पर संदूषण के रूप में प्रकट होती है, जो सब्सट्रेट और कोटिंग के थर्मल विस्तार गुणांक में अंतर के साथ परिवेश के तापमान और काम करने की स्थिति के बीच थर्मल साइकलिंग के दौरान तापमान प्रवणता से उत्पन्न होती है। कोटिंग का पूरी तरह से विफल होना दुर्लभ है - इसके कुछ टुकड़े बरकरार रहते हैं, और विफलता के समय में महत्वपूर्ण बिखराव देखा जाता है यदि समान परिस्थितियों में परीक्षण दोहराया जाता है।[3][page needed] थर्मल बैरियर कोटिंग के लिए विभिन्न गिरावट तंत्र हैं,[61][62] और इनमें से कुछ या सभी को अंततः विफल होने से पहले काम करना चाहिए:

  • थर्मल बैरियर कोटिंग और अंतर्निहित बॉन्ड कोट के इंटरफेस पर ऑक्सीकरण;[63] * ऑक्सीकरण के कारण बॉन्ड कोट में एल्युमीनियम की कमी[64] और सब्सट्रेट के साथ प्रसार;[65]
  • ऊष्मीय रूप से विकसित ऑक्साइड परत के गठन के कारण थर्मल विस्तार गुणांक और वृद्धि तनाव में बेमेल से थर्मल तनाव;[66]
  • ऊष्मीय रूप से विकसित ऑक्साइड परत के पास की खामियां;[67][68][69]
  • इंजन के संचालन के दौरान कई अन्य जटिल कारक।[70][71][72][73][74]

इसके अतिरिक्त, टीबीसी जीवन सामग्री (सब्सट्रेट, बॉन्ड कोट, सिरेमिक) और प्रक्रियाओं (ईबी-पीवीडी, प्लाज्मा छिड़काव) के संयोजन पर बहुत निर्भर है।

अनुप्रयोग


टर्बाइन

निकेल-आधारित सुपरऑलॉयज़ का उपयोग लोड-असर संरचनाओं में किसी भी सामान्य मिश्र धातु प्रणाली के उच्चतम समरूप तापमान (टीएम = 0.9, या उनके पिघलने बिंदु का 90%) में किया जाता है। टर्बाइन इंजन (जैसे टर्बाइन ब्लेड ) के गर्म वर्गों में संरचनात्मक सामग्री के लिए सबसे अधिक मांग वाले अनुप्रयोगों में से हैं। सुपरऑलॉयज की प्रमुखता इस तथ्य से परिलक्षित होती है कि वर्तमान में वे उन्नत विमान इंजनों के वजन का 50% से अधिक शामिल हैं। टर्बाइन इंजनों में सुपरऑलॉयज का व्यापक उपयोग इस तथ्य के साथ जुड़ा हुआ है कि टर्बाइन इनलेट तापमान में वृद्धि के साथ टर्बाइन इंजनों की थर्मोडायनामिक दक्षता में वृद्धि हुई है, ने आंशिक रूप से सुपरऑलॉयज के अधिकतम उपयोग तापमान को बढ़ाने के लिए प्रेरणा प्रदान की है। वास्तव में, पिछले 30 वर्षों के दौरान, यानी 1990-2020 के दौरान, टर्बाइन एयरफॉइल तापमान क्षमता में प्रति वर्ष औसतन लगभग 4 °F (2.2 °C) की वृद्धि हुई है। इस वृद्धि को संभव बनाने वाले दो प्रमुख कारक हैं:[citation needed]

  1. उन्नत प्रसंस्करण तकनीकें, जिसने मिश्र धातु की सफाई में सुधार किया (इस प्रकार विश्वसनीयता में सुधार हुआ) और / या प्रत्यक्ष रूप से ठोस या एकल-क्रिस्टल सामग्री जैसे सिलवाया सूक्ष्म संरचनाओं के उत्पादन को सक्षम किया।
  2. मिश्र धातु का विकास मुख्य रूप से Re, W, Ta, और Mo जैसे दुर्दम्य तत्वों के योग के माध्यम से उच्च-उपयोग-तापमान सामग्री के परिणामस्वरूप होता है।

