आवर्त 7 तत्व

From Vigyanwiki
Revision as of 15:59, 19 October 2022 by alpha>Indicwiki (Created page with "{{Short description|Any element in row 7 of the periodic table}} {{Periodic table (micro)| title=Period 7 in the periodic table | mark=Fr,Ra,Ac,Th,Pa,U,Np,Pu,Am,Cm,Bk,Cf,E...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Period 7 in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson

एक आवर्त 7 तत्व आवर्त सारणी की सातवीं पंक्ति (या आवर्त सारणी अवधि ) में रासायनिक तत्व ों में से एक है। तत्वों के रासायनिक व्यवहार में आवर्ती (आवधिक) प्रवृत्तियों को चित्रित करने के लिए आवर्त सारणी को पंक्तियों में रखा गया है क्योंकि उनकी परमाणु संख्या बढ़ जाती है: एक नई पंक्ति शुरू होती है जब रासायनिक व्यवहार दोहराना शुरू होता है, जिसका अर्थ है कि समान व्यवहार वाले तत्व उसी में आते हैं। ऊर्ध्वाधर स्तंभ। सातवीं अवधि में 32 तत्व होते हैं, जो कि अवधि 6 तत्व के साथ सबसे अधिक बंधे होते हैं, फ्रैनशियम से शुरू होते हैं और ओगनेसन के साथ समाप्त होते हैं, जो वर्तमान में खोजा गया सबसे भारी तत्व है। एक नियम के रूप में, आवर्त 7 तत्व पहले अपने 7s इलेक्ट्रॉन कवच को भरते हैं, फिर उनके 5f, 6d, और 7p कोशों को उसी क्रम में भरते हैं, लेकिन कुछ अपवाद भी हैं, जैसे कि यूरेनियम

गुण

आवर्त 7 के सभी तत्व रेडियोधर्मी हैं। इस अवधि में एक्टिनाइड्स होते हैं, जिसमें प्लूटोनियम शामिल होता है, जो सबसे भारी नाभिक के साथ प्राकृतिक रूप से पाया जाने वाला तत्व है; बाद के तत्वों को कृत्रिम रूप से बनाया जाना चाहिए। जबकि इन सिंथेटिक तत्व ों में से पहले पांच (आइंस्टिनियम के माध्यम से रेडियोऐक्टिव ) अब स्थूल मात्रा में उपलब्ध हैं, अधिकांश अत्यंत दुर्लभ हैं, केवल माइक्रोग्राम मात्रा या उससे कम में तैयार किए गए हैं। बाद के ट्रांसएक्टिनाइड तत्वों को एक समय में केवल कुछ परमाणुओं के बैचों में प्रयोगशालाओं में पहचाना गया है।

हालांकि इनमें से कई तत्वों की दुर्लभता का मतलब है कि प्रयोगात्मक परिणाम बहुत व्यापक नहीं हैं, उनके आवधिक और समूह के रुझान अन्य अवधियों की तुलना में कम अच्छी तरह से परिभाषित हैं। जबकि फ्रांसियम और रेडियम अपने संबंधित समूहों के विशिष्ट गुण दिखाते हैं, एक्टिनाइड्स लैंथेनाइड्स की तुलना में व्यवहार और ऑक्सीकरण राज्यों की एक बहुत अधिक विविधता प्रदर्शित करते हैं। ये विशिष्टताएं विभिन्न कारकों के कारण होती हैं, जिनमें बड़ी मात्रा में स्पिन-ऑर्बिट युग्मन और सापेक्ष प्रभाव शामिल हैं, जो अंततः उनके विशाल परमाणु नाभिक से बहुत अधिक सकारात्मक विद्युत आवेश के कारण होते हैं। आवधिकता ज्यादातर 6d श्रृंखला में होती है, और मोस्कोवियम और लिवरमोरियम के लिए भी भविष्यवाणी की जाती है, लेकिन अन्य चार 7p तत्व, निहोनियम , फ्लेरोवियम , टेनेसीन , और ओगनेसन, उनके समूहों के लिए अपेक्षित लोगों से बहुत अलग गुण होने की भविष्यवाणी की जाती है।

