धातु ऑक्साइड आसंजन
धातु ऑक्साइड आसंजन की शक्ति प्रभावी रूप से धातु-ऑक्साइड अंतरपृष्ठ के क्लेदन को निर्धारित करती है। यह आसंजन की शक्ति कई अनुप्रयोगों में महत्वपूर्ण महत्वपूर्ण है, उदाहरण के लिए, प्रकाश बल्ब और फाइबर-मैट्रिक्स कंपोजिट के उत्पादन में जो धातु-सिरेमिक अंतरपृष्ठ निर्मित करने के लिए क्लेदन के अनुकूलन पर निर्भर करती है।[1] आसंजन की शक्ति उत्प्रेरक सक्रिय धातु पर फैलाव की सीमा निर्धारित करती है।[1]पूरक धातु ऑक्साइड तथा अर्धचालक उपकरणों जैसे अनुप्रयोगों के लिए धातु ऑक्साइड आसंजन महत्वपूर्ण है। ये उपकरण आधुनिक एकीकृत परिपथों के उच्च पैकिंग घनत्व को संभव बनाते हैं।
ऑक्साइड ऊष्मप्रवैगिकी
सतह की ऊर्जा को कम करने और तंत्र एंट्रॉपी को कम करने के अनुरूप धातु ऑक्साइड का निर्माण होता हैं। गठन प्रतिक्रियाएं प्रकृति में रासायनिक हैं और इस प्रकार ये प्रतिक्रियाएं ऑक्सीजन डिमर्स और शुद्ध धातुओं या मिश्र धातुओं के मध्य संयोजन का निर्माण करते हैं। संक्रमण धातुओं और अर्ध-धातुओं के लिए प्रतिक्रियाएँ ऊष्माशोषी हैं। वायुमंडल में समतापिक और समदाब स्थितियों में, ऑक्सीकरण के माध्यम से एक ऑक्सीजन डिमर को बाँधने के लिए एक मुक्त धातु की सतह की संभावना ऑक्सीजन के आंशिक दबाव तथा समय का एक कार्य है।
मानक स्थितियों में, चरण परिवर्तन के निर्धारण कारक तापमान और दबाव हैं। यहाँ विचार यह है कि ऑक्सीजन गैस से ठोस में एक चरण परिवर्तन कर रही है, और उसी समय ऑक्सीजन और धातु के मध्य एक संयोजन बन रहा है। एक बंध का तत्काल तोड़ने और एक भिन्न बंध का निर्माण करने के लिए आवश्यक ऊर्जा योगदान, 298K पर आम्लीय अणुओं के आवायविक ऑक्सीजन के बंध विघटन के ऊष्मा से अधिक होता है, जो +498.34 केजूल/मोल के रूप में होता है, और यह सामान्यतः ∆Hf के रूप में व्यक्त किया जाता है क्योंकि यह उत्पादन में प्रयुक्त ऊष्मा का रूप है।
धातु-आक्साइड के निर्माण में एन्ट्रापी का अधिकांश योगदान O2 से प्राप्त होता है। उत्तेजित वाष्प चरण के कारण गैसीय ऑक्सीजन अणुओं में उच्च परिवर्तन एन्ट्रापी है। यह तंत्र से अंतरपृष्ठ या प्रतिक्रिया सतह तक ऑक्सीजन के परिवहन की अनुमति देता है। अर्ध-धातुओं, संक्रमण धातुओं, क्षार पृथ्वी धातुओं और लैंथेनाइड्स / एक्टिनाइड्स के लिए ऑक्सीकरण के लिए एन्ट्रापी (ΔS) में परिवर्तन नकारात्मक है और इस प्रकार प्रक्रिया ऊष्माक्षेपी है। यह तथ्य प्रदर्शित शुद्ध धातु की उच्च सतह ऊर्जा और उच्च ऊर्जा स्थानों को आकर्षित करने के लिए छोटे ऑक्सीजन डिमर की क्षमता के कारण है। ऑक्साइड निर्माण की प्रवृत्ति यह है कि परमाणु संख्या बढ़ने पर प्रतिक्रिया की दर बढ़ जाती है।