लगभग 60% उपयोग-तापमान में वृद्धि उन्नत शीतलन अवधारणाओं के कारण हुई है; 40% भौतिक सुधारों के परिणामस्वरूप हुए हैं। अत्याधुनिक टर्बाइन ब्लेड सतह का तापमान निकट है 2,100 °F (1,150 °C); तनाव और तापमान का सबसे गंभीर संयोजन औसत थोक धातु तापमान के करीब आने से मेल खाता है 1,830 °F (1,000 °C).

हालांकि निकेल-आधारित सुपरऑलॉय तापमान के पास महत्वपूर्ण शक्ति बनाए रखते हैं 1,800 °F (980 °C), वे प्रतिक्रियाशील मिश्र धातु तत्वों (जो उनकी उच्च तापमान शक्ति प्रदान करते हैं) की उपस्थिति के कारण पर्यावरणीय हमले के लिए अतिसंवेदनशील होते हैं। सतह के हमले में ऑक्सीकरण, गर्म जंग और थर्मल थकान शामिल है। सबसे अधिक मांग वाले अनुप्रयोगों में, जैसे टर्बाइन ब्लेड और वेन्स, पर्यावरण प्रतिरोध को बेहतर बनाने के लिए सुपरऑलॉयज़ को अक्सर लेपित किया जाता है।[17]

सामान्य तौर पर, ऊर्जा रूपांतरण और ऊर्जा उत्पादन अनुप्रयोगों के लिए उच्च तापमान सामग्री की आवश्यकता होती है। इन ऊर्जा अनुप्रयोगों में अधिकतम ऊर्जा रूपांतरण दक्षता वांछित है, जिसे कार्नाट चक्र द्वारा वर्णित ऑपरेटिंग तापमान में वृद्धि करके प्राप्त किया जा सकता है। क्योंकि कार्नाट दक्षता गर्म और ठंडे जलाशयों के बीच तापमान के अंतर से सीमित होती है, उच्च परिचालन तापमान के परिणामस्वरूप उच्च ऊर्जा रूपांतरण क्षमता होती है। ऑपरेटिंग तापमान आज के सुपरअलॉय के प्रदर्शन से सीमित हैं, और वर्तमान में, अधिकांश एप्लिकेशन लगभग 1000 डिग्री सेल्सियस-1400 डिग्री सेल्सियस पर काम करते हैं। ऊर्जा अनुप्रयोगों और उनके सुपर मिश्र धातु घटकों में शामिल हैं:[75]

  • गैस टर्बाइन (टरबाइन ब्लेड)
  • सौर तापीय विद्युत संयंत्र (स्टेनलेस स्टील की छड़ें जिनमें गर्म पानी होता है)
  • स्टीम टर्बाइन (टरबाइन ब्लेड और बॉयलर हाउसिंग)
  • परमाणु रिएक्टर सिस्टम के लिए हीट एक्सचेंजर्स

अधिक सामान्य स्टील्स के उत्पादन के समान, एल्यूमिना बनाने वाले स्टेनलेस स्टील्स को पिघलने और लैडल (धातु विज्ञान) कास्टिंग के माध्यम से संसाधित किया जा सकता है। वैक्यूम मोल्डिंग (कास्टिंग) प्रक्रियाओं की तुलना में, लैडल कास्टिंग बहुत कम खर्चीला है। इसके अलावा, एल्यूमिना बनाने वाले स्टेनलेस स्टील को वेल्ड करने योग्य दिखाया गया है और इसमें उच्च प्रदर्शन वाले ऑटोमोटिव अनुप्रयोगों में उपयोग की क्षमता है, जैसे उच्च तापमान निकास पाइपिंग और हीट कैप्चर और पुन: उपयोग में।

