प्वासों ब्रेकेट

From Vigyanwiki
Revision as of 15:04, 16 March 2023 by alpha>Alokchanchal
शिमोन डेनिस पोइसन

गणित और चिरसम्मत यांत्रिकी में, पोइसन कोष्ठक हैमिल्टनियन यांत्रिकी में एक महत्वपूर्ण द्विआधारी संक्रिया है, जो हैमिल्टन के गति के समीकरणों में एक केंद्रीय भूमिका निभाता है और जो हैमिल्टनियन गतिशील प्रणाली के समय के विकास को नियंत्रित करता है। पोइसन कोष्ठक समन्वय परिवर्तनों के एक निश्चित वर्ग को भी अलग करता है, जिसे विहित परिवर्तन कहा जाता है, जो कैननिकल निर्देशांक को कैनोनिकल समन्वय प्रणालियों में प्रतिचित्र करता है। एक विहित समन्वय प्रणाली में विहित स्थिति और संवेग चर होते हैं (नीचे प्रतीक द्वारा और , क्रमशः) जो कैनोनिकल पॉइसन कोष्ठक संबंधों को संतुष्ट करते हैं। संभावित विहित परिवर्तनों का सम्मुच्चय सदैव बहुत समृद्ध होता है। उदाहरण के लिए, हैमिल्टनियन को नए विहित संवेग में से एक के रूप में ही चुनना प्रायः संभव होता है।

अधिक सामान्य अर्थ में, पॉसॉन कोष्ठक का उपयोग पॉसॉन बीजगणित को परिभाषित करने के लिए किया जाता है, जिसमें प्वाइजन बहुविध पर कार्यों का बीजगणित एक विशेष स्तिथि है। अन्य सामान्य उदाहरण भी हैं: यह लाई बीजगणित के सिद्धांत में पाया जाता है, जहां लाई बीजगणित का प्रदिश बीजगणित पॉइसन बीजगणित बनाता है; यह कैसे होता है इसका एक विस्तृत निर्माण सार्वभौमिक आवरण बीजगणित लेख में दिया गया है। सार्वभौमिक आवरण बीजगणित की परिमाण विकृति परिमाण समूह की धारणा को उत्पन्न करती है।

इन सभी वस्तुओं का नाम शिमोन डेनिस पोइसन के सम्मान में रखा गया है।

गुण

दो दिए गए प्रकार्य f और g जो चरण स्थान और समय पर निर्भर करता है, उनके पॉसॉन कोष्ठक एक अन्य कार्य है जो चरण स्थान और समय पर निर्भर करता है। निम्नलिखित नियम किसी भी तीन प्रकार्य के लिए मान्य हैं चरण स्थान और समय का:

एंटीक्रम विनिमयिटी

द्विरेखीयता

लीबनिज का नियम

जैकोबी सर्वसमिका

साथ ही, यदि कोई प्रकार्य चरण स्थान पर स्थिर है (लेकिन समय पर निर्भर हो सकता है), फिर किसी के लिए

विहित निर्देशांक में परिभाषा

विहित निर्देशांक में (जिसे डार्बौक्स निर्देशांक भी कहा जाता है) चरण स्थान पर, दो कार्य और दिए गए हैं,[Note 1] प्वासों कोष्ठक रूप ले लेता है

विहित निर्देशांकों के प्वासों कोष्ठक हैं
जहाँ क्रोनकर डेल्टा है।

हैमिल्टन की गति के समीकरण

हैमिल्टन के गति के समीकरणों में पोइसन कोष्ठक के संदर्भ में एक समान अभिव्यक्ति है। यह एक स्पष्ट समन्वय फ्रेम में सबसे प्रत्यक्ष रूप से प्रदर्शित किया जा सकता है। मान लीजिये समाधान के प्रक्षेपवक्र-कई गुना पर एक फलन है। फिर बहुभिन्नरूपी श्रृंखला नियम से,

आगे कोई और को हैमिल्टन के समीकरणों के समाधान के लिए ले सकता है;
तब

इस प्रकार, एक सिम्पेक्टिक बहुविध पर एक प्रकार्य का समय विकास सिम्प्लेक्टोमोर्फिम्स के एक-मापदण्ड श्रेणी के रूप में दिया जा सकता है (अर्थात, विहित परिवर्तन, क्षेत्र-संरक्षण डिफोमोर्फिज्म), समय मापदण्ड होने के नाते: हैमिल्टनियन गति हैमिल्टनियन द्वारा उत्पन्न एक विहित परिवर्तन है। अर्थात पॉइसन कोष्ठक इसमें संरक्षित हैं, ताकि किसी भी समय हैमिल्टन के समीकरणों के समाधान में,

