यह गणित में अंकगणित और डायोफैंटाइन ज्यामिति की एक शब्दावली है, जो संख्या सिद्धांत और बीजगणितीय ज्यामिति के बड़े भाग को सम्मिलित करने के लिए डायोफैंटाइन समीकरणों के पारंपरिक अध्ययन से विकसित होने वाले क्षेत्र हैं। अधिकांश सिद्धांत प्रस्तावित अनुमानों के रूप में हैं, जिन्हें व्यापकता के विभिन्न स्तरों पर संबंधित किया जा सकता है।
सामान्य रूप से डायोफैंटाइन ज्यामिति क्षेत्र K के ऊपर बीजगणितीय प्रकार V का अध्ययन है जो कि उनके प्रमुख क्षेत्रों पर परिमित रूप से उत्पन्न होते हैं - जिसमें विशेष रुचि वाले संख्या क्षेत्र और परिमित क्षेत्र और स्थानीय क्षेत्र सम्मिलित है। उनमें से, केवल सम्मिश्र संख्याएँ बीजगणितीय रूप से बंद हैं; किसी भी अन्य K की तुलना में K में निर्देशांक के साथ V के बिंदुओं का अस्तित्व एक अतिरिक्त विषय के रूप में सिद्ध और अध्ययन किया जाना चाहिए, यहां तक कि V की ज्यामिति को जानते हुए भी किया जाना चाहिए।
अंकगणितीय ज्यामिति को सामान्यतः पूर्णांकों के वलय के स्पेक्ट्रम पर परिमित प्रकार की योजनाओं के अध्ययन के रूप में परिभाषित किया जा सकता है।[1] अंकगणितीय ज्यामिति को संख्या सिद्धांत में समस्याओं के लिए बीजगणितीय ज्यामिति की तकनीकों के अनुप्रयोग के रूप में भी परिभाषित किया गया है।[2]
मैसर और ओस्टरले का एबीसी अनुमान एक समीकरण a + b = c में दोहराए गए अभाज्य कारकों के बारे में जितना संभव हो उतना बताने का प्रयास करता है। उदाहरण के लिए 3 + 125 = 128 लेकिन यहाँ की प्रमुख शक्तियाँ असाधारण हैं।
अराकेलोव वर्ग समूह
अरकेलोव वर्ग समूह अरकेलोव विभाजकों के लिए आदर्श वर्ग समूह या विभाजक वर्ग समूह का एनालॉग है।
अराकेलोव विभाजक
वैश्विक क्षेत्र पर एक अराकेलोव भाजक (या पूर्ण भाजक) भाजक या भिन्नात्मक आदर्श की अवधारणा का विस्तार है। यह क्षेत्र के स्थानों का एक औपचारिक रैखिक संयोजन है जिसमें पूर्णांक गुणांक वाले परिमित स्थान और वास्तविक गुणांक वाले अनंत स्थान होते हैं।
अराकेलोव ऊंचाई
बीजगणितीय संख्याओं के क्षेत्र में एक प्रक्षेप्य स्थान पर अराकेलोव ऊंचाई एक वैश्विक ऊंचाई फलन है जिसमें आर्किमिडीयन क्षेत्रों पर फ़ुबिनी-अध्ययन मापन और गैर-आर्किमिडीयन क्षेत्रों पर सामान्य मापन से स्थानीय योगदान आता है।
अराकेलोव सिद्धांत
अराकेलोव सिद्धांत अंकगणितीय ज्यामिति का एक दृष्टिकोण है जिसमें स्पष्ट रूप से 'अनंत अभाज्य' सम्मिलित हैं।
चबाउटी की विधि, p-एडिक विश्लेषणात्मक फलनों पर आधारित, एक विशेष अनुप्रयोग है लेकिन उन वक्रों के लिए मोर्डेल अनुमान के प्रकरणों को सिद्ध करने में सक्षम है जिनकी जैकोबियन की श्रेणी उसके आयाम से कम है। इसने बीजगणितीय टोरस के लिए थोरलफ स्कोलेम की विधि से विचार विकसित किया है। (डायोफैंटाइन समस्याओं के लिए अन्य पुराने विधि में रंज की विधि सम्मिलित है।)
कोट्स-विल्स प्रमेय
कोट्स-विल्स प्रमेय में कहा गया है कि वर्ग संख्या 1 और सकारात्मक श्रेणी के एक काल्पनिक द्विघात क्षेत्र द्वारा सम्मिश्र गुणन के साथ एक दीर्घवृत्तीय वक्र में s = 1 पर शून्य के साथ L-फलन होता है। यह बिर्च और स्विनर्टन-डायर अनुमान का एक विशेष प्रकरण है।
क्रिस्टलीय सह समरूपता