नए सुपरअलॉयज का अनुसंधान और विकास

पिछले दशकों के दौरान सुपरऑलॉयज की उपलब्धता से टर्बाइन प्रवेश तापमान में लगातार वृद्धि हुई है, और यह प्रवृत्ति जारी रहने की उम्मीद है। Sandia National Laboratories सुपरऑलॉय बनाने की एक नई विधि का अध्ययन कर रही है, जिसे रेडियोलिसिस के रूप में जाना जाता है। यह nanoparticle सिंथेसिस के माध्यम से एलॉय और सुपरऑलॉय बनाने में अनुसंधान का एक बिल्कुल नया क्षेत्र पेश करता है। यह प्रक्रिया नैनोकण निर्माण की एक सार्वभौमिक विधि के रूप में वादा रखती है। इन नैनोकणों के निर्माण के पीछे बुनियादी भौतिक विज्ञान की समझ विकसित करके, ऐसी अटकलें हैं कि अनुसंधान को सुपरऑलॉय के अन्य पहलुओं में विस्तारित करना संभव हो सकता है।

इस विधि से मिश्रधातु बनाने में काफी नुकसान हो सकता है। सुपरअलॉयज का लगभग आधा उपयोग उन अनुप्रयोगों में होता है जहां सेवा तापमान मिश्र धातु के पिघलने के तापमान के करीब होता है। इसलिए एकल क्रिस्टल का उपयोग करना आम है। उपरोक्त विधि पॉलीक्रिस्टलाइन मिश्र धातुओं का उत्पादन करती है, जो रेंगने के अस्वीकार्य स्तर से ग्रस्त हैं।

मिश्र धातु के विकास में भविष्य के प्रतिमानों से मिश्र धातु की ताकत को बनाए रखते हुए वजन में कमी और ऑक्सीकरण और संक्षारण प्रतिरोध में सुधार पर ध्यान देने की उम्मीद है। इसके अलावा, बिजली उत्पादन के लिए टर्बाइन ब्लेड की बढ़ती मांग के साथ, मिश्र धातु डिजाइन का एक और ध्यान सुपरलोय की लागत को कम करना है।

ऐसे मिश्र धातुओं के उत्पादन में कम लागत के साथ-साथ जल वाष्प के साथ वातावरण में उच्च तापमान संक्षारण प्रतिरोध के साथ एक ऑस्टेनिटिक स्टेनलेस स्टील की आवश्यकता के कारण नए स्टेनलेस स्टील मिश्र धातुओं का अनुसंधान और विकास चल रहा है। अनुसंधान नी-आधारित सुपरऑलॉयज के साथ प्रतिस्पर्धा करने के लिए उच्च तापमान तन्य शक्ति, क्रूरता और रेंगने के प्रतिरोध को बढ़ाने पर ध्यान केंद्रित कर रहा है।[28]

ओक रिज नेशनल लेबोरेटरी द्वारा उच्च तापमान अनुप्रयोगों में उपयोग के लिए एल्यूमिना बनाने वाले ऑस्टेनिटिक स्टेनलेस स्टील का एक नया वर्ग सक्रिय रूप से विकसित किया जा रहा है। प्रारंभिक शोध ने नी-आधारित सुपरऑलॉय सहित अन्य ऑस्टेनिटिक मिश्र धातुओं के समान 800 डिग्री सेल्सियस पर रेंगने और संक्षारण प्रतिरोध दिखाया।[28]