तत्व

Chemical element Block Electron configuration Occurrence
 
87 Fr Francium s-block [Rn] 7s1 From decay
88 Ra Radium s-block [Rn] 7s2 From decay
89 Ac Actinium f-block [Rn] 6d1 7s2 (*) From decay
90 Th Thorium f-block [Rn] 6d2 7s2 (*) Primordial
91 Pa Protactinium f-block [Rn] 5f2 6d1 7s2 (*) From decay
92 U Uranium f-block [Rn] 5f3 6d1 7s2 (*) Primordial
93 Np Neptunium f-block [Rn] 5f4 6d1 7s2 (*) From decay
94 Pu Plutonium f-block [Rn] 5f6 7s2 From decay
95 Am Americium f-block [Rn] 5f7 7s2 Synthetic
96 Cm Curium f-block [Rn] 5f7 6d1 7s2 (*) Synthetic
97 Bk Berkelium f-block [Rn] 5f9 7s2 Synthetic
98 Cf Californium f-block [Rn] 5f10 7s2 Synthetic
99 Es Einsteinium f-block [Rn] 5f11 7s2 Synthetic
100 Fm Fermium f-block [Rn] 5f12 7s2 Synthetic
101 Md Mendelevium f-block [Rn] 5f13 7s2 Synthetic
102 No Nobelium f-block [Rn] 5f14 7s2 Synthetic
103 Lr Lawrencium d-block [Rn] 5f14 7s2 7p1 (*) Synthetic
104 Rf Rutherfordium d-block [Rn] 5f14 6d2 7s2 Synthetic
105 Db Dubnium d-block [Rn] 5f14 6d3 7s2 Synthetic
106 Sg Seaborgium d-block [Rn] 5f14 6d4 7s2 Synthetic
107 Bh Bohrium d-block [Rn] 5f14 6d5 7s2 Synthetic
108 Hs Hassium d-block [Rn] 5f14 6d6 7s2 Synthetic
109 Mt Meitnerium d-block [Rn] 5f14 6d7 7s2 (?) Synthetic
110 Ds Darmstadtium d-block [Rn] 5f14 6d8 7s2 (?) Synthetic
111 Rg Roentgenium d-block [Rn] 5f14 6d9 7s2 (?) Synthetic
112 Cn Copernicium d-block [Rn] 5f14 6d10 7s2 (?) Synthetic
113 Nh Nihonium p-block [Rn] 5f14 6d10 7s2 7p1 (?) Synthetic
114 Fl Flerovium p-block [Rn] 5f14 6d10 7s2 7p2 (?) Synthetic
115 Mc Moscovium p-block [Rn] 5f14 6d10 7s2 7p3 (?) Synthetic
116 Lv Livermorium p-block [Rn] 5f14 6d10 7s2 7p4 (?) Synthetic
117 Ts Tennessine p-block [Rn] 5f14 6d10 7s2 7p5 (?) Synthetic
118 Og Oganesson p-block [Rn] 5f14 6d10 7s2 7p6 (?) Synthetic

(?) भविष्यवाणी

(*) मैडेलुंग नियम का अपवाद।

इस बात पर ध्यान केंद्रित करने वाले विश्वसनीय स्रोतों द्वारा आम तौर पर सहमति व्यक्त की जाती है कि एफ-ब्लॉक एक्टिनियम से शुरू होता है।[1] हालाँकि, कई पाठ्यपुस्तकें अभी भी Ac और Rf-Cn को d-ब्लॉक तत्वों के रूप में देती हैं, और f-ब्लॉक को Th-Lr के रूप में d-ब्लॉक को दो भागों में विभाजित करती हैं। प्रश्न पर 2021 की IUPAC अनंतिम रिपोर्ट ने सुझाव दिया कि यहां दिखाया गया प्रारूप बेहतर है, लेकिन यह अभी तक आधिकारिक IUPAC तालिका नहीं बनी है।[2]