क्रिस्टलीय कोहोमोलॉजीविशेषता p में एक p-एडिक कोहोमोलॉजी सिद्धांत है, जिसे एटेले कोहोमोलॉजी द्वारा छोड़े गए अंतर को भरने के लिए अलेक्जेंडर ग्रोथेंडिक द्वारा प्रस्तावित किया गया, जो इस प्रकरण में मॉड p गुणांक का उपयोग करने में कमी है। यह कई सिद्धांतों में से एक है जो किसी न किसी तरह से डवर्क की विधि से निकला है, और इसमें विशुद्ध रूप से अंकगणितीय प्रश्नों के बाहर भी अनुप्रयोग हैं।
डी
विकर्ण रूप
विकर्ण रूप अंकगणितीय दृष्टिकोण फर्मेट प्रकार से अध्ययन करने के लिए सबसे सरल प्रक्षेपी प्रकार में से कुछ हैं। उनके स्थानीय ज़ेटा-फलन की गणना जैकोबी जोड़ के संदर्भ में की जाती है। वारिंग की समस्या सबसे शास्त्रीय प्रकरण है।
डायोफैंटाइन आयाम
किसी क्षेत्र का डायोफैंटाइन आयाम सबसे छोटी प्राकृतिक संख्या k है, यदि यह उपस्थित है, तो इसका क्षेत्र वर्ग Ck है: अर्थात्, N चरों में घात d वाले किसी भी सजातीय बहुपद में N > dk होने पर एक गैर-तुच्छ शून्य होता है। बीजगणितीय रूप से संवृत क्षेत्र डायोफ़ैंटाइन आयाम 0 के हैं; आयाम 1 के अर्ध-बीजगणितीय रूप से संवृत क्षेत्र है।
किसी बिंदु का विभेदक
एक बिंदु का विभेदक एक संख्या क्षेत्र K पर परिभाषित बीजगणितीय विविधता V पर एक बिंदु P से संबंधित दो संबंधित अवधारणाओं को संदर्भित करता है: ज्यामितीय (लघुगणकीय) विभेदक [4]d(P) और अंकगणितीय विभेदक, वोज्टा द्वारा परिभाषित है।[5] दोनों के मध्य के अंतर की तुलना एकवचन वक्र के अंकगणितीय जीनस और डीसिंगुलराइज़ेशन के ज्यामितीय जीनस के मध्य के अंतर से की जा सकती है।[5] अंकगणितीय जीनस ज्यामितीय जीनस से बड़ा है, और एक बिंदु की ऊंचाई अंकगणितीय जीनस के संदर्भ में सीमित हो सकती है। ज्यामितीय जीनस को सम्मिलित करते हुए समान सीमाएँ प्राप्त करने के महत्वपूर्ण परिणाम होते है।[5]
वेइल कोहोमोलॉजी (क्यू.वी.) की खोज कम से कम आंशिक रूप से अलेक्जेंडर ग्रोथेंडिक और माइकल आर्टिन के एटेले कोहोमोलॉजी सिद्धांत में पूरी हुई थी। इसने स्थानीय ज़ेटा-फलन के लिए कार्यात्मक समीकरण का प्रमाण प्रदान किया, और टेट अनुमान (क्यू.वी.) और कई अन्य सिद्धांतों के निर्माण में बुनियादी था।
एफ
फाल्टिंग की ऊंचाई
एक संख्या क्षेत्र पर परिभाषित दीर्घवृत्तीय वक्र या एबेलियन विविधता की फाल्टिंग्स ऊंचाई मोर्डेल अनुमान के अपने प्रमाण में फाल्टिंग्स द्वारा प्रस्तावित की गई इसकी सम्मिश्रता का एक माप है।[6][7]
समतल सह समरूपता ग्रोथेंडिक स्कूल के लिए, विकास का एक अंतिम बिंदु है। इसका हानि यह है कि इसकी गणना करना अत्यन्त कठिन है। योजना सिद्धांत के लिए समतल टोपोलॉजी को 'सही' मूलभूत टोपोस माना गया है, इसका कारण विश्वसनीय समतल अवरोहण के तथ्य पर वापस जाता है, ग्रोथेंडिक की खोज कि प्रतिनिधित्व करने योग्य प्रकार्यक इसके लिए शेव हैं (अर्थात एक बहुत ही सामान्य ग्लूइंग अभिगृहीत मान्य है)।
फलन क्षेत्र समानता
उन्नीसवीं सदी में यह महसूस किया गया कि किसी संख्या क्षेत्र के पूर्णांकों की रिंग में बीजगणितीय वक्र या सघन रीमैन सतह की एफ़िन समन्वय रिंग के साथ समानताएं होती हैं, किसी संख्या क्षेत्र के 'अनंत स्थानों' के अनुरूप एक या अधिक बिंदु हटा दिए जाते है। यह विचार इस सिद्धांत में अधिक सटीक रूप से कूटबद्ध है कि सभी वैश्विक क्षेत्रों को एक ही आधार पर व्यवहार किया जाना चाहिए।विचार और आगे बढ़ता है। इस प्रकार, सम्मिश्र संख्याओं पर दीर्घवृत्तीय सतहों में भी संख्या क्षेत्रों पर दीर्घवृत्तीय वक्रों के साथ कुछ यथार्थ समानताएँ होती हैं।