35 wt.% Ni-बेस के साथ AFA सुपरऑलॉयज़ के विकास ने ऑपरेटिंग तापमान में 1,100 °C तक के उपयोग की क्षमता दिखाई है।[28]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Sims, C.T. (1984). "A History of Superalloy Metallurgy for Superalloy Metallurgists". Superalloys 1984 (Fifth International Symposium). pp. 399–419. doi:10.7449/1984/Superalloys_1984_399_419.
  2. Carter, Tim J (April 2005). "Common failures in gas turbine blades". Engineering Failure Analysis. 12 (2): 237–247. doi:10.1016/j.engfailanal.2004.07.004.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Reed, R. C (2008). The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press. ISBN 9780521070119.
  4. Klein, L.; Shen, Y.; Killian, M. S.; Virtanen, S. (2011). "Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys". Corrosion Science. 53 (9): 2713–720. doi:10.1016/j.corsci.2011.04.020.
  5. Shinagawa, K.; Omori, Toshihiro; Oikawa, Katsunari; Kainuma, Ryosuke; Ishida, Kiyohito (2009). "Ductility Enhancement by Boron Addition in Co–Al–W High-temperature Alloys". Scripta Materialia. 61 (6): 612–15. doi:10.1016/j.scriptamat.2009.05.037.
  6. Giamei, Anthony (September 2013). "Development of Single Crystal Superalloys: A Brief History". Advanced Materials & Processes: 26–30 – via asminternational.
  7. Akca, Enes; Gursel, Ali (2015). "A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy". Periodicals of Engineering and Natural Sciences. 3 (1): 15–27. doi:10.21533/pen.v3i1.43 – via pen.ius.edu.ba.
  8. 8.0 8.1 8.2 8.3 Sato, J (2006). "Cobalt-Base High-Temperature Alloys". Science. 312 (5770): 90–91. Bibcode:2006Sci...312...90S. doi:10.1126/science.1121738. PMID 16601187. S2CID 23877638.
  9. 9.0 9.1 Lee, C. S. (1971). Precipitation-hardening characteristics of ternary cobalt - aluminum - X alloys (PhD dissertation). University of Arizona.
  10. Suzuki, A.; DeNolf, Garret C.; Pollock, Tresa M. (2007). "Flow Stress Anomalies in γ/γ′ Two-phase Co–Al–W-base Alloys". Scripta Materialia. 56 (5): 385–88. doi:10.1016/j.scriptamat.2006.10.039.
  11. 11.0 11.1 Makineni, S. K.; Nithin, B.; Chattopadhyay, K. (March 2015). "A new tungsten-free γ–γ' Co–Al–Mo–Nb-based superalloy". Scripta Materialia. 98: 36–39. doi:10.1016/j.scriptamat.2014.11.009.
  12. Makineni, S. K.; Nithin, B.; Chattopadhyay, K. (February 2015). "Synthesis of a new tungsten-free γ–γ′ cobalt-based superalloy by tuning alloying additions". Acta Materialia. 85: 85–94. doi:10.1016/j.actamat.2014.11.016.
  13. Makineni, S. K.; Samanta, A.; Rojhirunsakool, T.; Alam, T.; Nithin, B.; Singh, A.K.; Banerjee, R.; Chattopadhyay, K. (September 2015). "A new class of high strength high temperature Cobalt based γ–γ′ Co–Mo–Al alloys stabilized with Ta addition". Acta Materialia. 97: 29–40. doi:10.1016/j.actamat.2015.06.034.
  14. 14.0 14.1 Reyes Tirado, Fernando L.; Perrin Toinin, Jacques; Dunand, David C. (June 2018). "γ+γ′ microstructures in the Co-Ta-V and Co-Nb-V ternary systems". Acta Materialia. 151: 137–148. doi:10.1016/j.actamat.2018.03.057.
  15. 15.0 15.1 Belan, Juraj (2016). "GCP and TCP Phases Presented in Nickel-base Superalloys". Materials Today: Proceedings. 3 (4): 936–941. doi:10.1016/j.matpr.2016.03.024.
