त्रिभुज केंद्र

From Vigyanwiki
Revision as of 14:22, 5 April 2023 by alpha>Indicwiki (Created page with "{{short description|Point in a triangle that can be seen as its middle under some criteria}} {{about|a geometry concept|the place in Lexington, Kentucky|Triangle Center}} {{Us...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

नौ-बिंदु केंद्र (N) है

ज्यामिति में, एक त्रिभुज केंद्र या त्रिभुज केंद्र त्रिभुज के तल (ज्यामिति) में एक बिंदु (ज्यामिति) होता है जो किसी अर्थ में त्रिभुज के मध्य में होता है। उदाहरण के लिए, सेंट्रोइड, सरकमसेंटर, इनसेंटर और ऑर्थोसेंटर ग्रीक गणित से परिचित थे, और सरल स्ट्रेटएज और कम्पास निर्माण द्वारा प्राप्त किए जा सकते हैं।

इन शास्त्रीय केंद्रों में से प्रत्येक में संपत्ति है कि यह समानता (ज्यामिति) के तहत अपरिवर्तनीय (गणित) (अधिक सटीक रूप से समकक्ष नक्शा) है। दूसरे शब्दों में, किसी भी त्रिकोण और किसी भी समानता परिवर्तन (जैसे रोटेशन (गणित), प्रतिबिंब (गणित), फैलाव (मीट्रिक स्थान), या अनुवाद (ज्यामिति)) के लिए, रूपांतरित त्रिकोण का केंद्र वही बिंदु है जो मूल त्रिभुज का रूपांतरित केंद्र। यह आक्रमण त्रिभुज केंद्र की परिभाषित संपत्ति है। यह अन्य प्रसिद्ध बिंदुओं जैसे कि ब्रोकार्ड बिंदुओं को रद्द करता है जो प्रतिबिंब के तहत अपरिवर्तनीय नहीं हैं और इसलिए त्रिभुज केंद्रों के रूप में अर्हता प्राप्त करने में विफल रहते हैं।

एक समबाहु त्रिभुज के लिए, सभी त्रिभुज केंद्र उसके केंद्रक पर संपाती होते हैं। हालाँकि त्रिभुज केंद्र आम तौर पर अन्य सभी त्रिभुजों पर एक दूसरे से अलग स्थिति लेते हैं। हजारों त्रिकोण केंद्रों की परिभाषाएं और गुण 'त्रिभुज केंद्रों के विश्वकोश' में एकत्र किए गए हैं।

इतिहास

भले ही प्राचीन यूनानियों ने त्रिकोण के शास्त्रीय केंद्रों की खोज की थी, लेकिन उन्होंने त्रिभुज केंद्र की कोई परिभाषा नहीं बनाई थी। प्राचीन यूनानियों के बाद, त्रिभुज से जुड़े कई विशेष बिंदुओं जैसे फ़र्मेट बिंदु, नौ-बिंदु केंद्र, लेमोइन बिंदु, गेरगोन बिंदु और फ़्यूरबैक बिंदु की खोज की गई।

1980 के दशक में त्रिकोण ज्यामिति में रुचि के पुनरुद्धार के दौरान यह देखा गया कि ये विशेष बिंदु कुछ सामान्य गुणों को साझा करते हैं जो अब त्रिभुज केंद्र की औपचारिक परिभाषा का आधार बनते हैं।[1][2] As of 17 June 2022, त्रिकोण केंद्रों के क्लार्क किम्बरलिंग के विश्वकोश में 50,730 त्रिभुज केंद्रों की व्याख्या की गई सूची है।[3] त्रिभुज केंद्रों के विश्वकोश में प्रत्येक प्रविष्टि द्वारा दर्शाया गया है या कहाँ प्रविष्टि की स्थितीय सूचकांक है। उदाहरण के लिए, एक त्रिभुज का केन्द्रक दूसरी प्रविष्टि है और इसे द्वारा निरूपित किया जाता है या .