जी
[[ज्यामितीय वर्ग क्षेत्र सिद्धांत]
वर्ग क्षेत्र सिद्धांत-वर्ग क्षेत्र सिद्धांत एबेलियन आवरण से कम से कम दो आयामों के प्रकार तक विस्तार को प्रायः ज्यामितीय वर्ग क्षेत्र सिद्धांत कहा जाता है।
उपयुक्त कमी
अंकगणितीय समस्याओं में स्थानीय विश्लेषण के लिए मौलिक रूप से सभी अभाज्य संख्याओं p या, अधिक सामान्यतः, अभाज्य आदर्शों को कम करना है। सामान्य स्थिति में यह लगभग सभी p के लिए थोड़ी कठिनाई प्रस्तुत करता है; उदाहरण के लिए, भिन्नों के भाजक कठिन होते हैं, उस कमी मॉड्यूलो में भाजक में एक अभाज्य शून्य से विभाजन जैसा दिखता है, लेकिन यह प्रति अंश केवल सीमित संख्या में p को ही वर्जित करता है। थोड़े अतिरिक्त परिष्कार के साथ, सजातीय निर्देशांक एक सामान्य अदिश से गुणा करके भाजक को निकास करने की अनुमति देता हैं। किसी दिए गए, एकल बिंदु के लिए कोई ऐसा कर सकता है और एक सामान्य गुणनखंड p नहीं छोड़ सकता हैं। हालाँकि विलक्षणता सिद्धांत में प्रवेश होता है: एक गैर-एकवचन बिंदु न्यूनीकरण मॉड्यूल p पर एक विलक्षण बिंदु बन सकता है, क्योंकि ज़ारिस्की स्पर्शरेखा समष्टि बड़ा हो सकता है जब रैखिक शब्द 0 तक कम हो जाते हैं (ज्यामितीय सूत्रीकरण से पता चलता है कि यह निर्देशांक के एक समुच्चय की गलती नहीं है)। अच्छी कमी से तात्पर्य उस कम प्रकार से है जिसमें मूल के समान गुण होते हैं, उदाहरण के लिए, एक बीजगणितीय वक्र जिसमें एक ही जीनस होता है, या एक स्मूथ प्रकार स्मूथ बना हुआ है। सामान्य रूप में किसी दी गई किस्म V के लिए अभाज्य संख्याओं का एक सीमित समुच्चय S होगा, सुचारू मान लिया गया है, जैसे कि अन्यथा Z/pZ पर एक सुचारू रूप से Vp कम किया गया है। एबेलियन प्रकार के लिए, अच्छी कमी नेरॉन-ओग-शफारेविच मानदंड द्वारा विभाजन बिंदुओं के क्षेत्र में प्रभाव से जुड़ी हुई है। सिद्धांत सूक्ष्म है, इस अर्थ में कि प्रकरणों को सुधारने की कोशिश करने के लिए चर बदलने की स्वतंत्रता स्पष्ट नहीं है: नेरॉन मॉडल, संभावित उपयुक्त कमी, टेट वक्र, सेमीस्टेबल एबेलियन विविधता, सेमीस्टेबल दीर्घवृत्तीय वक्र, सेरे-टेट प्रमेय देखें।[8]
हैसे सिद्धांत बताता है कि वैश्विक क्षेत्र के लिए विलेयता सभी प्रासंगिक स्थानीय क्षेत्र में विलेयता के समान है। डायोफैंटाइन ज्यामिति का एक मुख्य उद्देश्य उन प्रकरणों को वर्गीकृत करना है जहां हस्से सिद्धांत उपयोजित होता है। सामान्यतः यह बड़ी संख्या में चरों के लिए होता है, जब किसी समीकरण की डिग्री निश्चित रखी जाती है। हस्से सिद्धांत प्रायः हार्डी-लिटलवुड वृत्त पद्धति की सफलता से जुड़ा होता है। जब वृत्त पद्धति काम करती है,यह अतिरिक्त, मात्रात्मक जानकारी जैसे समाधानों की स्पर्शोन्मुख संख्या प्रदान कर सकता है। चरों की संख्या कम करने से वृत्त विधि कठिन हो जाती है; इसलिए हैस सिद्धांत की विफलताएं, उदाहरण के लिए छोटी संख्या में चर में घन रूपों के लिए (और विशेष रूप से घन वक्र के रूप में दीर्घवृत्तीय वक्रों के लिए) विश्लेषणात्मक दृष्टिकोण की सीमाओं से जुड़े सामान्य स्तर पर हैं।