फ्रांसियम और रेडियम

फ्रांसियम और रेडियम 7वें आवर्त के s-ब्लॉक तत्व बनाते हैं।

फ्रांसियम का रासायनिक प्रतीक Fr और परमाणु क्रमांक 87 है। इसे पहले मेंडेलीव के पूर्वानुमानित तत्व-सीज़ियम और जंगी K के रूप में जाना जाता था।[note 1] यह दो सबसे कम विद्युत ऋणात्मक तत्वों में से एक है, दूसरा सीज़ियम है. फ्रांस ियम एक अत्यधिक रेडियोधर्मी क्षय धातु है जो एस्टैटिन, रेडियम और रेडॉन में क्षय हो जाती है। क्षार धातु के रूप में, इसमें एक संयोजकता इलेक्ट्रॉन होता है। फ्रांसियम की खोज 1939 में मार्गुराइट पेरे ने फ्रांस में की थी (जिससे तत्व का नाम लिया गया है)। यह संश्लेषण के बजाय प्रकृति में खोजा गया अंतिम तत्व था।[note 2] प्रयोगशाला के बाहर, यूरेनियम और थोरियम अयस्कों में पाए जाने वाले ट्रेस मात्रा के साथ, फ्रांसियम अत्यंत दुर्लभ है, जहां आइसोटोप फ्रैंशियम -223 लगातार बनता और क्षय होता है। पृथ्वी की पपड़ी में किसी भी समय कम से कम 20-30 ग्राम (एक औंस) मौजूद होता है; अन्य समस्थानिक पूरी तरह से सिंथेटिक हैं। प्रयोगशाला में उत्पादित सबसे बड़ी मात्रा 300,000 से अधिक परमाणुओं का समूह था।[3] रेडियम-226 (रा, परमाणु संख्या 88), लगभग शुद्ध-सफेद क्षारीय पृथ्वी धातु है, लेकिन यह आसानी से ऑक्सीकरण करता है, हवा के संपर्क में नाइट्रोजन (ऑक्सीजन के बजाय) के साथ प्रतिक्रिया करता है, रंग में काला हो जाता है। रेडियम के सभी समस्थानिक अत्यधिक रेडियोधर्मी होते हैं; सबसे स्थिर समस्थानिक रेडियम -226 है, जिसकी अर्ध-आयु 1601 वर्ष है और रेडियोधर्मी क्षय रेडॉन गैस में है। इस तरह की अस्थिरता के कारण, रेडियम ल्यूमिनेसिसेंस है, जो हल्का नीला चमक रहा है। रेडियम, रेडियम क्लोराइड के रूप में, 1898 में मैरी क्यूरी और पियरे क्यूरी द्वारा रासायनिक तत्वों की खोज की गई थी। उन्होंने यूरेनियम से रेडियम यौगिक निकाला और पांच दिन बाद फ्रेंच एकेडमी ऑफ साइंसेज में खोज को प्रकाशित किया। रेडियम को 1910 में रेडियम क्लोराइड के इलेक्ट्रोलीज़ के माध्यम से मैरी क्यूरी और आंद्रे-लुई डेबर्न द्वारा अपनी धात्विक अवस्था में पृथक किया गया था। इसकी खोज के बाद से, इसने रेडॉन-222 और थैलियम-210|रेडियम सी जैसे नाम दिए हैं।2अन्य तत्वों के कई समस्थानिकों के लिए जो रेडियम -226 के क्षय उत्पाद हैं। प्रकृति में, रेडियम यूरेनियम अयस्कों में बहुत कम मात्रा में पाया जाता है, जो प्रति टन यूरेनाइट के एक ग्राम के सातवें हिस्से के बराबर होता है। जीवित जीवों के लिए रेडियम आवश्यक नहीं है, और इसकी रेडियोधर्मिता और रासायनिक प्रतिक्रिया के कारण जैव रासायनिक प्रक्रियाओं में शामिल होने पर प्रतिकूल स्वास्थ्य प्रभाव होने की संभावना है।

एक्टिनाइड्स

हिरोशिमा और नागासाकी के फैट मैन परमाणु बम विस्फोटों में प्लूटोनियम चार्ज था।[4]

एक्टिनाइड या एक्टिनॉइड (रासायनिक नामकरण ) श्रृंखला में 89 से 103 तक परमाणु क्रमांक वाले 15 धात्विक रासायनिक तत्व, लॉरेन्सियम के माध्यम से एक्टिनियम शामिल हैं।[5][6][7][8]