औपचारिक परिभाषा

तीन वास्तविक चर a, b, c के एक फलन (गणित) | वास्तविक-मूल्यवान फलन f में निम्नलिखित गुण हो सकते हैं:

  • समरूपता: f(ta,tb,tc) = tn f(a,b,c) कुछ स्थिर n के लिए और सभी t > 0 के लिए।
  • द्वितीय सममिति दूसरे और तीसरे चर में: f(a,b,c) = f(a,c,b).

यदि एक गैर-शून्य f में ये दोनों गुण हैं तो इसे त्रिभुज केंद्र फलन कहा जाता है। यदि f एक त्रिभुज केंद्र फलन है और a, b, c एक संदर्भ त्रिभुज की पार्श्व-लंबाई हैं तो वह बिंदु जिसके त्रिरेखीय निर्देशांक हैं f(a,b,c) : f(b,c,a) : f(c , ए, बी) को त्रिभुज केंद्र कहा जाता है।

यह परिभाषा सुनिश्चित करती है कि समान त्रिभुजों के त्रिभुज केंद्र ऊपर निर्दिष्ट अपरिवर्तनीय मानदंडों को पूरा करते हैं। परिपाटी के अनुसार त्रिभुज केंद्र के तीन त्रिरेखीय निर्देशांकों में से केवल पहले को उद्धृत किया जाता है क्योंकि अन्य दो a, b, c के चक्रीय क्रमचय द्वारा प्राप्त किए जाते हैं। इस प्रक्रिया को 'चक्रीयता' के रूप में जाना जाता है।[4][5] प्रत्येक त्रिभुज केंद्र कार्य एक अद्वितीय त्रिभुज केंद्र से मेल खाता है। यह पत्राचार विशेषण नहीं है। अलग-अलग फ़ंक्शन एक ही त्रिभुज केंद्र को परिभाषित कर सकते हैं। उदाहरण के लिए, कार्य f1(ए, बी, सी) = 1/ए और एफ2(ए, बी, सी) = बीसी दोनों केन्द्रक के अनुरूप हैं। दो त्रिभुज केंद्र कार्य समान त्रिभुज केंद्र को परिभाषित करते हैं यदि और केवल यदि उनका अनुपात a, b और c में एक सममित कार्य है।

यहां तक ​​​​कि अगर त्रिकोण केंद्र समारोह हर जगह अच्छी तरह से परिभाषित है, तो हमेशा इसके संबंधित त्रिकोण केंद्र के लिए नहीं कहा जा सकता है। उदाहरण के लिए, मान लीजिए f(a, b, c) 0 है यदि a/b और a/c दोनों परिमेय हैं और 1 अन्यथा। फिर पूर्णांक भुजाओं वाले किसी भी त्रिभुज के लिए संबद्ध त्रिभुज केंद्र 0:0:0 का मूल्यांकन करता है जो अपरिभाषित है।

डिफ़ॉल्ट डोमेन

कुछ मामलों में इन कार्यों को 3</उप>। उदाहरण के लिए, X के ट्रिलिनियर्स365 जो त्रिभुज केंद्रों के विश्वकोश में 365वीं प्रविष्टि है, वे हैं a1/2 : बी1/2 : सी1/2 इसलिए a, b, c ऋणात्मक नहीं हो सकते। इसके अलावा, त्रिभुज की भुजाओं का प्रतिनिधित्व करने के लिए उन्हें त्रिभुज असमानता को संतुष्ट करना चाहिए। इसलिए, व्यवहार में, किसी फ़ंक्शन के प्रत्येक फ़ंक्शन का डोमेन 3 जहां a ≤ b + c, b ≤ c + a, और c ≤ a + b। यह क्षेत्र 'T' सभी त्रिकोणों का डोमेन है, और यह सभी त्रिकोण-आधारित कार्यों के लिए डिफ़ॉल्ट डोमेन है।

अन्य उपयोगी डोमेन

ऐसे कई उदाहरण हैं जहां विश्लेषण को टी से छोटे डोमेन तक सीमित करना वांछनीय हो सकता है। उदाहरण के लिए:

* केंद्र एक्स3, एक्स4, एक्स22, एक्स24, एक्स40 तीव्र त्रिभुजों के लिए विशिष्ट संदर्भ दें, अर्थात् T का वह क्षेत्र जहाँ a2</सुप> ≤ ख2 + सी2, बी2 ≤ सी2 + ए2, सी2</सुप> ≤ अ2 + बी2</उप>।
* फर्मेट बिंदु और एक्स के बीच अंतर करते समय13 2π/3 से अधिक कोण वाले त्रिकोण का डोमेन महत्वपूर्ण है, दूसरे शब्दों में त्रिकोण जिसके लिए a2 > बी2 + बीसी + सी2 या बी2 > सी2 + as + a2 या सी2 > अ2</सुप> + अब + बी2</उप>।
  • अधिक व्यावहारिक मूल्य का एक डोमेन क्योंकि यह टी में सघन है फिर भी सभी तुच्छ त्रिकोणों (यानी बिंदुओं) को बाहर करता है और पतित त्रिकोण (यानी रेखाएं) सभी त्रिकोण त्रिकोणों का समूह है। यह टी से विमानों बी = सी, सी = , = बी को हटाकर प्राप्त किया जाता है।

डोमेन समरूपता

प्रत्येक उपसमुच्चय D ⊆ T एक व्यवहार्य डोमेन नहीं है। द्विसममिति परीक्षण का समर्थन करने के लिए D को विमानों b = c, c = a, a = b के बारे में सममित होना चाहिए। चक्रीयता का समर्थन करने के लिए इसे a = b = c रेखा के बारे में 2π/3 घुमावों के तहत अपरिवर्तनीय भी होना चाहिए। सभी का सबसे सरल डोमेन रेखा (t,t,t) है जो सभी त्रिकोण त्रिकोणों के सेट से मेल खाती है।

उदाहरण

परिकेंद्र

त्रिभुज ABC की भुजाओं के लंब समद्विभाजकों का संगम बिंदु परिकेन्द्र होता है। परिकेन्द्र के त्रिरेखीय निर्देशांक हैं

ए (बी2 + सी2 − ए2) : बी(सी2 + ए2 − बी2): सी(ए2 + बी2 − सी2).

चलो f(a,b,c) = a(b2 + सी2 − ए2). तब

एफ (टीए, टीबी, टीसी) = (टीए) ((टीबी)2 + (टीसी)2 − (आपका)2 ) = टी3 (ए(बी2 + सी2 − ए2) = टी3 f(a,b,c) (समरूपता)
एफ (ए, सी, बी) = ए (सी2 + बी2 − ए2) = ए (बी2 + सी2 − ए2) = f(a,b,c) (द्विसममिति)

अतः f एक त्रिभुज केंद्र फलन है। चूँकि संगत त्रिभुज केंद्र में परिकेन्द्र के समान त्रिरेखीय होते हैं, इसलिए यह इस प्रकार है कि परिकेन्द्र एक त्रिभुज केंद्र है।

पहला आइसोगोनिक केंद्र

मान लें कि A'BC एक समबाहु त्रिभुज है जिसका आधार BC और शीर्ष A' BC की ऋणात्मक भुजा पर है और मान लें कि AB'C और ABC' समान रूप से त्रिभुज ABC की अन्य दो भुजाओं पर आधारित समबाहु त्रिभुज हैं। फिर रेखाएँ AA', BB' और CC' समवर्ती हैं और सहमति का बिंदु पहला आइसोगोनल केंद्र है। इसके त्रिरेखीय निर्देशांक हैं

सीएससी (ए + π/3) : सीएससी (बी + π/3) : सीएससी (सी + π/3)।

ए, बी और सी के संदर्भ में इन निर्देशांकों को व्यक्त करते हुए, यह सत्यापित किया जा सकता है कि वे वास्तव में त्रिभुज केंद्र के निर्देशांक के परिभाषित गुणों को संतुष्ट करते हैं। इसलिए पहला आइसोगोनिक केंद्र भी एक त्रिकोण केंद्र है।

फर्मेट बिंदु

होने देना

तब f द्विसममित और सजातीय है इसलिए यह एक त्रिभुज केंद्र कार्य है। इसके अलावा, जब भी कोई शीर्ष कोण 2π/3 से अधिक होता है, और पहले आइसोगोनिक केंद्र के साथ, संबंधित त्रिभुज केंद्र अधिक कोण वाले शीर्ष के साथ मेल खाता है। इसलिए, यह त्रिभुज केंद्र और कोई नहीं बल्कि फर्मेट बिंदु है।