हस्से-वेइल L-फलन
एक हैस-वेइल L-फलन, जिसे कभी-कभी वैश्विक L-फलन भी कहा जाता है, एक यूलर उत्पाद है जो स्थानीय ज़ेटा-फलन से बनता है। ऐसे L-फलन के गुण बड़े पैमाने पर अनुमान के क्षेत्र में रहते हैं, जिसमें तानियामा-शिमुरा अनुमान का प्रमाण एक सफलता है। लैंगलैंड्स दर्शनशास्त्र व्यापक रूप से वैश्विक L-फलन के सिद्धांत का पूरक है।
ऊंचाई फलन
डायोफैंटाइन ज्यामिति में एक ऊंचाई फलन डायोफैंटाइन समीकरणों के समाधान के आकार को निर्धारित करता है। [9]
हिल्बर्टियन क्षेत्र
हिल्बर्टियन क्षेत्रK वह है जिसके लिए K के ऊपर प्रक्षेप्य समष्टि जीन-पियरे सेरे के अर्थ में क्षीण समुच्चय नहीं हैं। यह हिल्बर्ट की अपरिवर्तनीयता प्रमेय पर एक ज्यामितीय विचार है जो दर्शाता है कि तर्कसंगत संख्याएं हिल्बर्टियन हैं। परिणाम व्युत्क्रम गैलोज़ समस्या पर उपयोजित होते हैं। क्षीण समुच्चय (फ़्रेंच शब्द मिंस) कुछ अर्थों में बेयर श्रेणी प्रमेय के अल्प समुच्चय (फ़्रेंच मेग्रे) के अनुरूप हैं।
आई
इगुसा जीटा-फलन
एक इगुसा ज़ेटा-फलन, जिसे जून-इची इगुसा नाम दिया गया है, एक निश्चित अभाज्य संख्या p के बीजगणितीय विविधता मोडुल उच्च शक्ति pn पर अंकों की संख्या की गणना करने वाला एक उत्पादक फलन है। सामान्य तर्कसंगतता प्रमेय अब ज्ञात हैं, जो गणितीय तर्क के प्रकार पर आधारित हैं।[10]
अनंत अवतरण
अनंत अवरोहण डायोफैंटाइन समीकरणों के लिए पियरे डी फ़र्मेट की शास्त्रीय विधि थी। यह मोर्डेल-वेइल प्रमेय के मानक प्रमाण का एक आधा भाग बन गया, जबकि दूसरा ऊंचाई फलनों (q.v.) के साथ एक तर्क था। अवतरण कुछ-कुछ प्रमुख समभावसमष्टि के समूह में दो से विभाजन जैसा है (प्रायः इसे 'अवरोहण' कहा जाता है, जब इसे समीकरणों द्वारा लिखा जाता है); गैलोइस कोहोमोलॉजी समूह में अधिक आधुनिक शब्दों में जिसे सीमित सिद्ध किया जाता है। सेल्मर समूह देखें।
इवासावा सिद्धांत
इवासावा सिद्धांतविश्लेषणात्मक संख्या सिद्धांत और स्टिकेलबर्गर के प्रमेय से गैलोज़ मॉड्यूल और p-एडिक L-फलन (बर्नौली संख्याओं पर कुमेर अनुरूपता में जड़ों के साथ) के रूप में आदर्श वर्ग समूहों के सिद्धांत के रूप में निर्मित होता है। 1960 के दशक के अंत में अपने आरम्भिक दिनों में इसे जैकोबियन का इवासावा एनालॉग कहा जाता था। सादृश्य एक परिमित क्षेत्र F (क्वा पिकार्ड प्रकार) पर एक वक्र C के जैकोबियन प्रकार J के साथ था, जहां परिमित क्षेत्र में परिमित क्षेत्र विस्तार F′ बनाने के लिए एकता की मूल जोड़ी गई हैं, C के स्थानीय ज़ेटा-फलन (q.v.) को गैलोइस मॉड्यूल के रूप में बिंदु J(F′) से पुनर्प्राप्त किया जा सकता है। उसी तरह, इवासावा ने अपने एनालॉग के लिए, निश्चित p के लिए और n → ∞ के साथ, एक संख्या क्षेत्र K में एकता की pn-शक्ति मूल जोड़ा, और वर्ग समूहों की प्रतिलोम सीमा पर विचार किया, कुबोटा और लियोपोल्ड्ट द्वारा पहले प्रस्तावित किया और p-एडिक L-फलन द्वारा प्रस्तुत किया था।
के
K-सिद्धांत
बीजगणितीय K-सिद्धांत एक ओर अमूर्त बीजगणित अनुमान के साथ अत्यन्त सामान्य सिद्धांत, और दूसरी ओर, अंकगणितीय अनुमानों के कुछ सूत्रों में निहित है। उदाहरण के लिए बिर्च-टेट अनुमान, लिक्टेनबाम अनुमान देखें।
एल
लैंग अनुमान