उन्नत सतह इलेक्ट्रॉन घनत्व वाले क्षेत्र सदैव अधिमानतः ऑक्सीकरण करेंगे, जैसा कि इलेक्ट्रो-एनोडाइज्ड टाइटेनेट के निर्माण में प्रदर्शित किया गया है। घटकों के गिब्स मुक्त ऊर्जा सतहों के मध्य परस्पर क्रिया से ऑक्साइड का निर्माण होता है। दिए गए तापमान और दबाव पर गिब्स सतहों के चौराहों को 2डी समष्टि में चरण आरेख के रूप में दर्शाया जाता है। वास्तविक संसार के अनुप्रयोगों में, गिब्स सतहें अतिरिक्त आयाम एंट्रॉपी के अधीन हैं। यह तीसरा आयाम एक कार्तीय समन्वय स्थान का गठन करता है और दी गई प्रतिक्रिया के लिए गिब्स ऊर्जा द्वारा आरेखित सतह एक चरण संक्रमण के लिए आवश्यक सीमा ऊर्जा उत्पन्न करती है। ये मान इन्टरनेट पर गठन के मानक ऊष्मा के रूप में प्राप्त किये जा सकते हैं।
∆G=∆H-T∆S
ऊष्मा की मानक अवस्था परिवर्तन, स्वतंत्र होती है और इस प्रकार तापमान के फलन के रूप में गिब्स मुक्त ऊर्जा में परिवर्तन की प्रवणता रैखिक होती है। यह तय करता है कि बढ़ते तापमान के साथ एक ऑक्साइड ऊष्मप्रवैगिकी रूप से कम स्थिर हो जाता है।
संतुलन क्लेदन और गैर-संतुलन गीलापन के मध्य एक महत्वपूर्ण अंतर यह है कि गैर-संतुलन की स्थिति तब होती है जब एक रासायनिक प्रतिक्रिया हो रही होती है। यह गैर-संतुलित क्लेदन एक अपरिवर्तनीय ऊष्माप्रवैगिकी प्रक्रिया है जो किसी नई सीमा चरण, जैसे ऑक्साइड का निर्माण करते समय रासायनिक क्षमता के परिवर्तनों के लिए उत्तरदायी है।
आसंजन का कार्य
पृथक्करण Wsep का आदर्श कार्य अंतरपृष्ठ को दो मुक्त सतहों में अलग करने के लिए आवश्यक प्रतिवर्ती प्रक्रिया एक भौतिकी कार्य है।[2] यह यांत्रिक गुणों के आधार पर किसी स्थिति फलन के रूप में महत्वपूर्ण।[2] इसे आदर्श के रूप में संदर्भित किया जाता है क्योंकि जब दो मुक्त सतहें एक अंतरपृष्ठ का निर्माण करती हैं, तो अंतरपृष्ठ की एकाग्रता सतह के निर्माण के तुरंत बाद स्थूल अंतरपृष्ठ के समान रहती है। रासायनिक संतुलन तक पहुँचने के लिए, विसरण की प्रक्रिया होती है जो पृथक्करण के कार्य के किसी भी माप को प्रवर्धित करती है।[2]आसंजन का कार्य अंतरपृष्ठ से मुक्त सतहों को निर्मित करने के लिए प्रतिवर्ती ऊष्माप्रवैगिकी मुक्त ऊर्जा परिवर्तन है।[2] यह निम्नलिखित समीकरण द्वारा दर्शाया गया है:
जहाँ:
Wad आसंजन का कार्य है
Gm और Go धातु और ऑक्साइड की संबंधित सतह ऊर्जा हैं
Gmo संपर्क में दो सामग्रियों के मध्य की सतह ऊर्जा है
निम्नलिखित तालिका में कुछ सामान्य धातुएँ और उनकी संगत सतह ऊर्जाएँ दी गई हैं। सभी धातुएं घन क्रिस्टल प्रणाली संरचना से सम्बंधित हैं और ये सतह ऊर्जा सतह तल के अनुरूप हैं।