गैर-उदाहरण

ब्रोकेड डॉट्स

पहले ब्रोकार्ड बिंदु के त्रिरेखीय निर्देशांक c/b : a/c : b/a हैं। ये निर्देशांक एकरूपता और चक्रीयता के गुणों को संतुष्ट करते हैं लेकिन द्विसममिति को नहीं। तो पहला ब्रोकार्ड बिंदु (सामान्य रूप से) त्रिभुज केंद्र नहीं है। दूसरे ब्रोकार्ड बिंदु में त्रिरेखीय निर्देशांक b/c : c/a : a/b है और इसी तरह की टिप्पणी लागू होती है।

पहला और दूसरा ब्रोकार्ड अंक, बिंदुओं के कई द्विकेंद्रित युग्मों में से एक हैं,[6] त्रिकोण से परिभाषित बिंदुओं के जोड़े इस संपत्ति के साथ कि जोड़ी (लेकिन प्रत्येक व्यक्तिगत बिंदु नहीं) त्रिकोण की समानता के तहत संरक्षित है। कई बाइनरी ऑपरेशंस, जैसे मिडपॉइंट और ट्रिलिनियर उत्पाद, जब दो ब्रोकार्ड पॉइंट्स के साथ-साथ अन्य बाइसेंट्रिक जोड़े पर लागू होते हैं, तो त्रिकोण केंद्र उत्पन्न होते हैं।

कुछ प्रसिद्ध त्रिभुज केंद्र

शास्त्रीय त्रिकोण केंद्र

Encyclopedia of
Triangle Centers
reference
Name
Standard
symbol
Trilinear coordinates Description
X1 Incenter I 1 : 1 : 1 Intersection of the angle bisectors. Center of the triangle's inscribed circle.
X2 Centroid G bc : ca : ab Intersection of the medians. Center of mass of a uniform triangular lamina.
X3 Circumcenter O cos A : cos B : cos C Intersection of the perpendicular bisectors of the sides. Center of the triangle's circumscribed circle.
X4 Orthocenter H sec A : sec B : sec C Intersection of the altitudes.
X5 Nine-point center N cos(BC) : cos(CA) : cos(AB) Center of the circle passing through the midpoint of each side, the foot of each altitude, and the midpoint between the orthocenter and each vertex.
X6 Symmedian point K a : b : c Intersection of the symmedians – the reflection of each median about the corresponding angle bisector.
X7 Gergonne point Ge bc/(b + ca) : ca/(c + ab) : ab/(a + bc) Intersection of the lines connecting each vertex to the point where the incircle touches the opposite side.
X8 Nagel point Na (b + ca)/a : (c + ab)/b: (a + bc)/c Intersection of the lines connecting each vertex to the point where an excircle touches the opposite side.
X9 Mittenpunkt M (b + ca) : (c + ab) : (a + bc) Symmedian point of the excentral triangle (and various equivalent definitions).
X10 Spieker center Sp bc(b + c) : ca(c + a) : ab(a + b) Incenter of the medial triangle. Center of mass of a uniform triangular wireframe.
X11 Feuerbach point F 1 − cos(BC) : 1 − cos(CA) : 1 − cos(AB) Point at which the nine-point circle is tangent to the incircle.
X13 Fermat point X csc(A + π/3) : csc(B + π/3) : csc(C + π/3) (*) Point that is the smallest possible sum of distances from the vertices.
X15
X16
Isodynamic points S
S
sin(A + π/3) : sin(B + π/3) : sin(C + π/3)
sin(A − π/3) : sin(B − π/3) : sin(C − π/3)
Centers of inversion that transform the triangle into an equilateral triangle.
X17
X18
Napoleon points N
N
sec(A − π/3) : sec(B − π/3) : sec(C − π/3)
sec(A + π/3) : sec(B + π/3) : sec(C + π/3)
Intersection of the lines connecting each vertex to the center of an equilateral triangle pointed outwards (first Napoleon point) or inwards (second Napoleon point), mounted on the opposite side.
X99 Steiner point S bc/(b2c2) : ca/(c2a2) : ab/(a2b2) Various equivalent definitions.
(*) : actually the 1st isogonic center, but also the Fermat point whenever A,B,C ≤ 2π/3