कोष्ठक निर्देशांक के रूप में सेवा कर सकते हैं। प्वासों कोष्ठक विहित परिवर्तन हैं।

निम्न निर्देशांक,

व्युत्पन्न के संवहन भाग में संकारक, , को कभी-कभी लिउविलियन के रूप में संदर्भित किया जाता है (लिउविल के प्रमेय (हैमिल्टनियन) देखें)।

गति के स्थिरांक

एक एकीकृत गतिशील प्रणाली में ऊर्जा के अतिरिक्त गति के स्थिरांक होंगे। गति के ऐसे स्थिरांक हैमिल्टनियन के साथ पोइसन कोष्ठक के तहत आवागमन करेंगे। मान लीजिए कुछ फलन गति का एक स्थिरांक है। इसका तात्पर्य यह है कि यदि हैमिल्टन के गति के समीकरणों का एक प्रक्षेपवक्र या समाधान है, फिर

उस पथ के साथ,
जहां, ऊपर के रूप में, मध्यवर्ती चरण गति के समीकरणों को लागू करने के बाद होता है और हम इसे मानते हैं कि स्पष्ट रूप से समय पर निर्भर नहीं करता है। इस समीकरण को लिउविल के प्रमेय (हैमिल्टनियन) के रूप में जाना जाता है। लिउविल के प्रमेय की विषय सूची यह है कि एक वितरण फलन (भौतिकी) द्वारा दिए गए माप (गणित) का समय विकास उपरोक्त समीकरण द्वारा दिया गया है।

यदि प्वासों कोष्ठक और () को गायब कर देता है, तब और को प्रत्यावर्तन कहा जाता है। हैमिल्टनियन प्रणाली को पूरी तरह से एकीकृत करने के लिए, गति के स्वतंत्र स्थिरांक वितरण में होना चाहिए, जहां स्वातंत्र्य कोटि की संख्या है।

इसके अलावा, पॉसों के प्रमेय के अनुसार, यदि दो मात्राएँ और स्पष्ट रूप से समय स्वतंत्र () गति के स्थिरांक हैं, तो उनका पॉइसन कोष्ठक है। यह सदैव एक उपयोगी परिणाम प्रदान नहीं करता है, हालांकि, गति के संभावित स्थिरांक की संख्या सीमित है ( के साथ एक प्रणाली के लिए स्वातंत्र्य कोटि), और इसलिए परिणाम तुच्छ हो सकता है (एक स्थिर, या का एक कार्य और .)

समन्वय-मुक्त भाषा में पॉइसन कोष्ठक

मान लीजिए कि M एक सिम्पलेक्टिक बहुविध है, अर्थात, एक सिम्पलेक्टिक बहुविध से सुसज्जित बहुविध: एक 2-विधि जो दोनों बंद है (अर्थात, इसका बाहरी व्युत्पन्न गायब हो जाता है) और गैर-पतित है। उदाहरण के लिए ऊपर दिए गए उपचार में को लें और

यदि द्वारा परिभाषित आंतरिक उत्पाद या प्रदिश संकुचन संचालन है, तो गैर-पतन यह कहने के बराबर है कि हर एक रूप के लिए एक अद्वितीय सदिश क्षेत्र इस प्रकार है कि । वैकल्पिक रूप से, । तो यदि एक सुचारू कार्य है तो हैमिल्टनियन सदिश क्षेत्र को के रूप में परिभाषित किया जा सकता है। यह देखना आसान है कि
पोइसन कोष्ठक पर (M, ω) अलग-अलग कार्यों पर एक बिलिनियर मानचित्र है, जिसे से परिभाषित किया गया है; दो कार्यों के प्वासों कोष्ठक पर M अपने आप में एक फलन M है। पोइसन कोष्ठक एंटीसिमेट्रिक है क्योंकि:
आगे,

 

 

 

 

(1)

यहाँ Xgf सदिश क्षेत्र Xg को दर्शाता है, एक दिशात्मक व्युत्पन्न के रूप में f प्रकार्य पर लागू होता है, और प्रकार्य f के व्युत्पन्न (पूरी तरह से समतुल्य) को दर्शाता है।