  16. 16.0 16.1 Rae, C.M.F.; Karunaratne, M.S.A.; Small, C.J.; Broomfield, R.W.; Jones, C.N.; Reed, R.C. (2000). "Topologically Close Packed Phases in an Experimental Rhenium-Containing Single Crystal Superalloy". Superalloys 2000 (Ninth International Symposium). pp. 767–776. doi:10.7449/2000/Superalloys_2000_767_776. ISBN 0-87339-477-1.
  17. 17.0 17.1 17.2 17.3 17.4 Randy Bowman. "Superalloys: A Primer and History". Retrieved 6 March 2020 – via tms.org.
  18. 18.0 18.1 18.2 18.3 Sabol, G. P.; Stickler, R. (1969). "Microstructure of Nickel-Based Superalloys". Physica Status Solidi B. 35 (1): 11–52. Bibcode:1969PSSBR..35...11S. doi:10.1002/pssb.19690350102.
  19. Doi, M.; Miki, D.; Moritani, T.; Kozakai, T. (2004). "Gamma/Gamma-Prime Microstructure Formed by Phased Separation of Gamma-Prime Precipitates in a Ni-Al-Ti Alloy". Superalloys 2004 (Tenth International Symposium). pp. 109–114. doi:10.7449/2004/Superalloys_2004_109_114. ISBN 0-87339-576-X.
  20. 20.0 20.1 20.2 20.3 Dunand, David C. "Materials Science & Engineering 435: High Temperature Materials". Northwestern University, Evanston. 25 February 2016. Lecture.
  21. Institute, Cobalt (14 February 2018). "सुपर मिश्रधातु". www.cobaltinstitute.org (in English). Retrieved 10 December 2019.
  22. Nyshadham, Chandramouli; Oses, Corey; Hansen, Jacob E.; Takeuchi, Ichiro; Curtarolo, Stefano; Hart, Gus L.W. (January 2017). "A computational high-throughput search for new ternary superalloys". Acta Materialia. 122: 438–447. arXiv:1603.05967. Bibcode:2017AcMat.122..438N. doi:10.1016/j.actamat.2016.09.017. S2CID 11222811.
  23. 23.0 23.1 Cui, C (2006). "A New Co-Base Superalloy Strengthened by γ' Phase". Materials Transactions. 47 (8): 2099–2102. doi:10.2320/matertrans.47.2099.
  24. Coutsouradis, D.; Davin, A.; Lamberigts, M. (April 1987). "Cobalt-based superalloys for applications in gas turbines". Materials Science and Engineering. 88: 11–19. doi:10.1016/0025-5416(87)90061-9.
  25. Suzuki, A.; Pollock, Tresa M. (2008). "High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys". Acta Materialia. 56 (6): 1288–97. doi:10.1016/j.actamat.2007.11.014.
  26. "Review: precipitation in austenitic stainless steels". www.phase-trans.msm.cam.ac.uk. Retrieved 2 March 2018.
  27. 27.0 27.1 27.2 Brady, M. P.; Yamamoto, Y.; Santella, M. L.; Maziasz, P. J.; Pint, B. A.; Liu, C. T.; Lu, Z. P.; Bei, H. (July 2008). "The development of alumina-forming austenitic stainless steels for high-temperature structural use". JOM. 60 (7): 12–18. Bibcode:2008JOM....60g..12B. doi:10.1007/s11837-008-0083-2. S2CID 137354503.
  28. 28.0 28.1 28.2 28.3 Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer III, H. M.; Leonard, D. N. (November 2016). "Development of Cast Alumina-Forming Austenitic Stainless Steels". JOM. 68 (11): 2803–2810. Bibcode:2016JOM....68k2803M. doi:10.1007/s11837-016-2094-8. OSTI 1362187. S2CID 137160315.
  29. Bombač, D.; Fazarinc, M.; Kugler, G.; Spajić, S. (2008). "Microstructure development of Nimonic 80A superalloys during hot deformation". Materials and Geoenvironment. 55 (3): 319–328. Retrieved 8 March 2020 – via ResearchGate.
  30. Reed, R. C (2006). The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press. p. 121. ISBN 9780521070119.