धातु | सतह उर्जा |
---|---|
Al | 1.347 |
Pb | 0.377 |
Yb | 0.478 |
Cu | 2.166 |
Pd | 2.326 |
Ag | 1.200 |
Pt | 2.734 |
Au | 1.627 |
ऑक्साइड स्थिरता
एलिघम आरेख, उष्मागतिकी के दूसरे नियम के अनुसार उत्पन्न होते हैं और ऑक्साइड के गठन के लिए परिवर्तित तापमान के संबंध में गिब्स मुक्त ऊर्जा में परिवर्तन का एक चित्रमय प्रतिनिधित्व करते है।
ठोस-गैस अंतरपृष्ठ
संरचना
वास्तविकता में, सतहें सूक्ष्मदर्शीय रूप से समान दिखाई दे सकती हैं, परंतु उनकी सूक्ष्मदर्शीय असामान्यता धातु और उसके ऑक्साइड के संबंध में महत्वपूर्ण भूमिका निभाती है।
संक्रमण धातु आक्साइड
कुछ परावर्तक धातुओं में कई ऑक्साइड परतें होती हैं जिनकी तत्वानुपातकीय रचनाएँ भिन्न-भिन्न होती हैं। यह इसलिए होता है क्योंकि धातु में कई मूल्यांकन स्थितियाँ होती हैं जिनमें वेलेंस शैल में कम या अधिक इलेक्ट्रॉन्स होते हैं। ये विभिन्न मूल्यांकन स्थितियाँ एक ही दो तत्वों से भिन्न-भिन्न ऑक्साइडों की उत्पत्ति को संभव बनाती हैं। धातु के स्थानिक संरचना में परमाणुओं के घुलने के माध्यम से परिवर्तन होने के कारण, भिन्न-भिन्न ऑक्साइड परतों के रूप में एक के ऊपर एक बनाई जाती हैं। इस स्थिति में कुल आसंजन में धातु-ऑक्साइड अंतरपृष्ठ और ऑक्साइड-ऑक्साइड अंतरपृष्ठ सम्मिलित होते हैं, जो यांत्रिकी में बढ़ती जटिलता को युग्मित करते है।[3]
खुरदरापन
सतह खुरदरापन बढ़ने से धातु-ऑक्साइड अंतरपृष्ठ पर लटकने वाले अनुबंध की संख्या बढ़ जाती है। स्फटिक फलक की पृष्ठ मुक्त ऊर्जा होती है:
जहा :
ई सामग्री की बाध्यकारी ऊर्जा है
टी तंत्र का तापमान है
एस सामग्री की सतह एन्ट्रापी है
बांधने की ऊर्जा एक सुविधाजनक सतह की पकड़ करती है जो मुड़ी हुईअनुबंधों की संख्या को कम करती है, जबकि सतहीय अनुक्रमिकता का शब्द ऊष्णता के साथ एक कठोर सतह की पकड़ करती है, जिसमें मुड़ी हुई अनुबंधों की संख्या बढ़ती है।[4]
विषमता
ऑक्सीजन अणुभार का ठोस उपचार उपकरण की विविधता पर निर्भर करता है।
क्रिस्टलीय ठोस उपचार प्रकट किए गए क्रिस्टल फलकों, अनाज्ञात रूप, और स्वाभाविक दोषों पर निर्भर करता है, क्योंकि ये कारक विभिन्न स्टेरिक आयोजनों के साथ उपचार स्थल प्रदान करते हैं। उपचार मुख्य रूप से प्रकट किए गए उपकरण के साथ संबंधित गिब्स मुक्त ऊर्जा के कम हो जाने के द्वारा निर्धारित होता है।
क्रिस्टललेखीय अभिविन्यास