हालिया त्रिकोण केंद्र

अधिक हाल के त्रिभुज केंद्रों की निम्न तालिका में, विभिन्न बिंदुओं के लिए कोई विशिष्ट अंकन का उल्लेख नहीं किया गया है। साथ ही प्रत्येक केंद्र के लिए केवल पहला त्रिरेखीय निर्देशांक f(a,b,c) निर्दिष्ट किया गया है। ट्रिलिनियर निर्देशांक की चक्रीयता संपत्ति का उपयोग करके अन्य निर्देशांक आसानी से प्राप्त किए जा सकते हैं।

Encyclopedia of
Triangle Centers
reference
Name Center function
f(a,b,c)
Year described
X21 Schiffler point 1/(cos B + cos C) 1985
X22 Exeter point a(b4 + c4a4) 1986
X111 Parry point a/(2a2b2c2) early 1990s
X173 Congruent isoscelizers point tan(A/2) + sec(A/2) 1989
X174 Yff center of congruence sec(A/2) 1987
X175 Isoperimetric point − 1 + sec(A/2) cos(B/2) cos(C/2) 1985
X179 First Ajima-Malfatti point sec4(A/4)
X181 Apollonius point a(b + c)2/(b + ca) 1987
X192 Equal parallelians point bc(ca + abbc) 1961
X356 Morley center cos(A/3) + 2 cos(B/3) cos(C/3) 1978[7]
X360 Hofstadter zero point A/a 1992


त्रिकोण केन्द्रों के सामान्य वर्ग

किम्बरलिंग केंद्र

32,000 से अधिक त्रिभुज केंद्रों का ऑनलाइन विश्वकोश बनाने वाले क्लार्क किम्बरलिंग के सम्मान में, विश्वकोश में सूचीबद्ध त्रिभुज केंद्रों को सामूहिक रूप से किम्बरलिंग केंद्र कहा जाता है।[8]


बहुपद त्रिकोण केंद्र

एक त्रिभुज केंद्र P को बहुपद त्रिभुज केंद्र कहा जाता है यदि P के त्रिरेखीय निर्देशांक को a, b और c में बहुपद के रूप में व्यक्त किया जा सकता है।

नियमित त्रिकोण केंद्र

एक त्रिभुज केंद्र P को एक नियमित त्रिभुज बिंदु कहा जाता है यदि P के त्रिरेखीय निर्देशांक को Δ, a, b और c में बहुपद के रूप में व्यक्त किया जा सकता है, जहाँ Δ त्रिभुज का क्षेत्रफल है।

प्रमुख त्रिकोण केंद्र

एक त्रिभुज केंद्र P को एक प्रमुख त्रिकोण केंद्र कहा जाता है यदि P के त्रिरेखीय निर्देशांक को f(A) : f(B): f(C) के रूप में व्यक्त किया जा सकता है, जहां f(X) कोण X का एक कार्य है। अकेले और अन्य कोणों या पार्श्व लंबाई पर निर्भर नहीं करता है।[9]


भावातीत त्रिकोण केंद्र

एक त्रिभुज केंद्र P को एक पारलौकिक त्रिभुज केंद्र कहा जाता है यदि P का केवल a, b और c के बीजगणितीय कार्यों का उपयोग करके कोई त्रिरेखीय प्रतिनिधित्व नहीं है।

विविध

समद्विबाहु त्रिभुज

चलो च एक त्रिकोण केंद्र समारोह हो। यदि किसी त्रिभुज की दो भुजाएँ बराबर हैं (मान लीजिए a = b) तो

इसलिए संबंधित त्रिभुज केंद्र के दो घटक हमेशा बराबर होते हैं। इसलिए, एक समद्विबाहु त्रिभुज के सभी त्रिभुज केंद्र इसकी सममित रेखा पर स्थित होने चाहिए। एक समबाहु त्रिभुज के लिए सभी तीन घटक समान होते हैं इसलिए सभी केंद्र केन्द्रक के साथ मेल खाते हैं। इसलिए, एक वृत्त की तरह, एक समबाहु त्रिभुज का एक अद्वितीय केंद्र होता है।