यदि α एक मनमाना एक-रूप M है, सदिश क्षेत्र Ωα प्रवाहिता (गणित) उत्पन्न करता है (कम से कम स्थानीय रूप से) सीमा की स्थिति को संतुष्ट करता है और प्रथम-क्रम अंतर समीकरण निम्न है

x के कार्य के रूप में h> प्रत्येक t के लिए symplectomorphisms (विहित परिवर्तन) होगा, यदि और केवल यदि है; जब यह सच होता है तो Ωα को सैम्पलेक्टिक सदिश क्षेत्र कहा जाता है। कार्टन की अस्मिता को याद करते हुए और dω = 0, यह इस प्रकार है कि । इसलिए, Ωα एक सैम्पलेक्टिक सदिश क्षेत्र है यदि और केवल यदि α संवृत रूप है। क्योंकि है तो यह इस प्रकार है कि प्रत्येक हैमिल्टनियन सदिश क्षेत्र Xf एक सैम्पलेक्टिक सदिश क्षेत्र है, और यह कि हैमिल्टनियन प्रवाह में विहित परिवर्तन होते हैं। (1) से ऊपर, हैमिल्टनियन प्रवाह XH के तहत ,
यह हेमिल्टनियन यांत्रिकी में एक मौलिक परिणाम है, जो चरण स्थान पर परिभाषित कार्यों के समय के विकास को नियंत्रित करता है। जैसा कि ऊपर उल्लेख किया गया है, जब {f,H} = 0, f प्रणाली की गति का एक स्थिरांक है। इसके अलावा, विहित निर्देशांक में (के साथ और ), प्रणाली के समय के विकास के लिए हैमिल्टन के समीकरण इस सूत्र से तुरंत अनुसरण करते हैं।

(1) से भी होता है कि प्वासों कोष्ठक एक व्युत्पत्ति (अमूर्त बीजगणित) है; अर्थात्, यह लीबनिज के उत्पाद नियम के एक गैर-क्रम विनिमय संस्करण को संतुष्ट करता है:


और

 

 

 

 

(2)

पोइसन कोष्ठक हैमिल्टनियन सदिश क्षेत्र के लाई कोष्ठक से घनिष्ठ रूप से जुड़ा हुआ है। क्योंकि लाई व्युत्पादित एक व्युत्पत्ति है,

इस प्रकार यदि v और w सैम्पलेक्टिकपूर्ण हैं, , कार्टन की अस्मिता, और इस तथ्य उपयोग करके कि बंद रूप है,
यह का अनुसरण करता है ताकि

 

 

 

 

(3)

इस प्रकार, प्रकार्य पर पोइसन कोष्ठक संबंधित हैमिल्टनियन सदिश छेत्र के लाई कोष्ठक से मेल खाता है। हमने यह भी दिखाया है कि दो सिम्प्लेक्टिक सदिश क्षेत्र का लाइ कोष्ठक एक हैमिल्टनियन सदिश छेत्र है और इसलिए यह सिम्प्लेक्टिक भी है। सार बीजगणित की भाषा में, सैम्पलेक्टिक सदिश क्षेत्र सुचारु सदिश क्षेत्रों के लाई बीजगणित का एक उपलजगणित M बनाते हैं, और हैमिल्टनियन सदिश क्षेत्र इस सबलजेब्रा का एक बीजगणितीय आदर्श बनाते हैं। सैम्पलेक्टिक सदिश क्षेत्र (अनंत-आयामी) के लाइ बीजगणित हैं M.

यह व्यापक रूप से माना जाता है कि प्वासों कोष्ठक के लिए जैकोबी अस्मिता,

सदिश क्षेत्रों के लाइ कोष्ठक के लिए संबंधित अस्मिता से अनुसरण करता है, लेकिन यह केवल स्थानीय रूप से स्थिर प्रकार्य तक ही सही है। हालांकि, पोइसन कोष्ठक के लिए जैकोबी अस्मिता सिद्ध करने के लिए, यह निम्न दर्शाने के लिए पर्याप्त है:
जहां संचालक सुचारू कार्यों पर M द्वारा परिभाषित किया गया है और दाहिनी ओर का कोष्ठक संचालकों का दिक्परिवर्तक है। (1) द्वारा, परिचालक संचालक Xg के बराबर है। जैकोबी पहचान का प्रमाण (3) से मिलता है क्योंकि, -1 के गुणक तक, सदिश क्षेत्रों का लाई कोष्ठक अंतर संचालकों के रूप में केवल उनका दिक्परिवर्तक है।