आवेश संरक्षण के विधि द्वारा एक सतह का निर्माण होने पर सामग्री का आवेश तटस्थ रहता है, परंतु उनके मिलर सूचकांक द्वारा परिभाषित व्यक्तिगत ब्रावाइस जाली विमान, उनके समरूपता के आधार पर गैर-ध्रुवीय या ध्रुवीय हो सकता हैं। एक द्विध्रुवीय क्षण सतह की गिब्स मुक्त ऊर्जा को बढ़ाता है, परंतु धातुओं के सापेक्ष में ऑक्सीजन आयनों की अधिक ध्रुवीकरण सतह की ऊर्जा को कम करने के लिए ध्रुवीकरण की अनुमति देता है और इस प्रकार ऑक्साइड बनाने के लिए धातुओं की क्षमता में वृद्धि करता है। परिणामस्वरूप भिन्न-भिन्न प्रकटित धातु के फलक गैर-ध्रुवीय ऑक्साइड फलकों के लिए कमजोर रूप से पालन कर सकते हैं, परंतु एक ध्रुवीय फलक को पूरी तरह से गीला करने में सक्षम हो सकता हैं।
दोष
भूतल क्रिस्टललेखीय दोष सतह विद्युतीय स्थितियों और अनुबंधो की ऊर्जाओं के स्थानीय परिवर्तन होते हैं।सतहीय प्रतिक्रियाएं, उपचारण और केंद्रक इन दोषों की उपस्थिति से अधिक प्रभावित हो सकते हैं।।[5]
रिक्तियां
ऑक्साइड की वृद्धि ऑक्साइड परत के माध्यम से या तो युग्मित या स्वतंत्र आयनों और धनायनों के प्रवाह पर निर्भर है।[6][7] ।[6] अयामानुक्रमीय ऑक्साइडों में परमाणुओं का पूर्णांक अनुपात होता है और केवल शॉटकी दोषों के गठन या फ्रेंकेल दोषों के गठन के माध्यम से केशी चलाने की समर्थन कर सकते हैं ।गैर-अयामानुक्रमीय ऑक्साइड फिल्में स्वतंत्र आयन प्रसार का समर्थन करती हैं और वे या टाइप एन होती हैं या टाइप-पी- अतिरिक्त इलेक्ट्रॉन छिद्र होती हैं। यद्यपि, केवल दो मूल्यांकन स्थितियाँ होती हैं,परंतु यह तीन प्रकार के होते हैं:
- केशन अतिरिक्त (एन-टाइप))
- एनियन घाटा (एन-टाइप)
- केशन घाटा (पी-टाइप)
गैर-अयामानुक्रमीय ऑक्साइडस में साधारणतया ऑक्साइड परत के निर्माण के समय अपर्याप्त ऑक्सीजन के परिणामस्वरूप अतिरिक्त धातु केशन होते हैं। O2− से छोटे आयाम वाले अतिरिक्त धातु परमाणु विक्षेपण द्वारा क्रिस्टल जाली में आयनित हो जाते हैं और उनके खोए हुए इलेक्ट्रॉन क्रिस्टल के भीतर मुक्त रहते हैं, जो ऑक्सीजन अणुओं द्वारा नहीं लिए जाते हैं। क्रिस्टल जाली के भीतर मोबाइल इलेक्ट्रॉनों की उपस्थिति विद्युत के संचालन और आयनों की गतिशीलता में महत्वपूर्ण योगदान देती है।[6]
अशुद्धियाँ
सामग्री में अशुद्ध तत्वों का उपस्थित होना ऑक्साइड फिल्मों की अधिष्ठान पर बड़ा प्रभाव डाल सकता है। जब अशुद्ध तत्व में ऑक्साइड का धातु के साथ मजबूत संबद्धता बढ़ती है, तो इसे प्रतिक्रियाशील तत्व प्रभाव या आरई प्रभाव के रूप में जाना जाता है। इस विषय पर यांत्रिकी के कई सिद्धांत उपस्थित हैं। उनमें से अधिकांश ऑक्सीजन से बंधी धातु के सापेक्ष में ऑक्सीजन से बंधे अशुद्धता तत्व की अधिक से अधिक ऊष्मप्रवैगिकी स्थिरता के लिए आसंजन शक्ति में वृद्धि का श्रेय देते हैं।[2][8] ऑक्साइड आसंजन को मजबूत करने के लिए निकल मिश्र धातुओं में यट्रियम डालना प्रतिक्रियाशील तत्व प्रभाव का एक उदाहरण है।