एक्सेंटर्स

होने देना

यह आसानी से एक त्रिभुज केंद्र कार्य के रूप में देखा जाता है और (बशर्ते त्रिभुज विषम हो) संबंधित त्रिभुज केंद्र सबसे बड़े शीर्ष कोण के विपरीत एक्सेंटर है। अन्य दो एक्सेंटर्स को समान कार्यों द्वारा चुना जा सकता है। हालाँकि, जैसा कि ऊपर बताया गया है कि एक समद्विबाहु त्रिभुज के केवल एक एक्सेंटर और एक समबाहु त्रिभुज का कोई भी एक्सेंटर कभी भी त्रिभुज केंद्र नहीं हो सकता है।

द्विप्रतिमितीय कार्य

एक फलन f 'द्विअतिसममित' होता है यदि f(a,b,c) = −f(a,c,b) सभी a,b,c के लिए। यदि ऐसा फ़ंक्शन गैर-शून्य और सजातीय भी है तो यह आसानी से देखा जा सकता है कि मानचित्रण (a,b,c) → f(a,b,c)2 f(b,c,a) f(c,a,b) एक त्रिभुज केंद्र फलन है। संगत त्रिभुज केंद्र है f(a,b,c) : f(b,c,a) : f(c,a,b). इसके कारण त्रिभुज केंद्र फ़ंक्शन की परिभाषा को कभी-कभी गैर-शून्य सजातीय द्विअर्थी सममित कार्यों को शामिल करने के लिए लिया जाता है।

पुराने से नए केंद्र

किसी भी त्रिकोण केंद्र समारोह एफ को ए, बी, सी के सममित समारोह से गुणा करके 'सामान्यीकृत' किया जा सकता है ताकि एन = 0। एक सामान्यीकृत त्रिभुज केंद्र समारोह में मूल के समान त्रिकोण केंद्र होता है, और यह भी मजबूत संपत्ति है कि एफ (ta,tb,tc) = f(a,b,c) सभी t > 0 और सभी (a,b,c) के लिए। शून्य फ़ंक्शन के साथ, सामान्यीकृत त्रिभुज केंद्र फ़ंक्शन जोड़, घटाव और गुणा के तहत एक क्षेत्र पर एक बीजगणित बनाते हैं। यह नए त्रिभुज केंद्र बनाने का आसान तरीका देता है। हालाँकि विशिष्ट सामान्यीकृत त्रिभुज केंद्र कार्य अक्सर समान त्रिभुज केंद्र को परिभाषित करेंगे, उदाहरण के लिए f और (abc)−1(ए+बी+सी)3च .

अरुचिकर केंद्र

मान लें a,b,c वास्तविक चर हैं और α,β,γ को कोई भी तीन वास्तविक स्थिरांक होने दें। होने देना

तब f एक त्रिभुज केंद्र फलन है और α : β : γ संगत त्रिभुज केंद्र है जब भी संदर्भ त्रिभुज की भुजाओं को लेबल किया जाता है ताकि a < b < c। इस प्रकार प्रत्येक बिंदु संभावित रूप से एक त्रिभुज केंद्र है। हालाँकि त्रिभुज केंद्रों का विशाल बहुमत बहुत कम रुचि का है, जिस तरह अधिकांश निरंतर कार्यों में बहुत कम रुचि होती है।

बैरीसेंट्रिक निर्देशांक

अगर एफ एक त्रिभुज केंद्र समारोह है तो ऐसा ही है और संबंधित त्रिकोण केंद्र है af(a,b,c) : bf(b,c,a) : cf(c,a,b). चूँकि ये f के अनुरूप त्रिभुज केंद्र की सटीक रूप से बैरीसेंट्रिक समन्वय प्रणाली हैं, इसलिए त्रिभुज केंद्रों को त्रिरेखीय के बजाय बैरीसेंट्रिक के संदर्भ में समान रूप से अच्छी तरह से परिभाषित किया जा सकता है। व्यवहार में एक समन्वय प्रणाली से दूसरे में स्विच करना मुश्किल नहीं है।