एक्टिनाइड श्रृंखला का नाम इसके पहले तत्व एक्टिनियम के नाम पर रखा गया है। एक्टिनाइड्स में से एक को छोड़कर सभी f-ब्लॉक तत्व हैं, जो 5f इलेक्ट्रॉन शेल के भरने के अनुरूप हैं; लॉरेन्सियम, एक डी-ब्लॉक तत्व, को आम तौर पर एक्टिनाइड भी माना जाता है। लैंथेनाइड्स की तुलना में, ज्यादातर एफ ब्लॉक तत्व भी, एक्टिनाइड्स बहुत अधिक परिवर्तनशील वैलेंस (रसायन विज्ञान) दिखाते हैं।

एक्टिनाइड्स में से थोरियम और यूरेनियम प्राकृतिक रूप से पर्याप्त मात्रा में, प्राइमर्डियल न्यूक्लाइड , मात्रा में पाए जाते हैं। यूरेनियम का रेडियोधर्मी क्षय एक्टिनियम, एक प्रकार का रसायनिक मूलतत्त्व और प्लूटोनियम की क्षणिक मात्रा का उत्पादन करता है, और नेपच्यून के परमाणु कभी-कभी यूरेनियम अयस्क ों में परमाणु रूपांतरण प्रतिक्रियाओं से उत्पन्न होते हैं। अन्य एक्टिनाइड्स विशुद्ध रूप से सिंथेटिक तत्व हैं, हालांकि प्लूटोनियम के बाद पहले छह एक्टिनाइड्स का उत्पादन ठीक है (और लंबे समय से क्षय होने के बाद) में किया गया होगा, और कोर्ट लगभग निश्चित रूप से पहले प्रकृति में विलुप्त रेडियोन्यूक्लाइड के रूप में मौजूद था।[5][9] परमाणु परीक्षणों ने प्राकृतिक वातावरण में प्लूटोनियम से भारी कम से कम छह एक्टिनाइड्स छोड़े हैं; 1952 के उदजन बम विस्फोट के मलबे के विश्लेषण से अमेरिका, क्यूरियम, बर्कीलियम , कलिफ़ोरनियम , आइंस्टीनियम और फेर्मियम की उपस्थिति का पता चला।[10] सभी एक्टिनाइड्स रेडियोधर्मी हैं और रेडियोधर्मी क्षय होने पर ऊर्जा छोड़ते हैं; प्राकृतिक रूप से पाए जाने वाले यूरेनियम और थोरियम, और कृत्रिम रूप से उत्पादित प्लूटोनियम पृथ्वी पर सबसे प्रचुर मात्रा में एक्टिनाइड्स हैं। इनका उपयोग परमाणु रिएक्टरों और परमाणु हथियार ों में किया जाता है। यूरेनियम और थोरियम में भी विविध वर्तमान या ऐतिहासिक उपयोग हैं, और अधिकांश आधुनिक धूम्रपान डिटेक्टरों के आयनीकरण कक्ष ों में अमरीकियम का उपयोग किया जाता है।

आवर्त सारणी की प्रस्तुतियों में, लैंथेनाइड्स और एक्टिनाइड्स को तालिका के मुख्य भाग के नीचे दो अतिरिक्त पंक्तियों के रूप में दिखाया जाता है,[5]प्लेसहोल्डर्स के साथ या फिर प्रत्येक श्रृंखला का एक चयनित एकल तत्व (या तो लेण्टेनियुम या ल्यूटेशियम , और या तो एक्टिनियम या लॉरेन्सियम, क्रमशः) मुख्य तालिका के एक सेल में दिखाया गया है, क्रमशः बेरियम और हेफ़नियम , और रेडियम और रदरफोर्डियम के बीच। यह सम्मेलन पूरी तरह से सौंदर्यशास्त्र और स्वरूपण व्यावहारिकता का मामला है; शायद ही कभी इस्तेमाल किया जाने वाला पीरियोडिक_टेबल_(विस्तृत_सेल)#32-कॉलम_लेआउट|वाइड-फॉर्मेटेड आवर्त सारणी (32 कॉलम) लैंथेनाइड और एक्टिनाइड श्रृंखला को उनके उचित कॉलम में तालिका की छठी और सातवीं पंक्तियों (अवधि) के भागों के रूप में दिखाता है।