  31. Dunand, David C. "High-Temperature Materials for Energy Conversion" Materials Science & Engineering 381: Materials for Energy-Efficient Technology. Northwestern University, Evanston. 3 February 2015. Lecture.
  32. O'Hara, K. S., Walston, W. S., Ross, E. W., Darolia, R. US Patent 5482789, 1996.
  33. Chen, J. Y.; Feng, Q.; Sun, Z. Q. (October 2010). "Topologically close-packed phase promotion in a Ru-containing single crystal superalloy". Scripta Materialia. 63 (8): 795–798. doi:10.1016/j.scriptamat.2010.06.019.
  34. Wahl, Jacqueline; Harris, Ken (2014). "New single crystal superalloys – overview and update". MATEC Web of Conferences. 14: 17002. doi:10.1051/matecconf/20141417002.
  35. Nabarro, F. R. N.; de Villiers, H. L. (1995). The Physics of creep : creep and creep-resistant alloys. London: Talylor and Francis. ISBN 9780850668520.
  36. Matan, N.; Cox, D. C.; Carter, P.; Rist, M. A.; Rae, C. M. F.; Reed, R. C. (1999). "Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature". Acta Materialia. 47 (5): 1549–1563. Bibcode:1999AcMat..47.1549M. doi:10.1016/s1359-6454(99)00029-4.
  37. Nabarro, Frank R. N. (1996). "Rafting in Superalloys". Metallurgical and Materials Transactions A. 27 (3): 513–530. Bibcode:1996MMTA...27..513N. doi:10.1007/BF02648942. S2CID 137172614.
  38. Reed, R. C.; Matan, N.; Cox, D. C.; Rist, M. A.; Rae, C. M. F. (1999). "Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature". Acta Materialia. 47 (12): 3367–3381. Bibcode:1999AcMat..47.3367R. doi:10.1016/S1359-6454(99)00217-7.
  39. 39.0 39.1 Pettit, F.S.; Meier, G.H. (1984). "Oxidation and Hot Corrosion of Superalloys". Superalloys 1984 (Fifth International Symposium). pp. 651–687. doi:10.7449/1984/Superalloys_1984_651_687.
  40. Lund and Wagner. "Oxidation of Nickel- and Cobalt-Base Superalloys"[dead link]. DMIC report 214. 1 March 1965. Defense Metals Information Center, Batelle Memorial Institute, Columbus, Ohio.
  41. Klein, L.; Bauer, S.; Neumeier, S.; Göken, M.; Virtanan, S. (2011). "High temperature oxidation of γ/γ'-strengthened Co-based superalloys". Corrosion Science. 53 (5): 2027–2034. doi:10.1016/j.corsci.2011.02.033.
  42. C. Sims, N. Stoloff, W. Hagel, Superalloys II: High Temperature Materials for Aerospace and Industrial Power, 1987, John Wiley & Sons
  43. "PIM International Vol. 7 No. 1 March 2013". Powder Injection Moulding International. Retrieved 1 March 2016.
  44. Atkinson, H. V.; Davies, S. (December 2000). "Fundamental aspects of hot isostatic pressing: An overview". Metallurgical and Materials Transactions A. 31 (12): 2981–3000. Bibcode:2000MMTA...31.2981A. doi:10.1007/s11661-000-0078-2. S2CID 137660703.
  45. Gu, D D; Meiners, W; Wissenbach, K; Poprawe, R (May 2012). "Laser additive manufacturing of metallic components: materials, processes and mechanisms". International Materials Reviews. 57 (3): 133–164. Bibcode:2012IMRv...57..133G. doi:10.1179/1743280411Y.0000000014. S2CID 137144519.
  46. Graybill, Benjamin; Li, Ming; Malawey, David; Ma, Chao; Alvarado-Orozco, Juan-Manuel; Martinez-Franco, Enrique (18 June 2018). "Additive Manufacturing of Nickel-Based Superalloys". Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing. College Station, Texas, USA: American Society of Mechanical Engineers. doi:10.1115/MSEC2018-6666. ISBN 978-0-7918-5135-7. S2CID 139639438.