विस्थापन
विस्थापन ऊष्मप्रवैगिकी रूप से अस्थिर, काइनेटिक रूप से फंसे हुए दोष हैं। दबाव लागू होने पर सतहीय गलतियाँ सामान्यतः एक स्क्रू विस्थापन उत्पन्न करती हैं। कुछ विषयो में, स्क्रू विस्थापन क्रिस्टल विकास के लिए केंद्रक ऊर्जा बाधा को अवरोधित कर सकती हैं।।[5]
ऑक्साइड-समर्थन संबंध
गैस परमाणुओं की एक मोनोलेयर की अवशोषण या समानांतर या असमानांतर हो सकती है। समानांतर अवशोषण में परमाणु-उपशोषी परत के बीच एक क्रिस्टल संरचना संबंध होता है जो एक सुसंगत इंटरफेस पैदा करता है। वुड की नोटेशन एक वर्णन है जो ठोस पदार्थ के सरलतम आवर्तीकरण इकाई क्षेत्र और अवशोषी के बीच संबंध का वर्णन करता है। उत्पन्न समानांतर इंटरफेस के बीच का अंतर मिसफिट के प्रभाव के रूप में वर्णित किया जा सकता है। इंटरफेसीय परस्पराक्रिया को (sg) गामा (γ) और जाली मिसफिट के कारण संचित कठोर परिस्थिति ऊर्जा के रूप में प्रारूपित किया जा सकता है। एक बड़ी मिसफिट असंगत इंटरफेस का संकेत करती है जहां कोई संगतता दबाव नहीं होती है और इंटरफेस ऊर्जा को सरलतापूर्वक लिया जा सकता है जैसा की sg है। इसके विपरीत, एक छोटा मिसफिट एक सुसंगत अंतरपृष्ठ और सुसंगतता तनाव से मेल खाता है, जिसके परिणामस्वरूप अंतरापृष्ठीय ऊर्जा न्यूनतम sg के बराबर होती है .[9]
बंधन की शक्ति
ऑक्साइड और धातु के बीच के बंध की मजबूती समान नामी संपर्क क्षेत्र के लिए Pa से GPa तक के तनाव में विभिन्न हो सकती है।इस विशाल श्रृंखला का कारण कम से कम चार विभिन्न प्रकार के आसंजन से निपटने वाली कई घटनाओं से उत्पन्न होता है। आसंजन बनाने वाले इस बड़े रेंज का कारण कम से कम चार विभिन्न प्रकार की अवशोषण से जुड़े कई घटनाओं से उत्पन्न होता है। अवशोषण को बनाने वाले मुख्य बंधन के प्रमुख प्रकार हैं विद्युतस्थैतिक, विस्तारी रासायनिक और विकिरणीय बंधन जब चिपकाने वाले बल बढ़ते हैं, तो क्रिस्टलीय पदार्थों में अलगाव एलास्टिक डिबॉन्डिंग से एलास्टिक-प्लास्टिक डिबॉन्डिंग के लिए जा सकता है। इसका कारण यह हो सकता है कि दोनों पदार्थों के बीच बनने वाले बंधों की संख्या बढ़ गई हो या बंधों की मजबूती में वृद्धि हुई हो। एलास्टिक-प्लास्टिक डिबॉन्डिंग तब होती है जब स्थानिक तनाव काफी ऊचा होता है जिससे अवस्थित टुकड़ों को चलाने या नए टुकड़े बनाने में सक्षम होता हैं ।
ठोस-गैस गतिकी