बाइनरी सिस्टम

फ़र्मेट बिंदु और प्रथम आइसोगोनिक केंद्र के अलावा अन्य केंद्र जोड़े भी हैं। एक अन्य प्रणाली X द्वारा बनाई गई है3 और स्पर्शरेखा त्रिभुज का केंद्र। द्वारा दिए गए त्रिकोण केंद्र समारोह पर विचार करें:

संबंधित त्रिभुज केंद्र के लिए चार अलग-अलग संभावनाएँ हैं:

  •   cos(A) : cos(B) : cos(C)     यदि संदर्भ त्रिभुज तीव्र है (यह भी परिकेन्द्र है)।
  •   [cos(A) + sec(B)sec(C)] : [cos(B) − sec(B)] : [cos(C) − sec(C)]     अगर A पर कोण अधिक कोण है।
  •   [cos(A) − sec(A)] : [cos(B) + sec(C)sec(A)] : [cos(C) − sec(C)]     यदि B पर कोण अधिक कोण वाला है।
  •   [cos(A) − sec(A)] : [cos(B) − sec(B)] : [cos(C) + sec(A)sec(B)]     यदि C पर कोण अधिक कोण वाला है।

नियमित गणना से पता चलता है कि हर मामले में ये ट्रिलिनियर स्पर्शरेखा त्रिकोण के केंद्र का प्रतिनिधित्व करते हैं। तो यह बिंदु एक त्रिभुज केंद्र है जो कि परिकेन्द्र का घनिष्ठ साथी है।

द्विसममिति और निश्चरता

किसी त्रिभुज को परावर्तित करने से उसकी भुजाओं का क्रम उलट जाता है। छवि में निर्देशांक (सी, बी, ए) त्रिभुज को संदर्भित करते हैं और (विभाजक के रूप में | का उपयोग करके) मनमाना बिंदु α का प्रतिबिंब α : β : γ is γ | β | α। यदि एफ एक त्रिभुज केंद्र कार्य है तो इसके त्रिभुज केंद्र का प्रतिबिंब f(c,a,b) | है एफ (बी, सी, ए) | f(a,b,c) जो द्विसममिति द्वारा f(c,b,a) | एफ (बी, ए, सी) | एफ (ए, सी, बी)। चूँकि यह (c,b,a) त्रिभुज के सापेक्ष f के संगत त्रिभुज केंद्र भी है, द्विसममिति यह सुनिश्चित करती है कि सभी त्रिभुज केंद्र परावर्तन के तहत अपरिवर्तनीय हैं। चूँकि घुमाव और अनुवाद को दोहरे प्रतिबिंब के रूप में माना जा सकता है, उन्हें भी त्रिभुज केंद्रों को संरक्षित करना चाहिए। ये अचल गुण परिभाषा के लिए औचित्य प्रदान करते हैं।

वैकल्पिक शब्दावली

तनुकरण के लिए कुछ अन्य नाम स्केलिंग (ज्यामिति), स्केलिंग (ज्यामिति), समरूप परिवर्तन और होमोथेटिक ट्रांसफॉर्मेशन हैं।

गैर-यूक्लिडियन और अन्य ज्यामिति

त्रिभुज केंद्रों का अध्ययन परंपरागत रूप से यूक्लिडियन ज्यामिति से संबंधित है, लेकिन त्रिभुज केंद्रों का अध्ययन गैर-यूक्लिडियन ज्यामिति में भी किया जा सकता है।[10] गोलाकार ज्यामिति त्रिभुज केंद्रों को गोलीय त्रिकोणमिति का उपयोग करके परिभाषित किया जा सकता है।[11] यूक्लिडियन और हाइपरबॉलिक ज्यामिति दोनों के लिए समान रूप वाले त्रिभुज केंद्रों को जाइरोट्रिगोनोमेट्री का उपयोग करके व्यक्त किया जा सकता है।[12][13][14] गैर-यूक्लिडियन ज्यामिति में, यह धारणा कि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री है, को छोड़ दिया जाना चाहिए।