  47. Y. Tamarin, Protective Coatings for Turbine Blades (Materials Park, OH: ASM International, 2002).
  48. J. R. Davis, ed., Handbook of Thermal Spray Technology (Materials Park, OH: The ASM Thermal Spray Society, 2004).
  49. Boone, D. H. (1986). "Physical vapour deposition processes". Materials Science and Technology. 2 (3): 220–224. Bibcode:1986MatST...2..220B. doi:10.1179/mst.1986.2.3.220.
  50. Clarke, David R. (January 2003). "Materials selection guidelines for low thermal conductivity thermal barrier coatings". Surface and Coatings Technology. 163–164: 67–74. doi:10.1016/S0257-8972(02)00593-5.
  51. "Wadley Research Group '". University of Virginia. Retrieved 3 March 2016.
  52. Warnes, Bruce Michael (January 2003). "Improved aluminide/MCrAlX coating systems for super alloys using CVD low activity aluminizing". Surface and Coatings Technology. 163–164: 106–111. doi:10.1016/S0257-8972(02)00602-3.
  53. Tawancy, H.M.; Abbas, N.M.; Bennett, A. (December 1994). "Role of Y during high temperature oxidation of an M-Cr-Al-Y coating on an Ni-base superalloy". Surface and Coatings Technology. 68–69: 10–16. doi:10.1016/0257-8972(94)90130-9.
  54. D. Chuanxian; H. Bingtang; L. Huiling (24 August 1984). "Plasma-sprayed wear-resistant ceramic and cermet coating materials". Thin Solid Films. 118 (4): 485–493. Bibcode:1984TSF...118..485C. doi:10.1016/0040-6090(84)90277-3.
  55. Kawahara, Yuuzou (January 1997). "Development and application of high-temperature corrosion-resistant materials and coatings for advanced waste-to-energy plants". Materials at High Temperatures. 14 (3): 261–268. Bibcode:1997MaHT...14..261K. doi:10.1080/09603409.1997.11689552.
  56. Longa, Y.; Takemoto, M. (July 1992). "High-Temperature Corrosion of Laser-Glazed Alloys in Na 2 SO 4 -V 2 O 5". Corrosion. 48 (7): 599–607. doi:10.5006/1.3315978.
  57. G. R. Heath, P. Heimgartner, G. Irons, R. Miller, S. Gustafsson, Materials Science Forum 1997, 251–54, 809
  58. Knotek, O. (2001). "Thermal Spraying and Detonation Gun Processes" (PDF). In Bunshah, R. F. (ed.). Handbook of Hard Coatings: Deposition Technologies, Properties and Applications. Park Ridge, NJ: Noyes Pub.; Norwich, NY: William Andrew Pub. pp. 77–107. ISBN 9780815514381.
  59. Niranatlumpong, P.; Ponton, C. B.; Evans, H. E. (2000). "The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings". Oxidation of Metals. 53 (3–4): 241–258. doi:10.1023/A:1004549219013. S2CID 136826569.
  60. P. Fauchais, A. Vardelle, M. Vardelle, Modelling of Plasma Spraying of Ceramic Films and Coatings, Ed. Vinenzini, Pub. Elsevier State Publishers B.V 1991.
  61. Evans, A. G.; Mumm, D. R.; Hutchinson, J. W.; Meier, G. H.; Pettit, F. S. (2001). "Mechanisms controlling the durability of thermal barrier coatings". Progress in Materials Science. 46 (5): 505–553. doi:10.1016/s0079-6425(00)00020-7.
  62. Wright, P. K.; Evans, A. G. (1999). "Mechanisms governing the performance of thermal barrier coatings". Current Opinion in Solid State and Materials Science. 4 (3): 255–265. Bibcode:1999COSSM...4..255W. doi:10.1016/s1359-0286(99)00024-8.