जब गैस का अणु किसी ठोस सतह से टकराता है तो अणु या तो पलट सकता है या अधिशोषित हो सकता है। जिस दर पर गैस के अणु सतह से टकराते हैं, वह ऑक्साइड वृद्धि के समग्र रासायनिक कैनेटीक्स का एक बड़ा कारक है। यदि अणु अवशोषित हो जाता है तो तीन संभावित परिणाम होते हैं। गैस के अणु को भिन्न-भिन्न परमाणुओं या घटकों में अलग करने के लिए सतह की बातचीत काफी मजबूत हो सकती है। अणु अपने रासायनिक गुणों को बदलने के लिए सतह के परमाणुओं के साथ भी प्रतिक्रिया कर सकता है। तीसरी संभावना ठोस सतह कटैलिसीस है, सतह पर पहले से सोखे गए अणु के साथ एक द्विआधारी रासायनिक प्रतिक्रिया।
फैलाव
अक्सर यह बाद की परतों के विकास से पहले एकल ऑक्साइड मोनोलेयर के विकास के लिए काइनेटिक रूप से अनुकूल होता है। सामान्य रूप से फैलाव (रसायन विज्ञान) द्वारा प्रतिरूपित किया जा सकता है:
- <बड़ा></बड़ा>
कहाँ:
एनs सतह पर परमाणुओं की संख्या है
एनt सामग्री में परमाणुओं की कुल संख्या है
फैलाव आक्साइड के विकास के लिए महत्वपूर्ण है क्योंकि अंतरपृष्ठ के संपर्क में आने वाले परमाणु ऑक्साइड बनाने के लिए प्रतिक्रिया कर सकते हैं।
प्रसार
प्रारंभिक ऑक्साइड मोनोलेयर बनने के बाद, नई परतें बनने लगती हैं और ऑक्साइड की मोटाई बढ़ाने के लिए आयनों को ऑक्साइड के माध्यम से फैलाने में सक्षम होना चाहिए। ऑक्सीकरण की दर इस बात से नियंत्रित होती है कि ये आयन सामग्री के माध्यम से कितनी तेजी से फैल सकते हैं। जैसे-जैसे ऑक्साइड की मोटाई बढ़ती है, ऑक्सीकरण की दर कम हो जाती है क्योंकि इसके लिए परमाणुओं को और दूरी तय करने की आवश्यकता होती है। फ़िक के प्रसार के नियमों का उपयोग करके रिक्तियों या आयनों के प्रसार की दर की गणना करके यह दर निर्धारित की जा सकती है। फ़िक का प्रसार का पहला नियम।[10]
- <बड़ा></बड़ा>
कहाँ:
J फ्लक्स है और इसमें mol·m की इकाइयाँ हैं−2·से−1
डी सामग्री में आयनों का प्रसार है
δC पदार्थ की सांद्रता में परिवर्तन है
δx ऑक्साइड परत की मोटाई है
ठोस सतह कटैलिसीस
2007 में ठोस-गैस अंतरपृष्ठ आणविक प्रक्रियाओं के अध्ययन के लिए गेरहार्ड एर्टल को रसायन विज्ञान में नोबेल पुरस्कार से सम्मानित किया गया। ऐसी ही एक प्रक्रिया है ऑसिलेटरी काइनेटिक कटैलिसीस। ऑसिलेटरी काइनेटिक कटैलिसीस को भिन्न-भिन्न क्रिस्टल सतहों द्वारा अनमॉडिफाइड चेहरों और सतह के तनाव को कम करने के लिए पुनर्निर्माण के पक्ष में समझाया जा सकता है। सीओ की उपस्थिति एक निश्चित प्रतिशत कवरेज के बाद सतह के पुनर्निर्माण के उत्क्रमण का कारण बन सकती है। एक बार उत्क्रमण होने के बाद, ऑक्सीजन को उलटी हुई सतहों पर रासायनिक रूप से अवशोषित किया जा सकता है। यह सीओ और अन्य ओ में समृद्ध सतह कवरेज के क्षेत्रों के साथ एक सोखना पैटर्न पैदा करता है2.[11]