एनरिको बॉम्बिएरी (आयाम 2), सर्ज लैंग और पॉल वोज्टा (अभिन्न बिंदु प्रकरण) और पियोट्र ब्लास ने अनुमान लगाया है कि सामान्य प्रकार की बीजगणितीय प्रकार में K-तर्कसंगत बिंदुओं के ज़ारिस्की घने उपसमुच्चय नहीं हैं, K के लिए एक सूक्ष्म रूप से उत्पन्न क्षेत्र हैं। विचारों के इस चक्र में विश्लेषणात्मक अतिशयोक्ति और उस पर लैंग अनुमान और वोज्टा अनुमान की समझ सम्मिलित है। सम्मिश्र संख्याओं पर एक विश्लेषणात्मक रूप से अतिशयोक्तिपूर्ण बीजगणितीय विविधता V ऐसी है जिसमें पूरे सम्मिश्र सतह से कोई होलोमोर्फिक मानचित्रण उपस्थित नहीं है, जो स्थिर नहीं है। उदाहरण में जीनस g > 1 की सघन रीमैन सतहें सम्मिलित हैं। लैंग ने अनुमान लगाया कि V विश्लेषणात्मक रूप से अतिशयोक्तिपूर्ण है यदि और केवल तभी जब सभी उप-प्रकार सामान्य प्रकार के हैं।
रैखिक टोरस
एक रैखिक टोरस एक एफाइन टोरस (गुणक समूहों का उत्पाद) का एक ज्यामितीय रूप से अपरिवर्तनीय ज़ारिस्की-संवृत उपसमूह है।[11]
स्थानीय जीटा-फलन
एक स्थानीय ज़ेटा-फलन एक परिमित क्षेत्र F पर, F के परिमित क्षेत्र विस्तार पर बीजगणितीय विविधता V पर बिंदुओं की संख्या के लिए एक उत्पादक फलन है। वेइल अनुमान (q.v.) के अनुसार, ये फलन, गैर-एकवचन प्रकार के लिए, रीमैन परिकल्पना सहित, रीमैन ज़ेटा-फलन के समान गुण प्रदर्शित करते हैं।
एम
मैनिन-ममफोर्ड अनुमान
मैनिन-ममफोर्ड अनुमान, जो अब मिशेल रेनॉड द्वारा सिद्ध किया गया है, जिसमें कहा गया है कि इसके जैकोबियन प्रकारJ में एक वक्र C में केवल सीमित संख्या में बिंदु हो सकते हैं जो J में सीमित क्रम के हैं, जब तक कि C = J हैं।
मोर्डेल अनुमान
मोर्डेल अनुमान अब फाल्टिंग्स प्रमेय है, और बताता है कि कम से कम दो जीनस के एक वक्र में केवल सीमित रूप से कई तर्कसंगत बिंदु होते हैं। एकरूपता अनुमान में कहा गया है कि ऐसे बिंदुओं की संख्या पर एक समान सीमा होनी चाहिए, जो केवल जीनस और परिभाषा के क्षेत्र पर निर्भर करती है।
मोर्डेल-लैंग अनुमान
मोर्डेल-लैंग अनुमान, जो अब लॉरेंट, रेनॉड, हिंड्री, वोज्टा और फाल्टिंग्स के काम के बाद मैकक्विलन द्वारा सिद्ध किया गया है, लैंग का एक अनुमान है जो मोर्डेल अनुमान और मैनिन-ममफोर्ड अनुमान को एबेलियन प्रकार या सेमीएबेलियन प्रकार में एकीकृत करता है।
मोर्डेल-वेइल प्रमेय
मोर्डेल-वेइल प्रमेय एक मूलभूत परिणाम है जो बताता है कि एक संख्या क्षेत्र K पर एबेलियन प्रकार A के लिए समूह A(K) एक अंतिम रूप से उत्पन्न एबेलियन समूह है। यह प्रारंभ में संख्या क्षेत्र K के लिए सिद्ध हुआ था, लेकिन सभी अंतिम रूप से उत्पन्न क्षेत्र तक विस्तारित है।
मोर्डेलिक प्रकार
मोर्डेलिक प्रकार एक बीजगणितीय प्रकार है जिसके किसी भी अंतिम रूप से उत्पन्न क्षेत्र में केवल सीमित संख्या में बिंदु होते हैं।[12]
एन
नैवे ऊंचाई
परिमेय संख्याओं के सदिश की अनुभवहीन ऊँचाई या शास्त्रीय ऊँचाई, न्यूनतम सामान्य भाजक से गुणा करके प्राप्त सहअभाज्य पूर्णांकों के सदिश का अधिकतम निरपेक्ष मान है। इसका उपयोग Q के ऊपर प्रक्षेप्य समष्टि में एक बिंदु पर ऊंचाई को परिभाषित करने के लिए किया जा सकता है, इसे इसके न्यूनतम बहुपद की ऊंचाई से गुणांकों या बीजगणितीय संख्या के सदिश के रूप में माना जाता है। [13]