M पर सुचारु कार्यों के एक क्षेत्र पर बीजगणित, पोइसन कोष्ठक के साथ एक पॉसॉन बीजगणित बनाता है, क्योंकि यह पॉसॉन कोष्ठक के तहत एक लाई बीजगणित है, जो अतिरिक्त रूप से लीबनिज के नियम (2) को संतुष्ट करता है। हमने दिखाया है कि प्रत्येक सिम्प्लेक्टिक बहुविध एक पोइज़न बहुविध है, जो कि एक धनु-कोष्ठक संचालक के साथ कई गुना है, जो सुचारू कार्यों पर होता है, जैसे कि सुचारू कार्य एक पॉइज़न बीजगणित बनाते हैं। हालांकि, प्रत्येक पॉइसन बहुविध इस तरह से उत्पन्न नहीं होता है, क्योंकि पॉइसन बहुविध अध: पतन की अनुमति देता है जो सैम्पलेक्टिकपूर्ण स्तिथि में उत्पन्न नहीं हो सकता है।

संयुग्म संवेग पर परिणाम

एक सुचारु सदिश क्षेत्र को देखते हुए समाकृति स्थान पर, मान लीजिये इसका संयुग्मी संवेग है। संयुग्म संवेग मानचित्रण सदिश क्षेत्रों के लाई कोष्ठक से पोइसन कोष्ठक तक एक लाई बीजगणित विरोधी समरूपता है:

यह महत्वपूर्ण परिणाम एक संक्षिप्त प्रमाण के लायक है। सदिश क्षेत्र को विन्यास स्थान में बिंदु पर निम्न रूप में लिखें
जहाँ स्थानीय समन्वय वृत्ति है। के संयुग्मी संवेग का व्यंजक निम्न है
जहां गति कार्य निर्देशांक के संयुग्म हैं। उसके बाद चरण स्थान में एक बिंदु के लिए है,
उपर्युक्त सभी के लिए मान्य है, वांछित परिणाम देता है।

परिमाणीकरण

पोइसन कोष्ठक विरूपण सिद्धांत को वेइल परिमाणीकरण पर मोयल कोष्ठकों के लिए, अर्थात्, वे एक अलग लाइ बीजगणित, मोयल कोष्ठक, या, हिल्बर्ट अंतरिक्ष में समान रूप से, परिमाण दिक्परिवर्तक के लिए सामान्यीकृत करते हैं। इनमें से विग्नेर-इनोनू समूह संकुचन (चिरसम्मत सीमा, ħ → 0) उपरोक्त लाइ बीजगणित उत्पन्न करता है।

इसे अधिक स्पष्ट और सटीक रूप से बताने के लिए, हाइजेनबर्ग बीजगणित का सार्वभौमिक आवरण बीजगणित वेइल बीजगणित है। मोयल उत्पाद तब प्रतीकों के बीजगणित पर स्टार उत्पाद का एक विशेष स्तिथि है। प्रतीकों के बीजगणित की एक स्पष्ट परिभाषा, और तारकीय गुणनफल सार्वभौम घेरने वाले बीजगणित पर लेख में दिया गया है।

यह भी देखें

टिप्पणी

  1. means is a function of the independent variables: momentum, ; position, ; and time,

संदर्भ

  • Arnold, Vladimir I. (1989). Mathematical Methods of Classical Mechanics (2nd ed.). New York: Springer. ISBN 978-0-387-96890-2.
  • Landau, Lev D.; Lifshitz, Evegeny M. (1982). Mechanics. Course of Theoretical Physics. Vol. 1 (3rd ed.). Butterworth-Heinemann. ISBN 978-0-7506-2896-9.
  • Karasëv, Mikhail V.; Maslov, Victor P. (1993). Nonlinear Poisson brackets, Geometry and Quantization. Translations of Mathematical Monographs. Vol. 119. Translated by Sossinsky, Alexey; Shishkova, M.A. Providence, RI: American Mathematical Society. ISBN 978-0821887967. MR 1214142.


बाहरी संबंध