चतुर्पाश्वीय या उच्च-आयामी संकेतन के केंद्रों को भी 2-आयामी त्रिकोणों के अनुरूप परिभाषित किया जा सकता है।[14]

कुछ केंद्रों को तीन से अधिक भुजाओं वाले बहुभुजों तक बढ़ाया जा सकता है। उदाहरण के लिए, केन्द्रक किसी भी बहुभुज के लिए पाया जा सकता है। तीन से अधिक भुजाओं वाले बहुभुजों के केंद्रों पर कुछ शोध किए गए हैं।[15][16]


यह भी देखें

टिप्पणियाँ

  1. Kimberling, Clark. "त्रिभुज केंद्र". Retrieved 2009-05-23. Unlike squares and circles, triangles have many centers. The ancient Greeks found four: incenter, centroid, circumcenter, and orthocenter. A fifth center, found much later, is the Fermat point. Thereafter, points now called nine-point center, symmedian point, Gergonne point, and Feuerbach point, to name a few, were added to the literature. In the 1980s, it was noticed that these special points share some general properties that now form the basis for a formal definition of triangle center
  2. Kimberling, Clark (11 Apr 2018) [1994]. "त्रिभुज के तल में केंद्रीय बिंदु और केंद्रीय रेखाएँ". Mathematics Magazine. 67 (3): 163–187. doi:10.2307/2690608. JSTOR 2690608.
  3. Kimberling, Clark. "This is PART 26: Centers X(50001) – X(52000)". Encyclopedia of Triangle Centers. Retrieved 17 June 2022.
  4. Weisstein, Eric W. "त्रिभुज केंद्र". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  5. Weisstein, Eric W. "त्रिकोण केंद्र समारोह". MathWorld–A Wolfram Web Resource. Retrieved 1 July 2009.
  6. Bicentric Pairs of Points, Encyclopedia of Triangle Centers, accessed 2012-05-02
  7. Oakley, Cletus O.; Baker, Justine C. (November 1978). "The Morley Trisector Theorem". The American Mathematical Monthly. 85 (9): 737–745. doi:10.1080/00029890.1978.11994688. ISSN 0002-9890.
  8. Weisstein, Eric W. "किम्बरलिंग सेंटर". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  9. Weisstein, Eric W. "प्रमुख त्रिकोण केंद्र". MathWorld–A Wolfram Web Resource. Retrieved 25 May 2009.
  10. Russell, Robert A. (2019-04-18). "गैर-यूक्लिडियन त्रिभुज केंद्र". arXiv:1608.08190 [math.MG].
  11. Rob, Johnson. "गोलाकार त्रिकोणमिति" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  12. Ungar, Abraham A. (2009). "अतिशयोक्तिपूर्ण बैरीसेंट्रिक निर्देशांक" (PDF). The Australian Journal of Mathematical Analysis and Applications. 6 (1): 1–35., article #18
  13. Ungar, Abraham A. (2010). Hyperbolic triangle centers : the special relativistic approach. Dordrecht: Springer. ISBN 978-90-481-8637-2. OCLC 663096629.
  14. 14.0 14.1 Ungar, Abraham Albert (August 2010). यूक्लिडियन और हाइपरबोलिक ज्यामिति में बैरीसेंट्रिक कैलकुलस (in English). WORLD SCIENTIFIC. doi:10.1142/7740. ISBN 978-981-4304-93-1.
  15. Al-Sharif, Abdullah; Hajja, Mowaffaq; Krasopoulos, Panagiotis T. (November 2009). "समतल चतुर्भुजों के केंद्रों का संयोग". Results in Mathematics (in English). 55 (3–4): 231–247. doi:10.1007/s00025-009-0417-6. ISSN 1422-6383. S2CID 122725235.
  16. Prieto-Martínez, Luis Felipe; Sánchez-Cauce, Raquel (2021-04-02). "अन्य बहुभुजों के लिए त्रिभुज केंद्र की किम्बरलिंग की अवधारणा का सामान्यीकरण". Results in Mathematics (in English). 76 (2): 81. arXiv:2004.01677. doi:10.1007/s00025-021-01388-4. ISSN 1420-9012. S2CID 214795185.


बाहरी संबंध