नेरॉन प्रतीक
नेरॉन प्रतीक स्थानीय योगदान के योग के रूप में नेरॉन के नेरॉन-टेट ऊंचाई के निर्माण में उपयोग किए जाने वाले एबेलियन प्रकार पर भाजक और बीजगणितीय चक्रों के मध्य एक द्विगुणात्मक युग्मन है। वैश्विक नेरॉन प्रतीक, जो स्थानीय प्रतीकों का योग है, ऊंचाई युग्म का केवल नकारात्मक है।[14][15][16][17]
नेरॉन-टेट ऊंचाई
एबेलियन प्रकार A पर नेरॉन-टेट ऊंचाई (जिसे प्रायः विहित ऊंचाई भी कहा जाता है) एक ऊंचाई फलन (q.v.) है जो अनिवार्य रूप से आंतरिक है, और ऊंचाई के सामान्य सिद्धांत द्वारा प्रदान किए गए A पर जोड़ के संबंध में लगभग द्विघात के बदले एक यथार्थ द्विघात रूप है। इसे एक सीमित प्रक्रिया द्वारा सामान्य ऊंचाई से परिभाषित किया जा सकता है; ऐसे सूत्र भी हैं, इस अर्थ में कि यह स्थानीय योगदान का योग है। [17]
नेवानलिन्ना निश्चर
एक सामान्य प्रक्षेप्य विविधता X पर एक पर्याप्त भाजक D का नेवानलिन्ना निश्चर एक वास्तविक संख्या है जो भाजक द्वारा परिभाषित एम्बेडिंग के संबंध में विविधता पर तर्कसंगत बिंदुओं की संख्या की वृद्धि दर का वर्णन करता है। इसमें ऊंचाई ज़ेटा फलन के अभिसरण के भुज के समान औपचारिक गुण हैं और यह अनुमान लगाया गया है कि वे अनिवार्य रूप में समान हैं।[18][19]
ओ
सामान्य न्यूनीकरण
आयाम d की एक एबेलियन प्रकार A में मूल p पर सामान्य कमी होती है यदि इसमें p पर अच्छी कमी होती है और इसके अलावा p-टोरसन की श्रेणी d होती है।[20]
A replete ideal in a number field K is a formal product of a fractional ideal of K and a vector of positive real numbers with components indexed by the infinite places of K.[21] A replete divisor is an Arakelov divisor.[22]
The special set in an algebraic variety is the subset in which one might expect to find many rational points. The precise definition varies according to context. One definition is the Zariski closure of the union of images of algebraic groups under non-trivial rational maps; alternatively one may take images of abelian varieties;[24] another definition is the union of all subvarieties that are not of general type.[25] For abelian varieties the definition would be the union of all translates of proper abelian subvarieties.[26] For a complex variety, the holomorphic special set is the Zariski closure of the images of all non-constant holomorphic maps from C. Lang conjectured that the analytic and algebraic special sets are equal.[27]
Subspace theorem
Schmidt's subspace theorem shows that points of small height in projective space lie in a finite number of hyperplanes. A quantitative form of the theorem, in which the number of subspaces containing all solutions, was also obtained by Schmidt, and the theorem was generalised by Schlickewei (1977) to allow more general absolute values on number fields. The theorem may be used to obtain results on Diophantine equations such as Siegel's theorem on integral points and solution of the S-unit equation.[28]