  63. Wright, P. K. (1998). "Influence of cyclic strain on life of a PVD TBC". Materials Science and Engineering. A245 (2): 191–200. doi:10.1016/S0921-5093(97)00850-2.
  64. Pint, B.A. (November 2004). "The role of chemical composition on the oxidation performance of aluminide coatings". Surface and Coatings Technology. 188–189: 71–78. doi:10.1016/j.surfcoat.2004.08.007.
  65. Baufeld, B.; Bartsch, M.; Broz, P.; Schmucker, M. (2004). "Microstructural changes as postmortem temperature indicator in Ni-Co-Cr-Al-Y oxidation protection coatings". Materials Science and Engineering. 384 (1–2): 162–171. doi:10.1016/j.msea.2004.05.052.
  66. Nychka, J.A; Clarke, D.R (September 2001). "Damage quantification in TBCs by photo-stimulated luminescence spectroscopy". Surface and Coatings Technology. 146–147: 110–116. doi:10.1016/S0257-8972(01)01455-4.
  67. Mumm, D. R.; Evans, A. G.; Spitsberg, I. T. (2001). "Characterisation of a cyclic displacement instability for a thermally grown oxide in a thermal barrier coating system". Acta Materialia. 49 (12): 2329–2340. doi:10.1016/s1359-6454(01)00071-4.
  68. Mumm, D. R.; Evans, A. G. (2000). "On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition". Acta Materialia. 48 (8): 1815–1827. Bibcode:2000AcMat..48.1815M. doi:10.1016/s1359-6454(99)00473-5.
  69. Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E. (1999). "Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings". Metallurgical and Materials Transactions A. 30 (2): 427–435. Bibcode:1999MMTA...30..427G. doi:10.1007/s11661-999-0332-1. S2CID 137312835.
  70. Evans, A.G.; He, M.Y.; Hutchinson, J.W. (January 2001). "Mechanics-based scaling laws for the durability of thermal barrier coatings". Progress in Materials Science. 46 (3–4): 249–271. doi:10.1016/S0079-6425(00)00007-4.
  71. Schulz, U; Menzebach, M; Leyens, C; Yang, Y.Q (September 2001). "Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems". Surface and Coatings Technology. 146–147: 117–123. doi:10.1016/S0257-8972(01)01481-5.
  72. Chen, X; Wang, R; Yao, N; Evans, A.G; Hutchinson, J.W; Bruce, R.W (July 2003). "Foreign object damage in a thermal barrier system: mechanisms and simulations". Materials Science and Engineering: A. 352 (1–2): 221–231. doi:10.1016/S0921-5093(02)00905-X.
  73. Walston, W.S. (2004). "Coating and Surface Technologies for Turbine Airfoils". Superalloys 2004 (Tenth International Symposium). pp. 579–588. doi:10.7449/2004/Superalloys_2004_579_588. ISBN 0-87339-576-X.
  74. Mumm, D. R.; Watanabe, M.; Evans, A. G.; Pfaendtner, J. A. (2004). "The influence of test method on failure mechanisms and durability of a thermal barrier system". Acta Materialia. 52 (5): 1123–1131. Bibcode:2004AcMat..52.1123M. CiteSeerX 10.1.1.514.3611. doi:10.1016/j.actamat.2003.10.045.
  75. Brady, M. P.; Muralidharan, G.; Leonard, D. N.; Haynes, J. A.; Weldon, R. G.; England, R. D. (December 2014). "Long-Term Oxidation of Candidate Cast Iron and Stainless Steel Exhaust System Alloys from 650 to 800 °C in Air with Water Vapor". Oxidation of Metals. 82 (5–6): 359–381. doi:10.1007/s11085-014-9496-1. OSTI 1185421. S2CID 136677636.



ग्रन्थसूची


बाहरी कड़ियाँ

  • "Superalloys". Cambridge University. Extensive bibliography and links.