प्रेरणा शक्ति
कटैलिसीस की प्रेरक शक्ति अप्रमाणित संतुलन और तात्कालिक अंतरपृष्ठियल मुक्त ऊर्जाओं के बीच के अंतर से निर्धारित होती है।[2]
यह भी देखें
- ऑक्साइड
- क्रिस्टलोग्राफिक दोष
- जंग
- ऑक्सीकरण क्षमता
- कमी की संभावना
- पौरबाइक्स आरेख
- एलिंघम आरेख
- एमओएसएफईटी
- मेटल-ऑक्साइड वैरिस्टर
- संक्रमण धातु आक्साइड के भूतल गुण
संदर्भ
- ↑ 1.0 1.1 Peden, C; K.B. Kidd; N. D. Shinn (1991). "Metal/Metal-Oxide Interfaces: A surface science approach to the study of adhesion". Journal of Vacuum Science and Technology. 9 (3): 1518–1524. doi:10.1116/1.577656.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Finnis, M W (1996). "धातु-सिरेमिक इंटरफेस का सिद्धांत". Journal of Physics: Condensed Matter. 8 (32): 5811–5836. doi:10.1088/0953-8984/8/32/003.
- ↑ Henrich, Victor; Cox P A (1996). धातु ऑक्साइड का भूतल विज्ञान. Cambridge University Press. ISBN 978-0-521-56687-2.
- ↑ Libbrecht, Kenneth (2005). "बर्फ के क्रिस्टल की भौतिकी". Reports on Progress in Physics. 68 (4): 855–895. doi:10.1088/0034-4885/68/4/R03.
- ↑ 5.0 5.1 Butt, Hans-Jurgen; Karlheinz Graf; Michael Kappl (2006). इंटरफेस के भौतिकी और रसायन विज्ञान. WILEY-VCH. pp. 167–169.
- ↑ 6.0 6.1 6.2 Kasap, S.O. (2006). इलेक्ट्रॉन सामग्री और उपकरणों का सिद्धांत. McGraw-Hill. pp. 73–75. ISBN 978-0-07-295791-4.
- ↑ Behrens, Malte. "सॉलिड स्टेट कैनेटीक्स" (PDF). Lecture Series. Fritz Haber Institute of the Max Planck Society Department of Inorganic Chemistry. Archived from the original (PDF) on 15 May 2011. Retrieved 1 June 2011.
- ↑ Pint, B A (2010). "व्हिटल एंड स्ट्रिंगर लिटरेचर रिव्यू के बाद से प्रतिक्रियाशील तत्व प्रभाव को समझने में प्रगति". Metals and Ceramics Division. 18 (18): 2159–2168.
- ↑ Johansson, Sven; Mikael Christensen; Goran Wahmstrom (2005). "अर्धसुसंगत धातु-सिरेमिक इंटरफेस की इंटरफ़ेस ऊर्जा". Physical Review Letters. 95 (22): 226108. doi:10.1103/PhysRevLett.95.226108. PMID 16384245.
- ↑ Rutter, N A. "सामग्री की पर्यावरणीय स्थिरता". Lecture Series. University of Cambridge. Archived from the original on 20 July 2011. Retrieved 6 June 2011.
- ↑ Ertl, Gerhard. "ठोस सतहों पर रासायनिक प्रक्रियाएं" (PDF). Nobel Prize. The Royal Swedish Academy of Sciences. Archived from the original (PDF) on 4 June 2011. Retrieved 6 June 2011.