The Tate conjecture (John Tate, 1963) provided an analogue to the Hodge conjecture, also on algebraic cycles, but well within arithmetic geometry. It also gave, for elliptic surfaces, an analogue of the Birch–Swinnerton-Dyer conjecture (q.v.), leading quickly to a clarification of the latter and a recognition of its importance.
Tate curve
The Tate curve is a particular elliptic curve over the p-adic numbers introduced by John Tate to study bad reduction (see good reduction).
Tsen rank
The Tsen rank of a field, named for C. C. Tsen who introduced their study in 1936,[29] is the smallest natural number i, if it exists, such that the field is of class Ti: that is, such that any system of polynomials with no constant term of degree dj in n variables has a non-trivial zero whenever n > Σ dji. Algebraically closed fields are of Tsen rank zero. The Tsen rank is greater or equal to the Diophantine dimension but it is not known if they are equal except in the case of rank zero.[30]
यू
Uniformity conjecture
The uniformity conjecture states that for any number field K and g > 2, there is a uniform bound B(g,K) on the number of K-rational points on any curve of genus g. The conjecture would follow from the Bombieri–Lang conjecture.[31]
Unlikely intersection
An unlikely intersection is an algebraic subgroup intersecting a subvariety of a torus or abelian variety in a set of unusually large dimension, such as is involved in the Mordell–Lang conjecture.[32]
The Weil conjectures were three highly influential conjectures of André Weil, made public around 1949, on local zeta-functions. The proof was completed in 1973. Those being proved, there remain extensions of the Chevalley–Warning theorem congruence, which comes from an elementary method, and improvements of Weil bounds, e.g. better estimates for curves of the number of points than come from Weil's basic theorem of 1940. The latter turn out to be of interest for Algebraic geometry codes.
Weil distributions on algebraic varieties
André Weil proposed a theory in the 1920s and 1930s on prime ideal decomposition of algebraic numbers in coordinates of points on algebraic varieties. It has remained somewhat under-developed.
The Weil height machine is an effective procedure for assigning a height function to any divisor on smooth projective variety over a number field (or to Cartier divisors on non-smooth varieties).[36]
↑Cornell, Gary; Silverman, Joseph H. (1986). Arithmetic geometry. New York: Springer. ISBN0-387-96311-1. → Contains an English translation of Faltings (1983)
↑It is mentioned in J. Tate, Algebraic cycles and poles of zeta functions in the volume (O. F. G. Schilling, editor), Arithmetical Algebraic Geometry, pages 93–110 (1965).