ट्रांसएक्टिनाइड्स

ट्रांसएक्टिनाइड तत्व (भी, 'ट्रांसएक्टिनाइड्स', या 'सुपर-हेवी एलिमेंट्स') एक्टिनाइड्स की तुलना में अधिक परमाणु संख्या वाले रासायनिक तत्व हैं, जिनमें से सबसे भारी लॉरेन्सियम (103) है।[11][12] ओगनेसन (तत्व 118) तक, अवधि 7 के सभी लेन-देन की खोज की गई है।

ट्रांसएक्टिनाइड तत्व भी ट्रांसयूरेनियम तत्व होते हैं, यानी, एक एक्टिनाइड यूरेनियम (92) से अधिक परमाणु संख्या होती है। एक्टिनाइड्स से अधिक परमाणु संख्या होने का और अंतर कई मायनों में महत्वपूर्ण है:

  • ट्रांसएक्टिनाइड तत्वों में सभी के पास 6d इलेक्ट्रॉन उपकोश में उनकी जमीनी अवस्था में इलेक्ट्रॉन होते हैं (और इस प्रकार उन्हें d-ब्लॉक में रखा जाता है)।
  • यहां तक ​​​​कि कई ट्रांसएक्टिनाइड तत्वों के सबसे लंबे समय तक चलने वाले आइसोटोप में बहुत कम आधा जीवन होता है, जिसे सेकंड या छोटी इकाइयों में मापा जाता है।
  • तत्व नामकरण विवाद में पहले पांच या छह ट्रांसएक्टिनाइड तत्व शामिल थे। इस प्रकार इन तत्वों ने अपनी खोज की पुष्टि के बाद कई वर्षों तक तीन-अक्षर व्यवस्थित तत्व नाम का उपयोग किया। (आमतौर पर, खोज की पुष्टि के तुरंत बाद तीन-अक्षर के प्रतीकों को दो-अक्षर के प्रतीकों से बदल दिया जाता है।)

Transactinides रेडियोधर्मी क्षय हैं और केवल प्रयोगशालाओं में कृत्रिम रूप से प्राप्त किए गए हैं। इनमें से कोई भी तत्व कभी भी मैक्रोस्कोपिक नमूने में एकत्र नहीं किया गया है। Transactinide तत्वों का नाम परमाणु भौतिकविदों और रसायनज्ञों या तत्वों के संश्लेषण में शामिल महत्वपूर्ण स्थानों के नाम पर रखा गया है।

रसायन विज्ञान के नोबेल पुरस्कार विजेता ग्लेन टी. सीबोर्ग, जिन्होंने पहली बार एक्टिनाइड अवधारणा का प्रस्ताव रखा था, जिसके कारण एक्टिनाइड श्रृंखला की स्वीकृति हुई, ने भी तत्व 104 से 121 तक की एक ट्रांसएक्टिनाइड श्रृंखला और लगभग 122 से 153 तत्वों तक फैली एक सुपरएक्टिनाइड श्रृंखला के अस्तित्व का प्रस्ताव रखा। उनके सम्मान में ट्रांसएक्टिनाइड सीबोर्गियम का नाम रखा गया है।

IUPAC एक तत्व को अस्तित्व में परिभाषित करता है यदि उसका जीवनकाल 10 . से अधिक हो−14 सेकंड, नाभिक को इलेक्ट्रॉनिक क्लाउड बनाने में लगने वाला समय।[13]


टिप्पणियाँ

  1. The latter was the name of the most stable isotope, francium-223, which occurs in the actinium series.
  2. Some elements discovered through synthesis, such as technetium, have later been found in nature.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • निद्युत
  • रेडोन
  • अलकाली धातु
  • रासायनिक संयोजन इलेक्ट्रॉन
  • हाफ लाइफ
  • यूरेननाइट
  • एल्कलाइन अर्थ मेटल
  • मोटा आदमी
  • हिरोशिमा और नागासाकी पर परमाणु बमबारी
  • लोरेनसियम
  • कृत्रिम तत्व
  • प्रकृतिक वातावरण
  • स्मोक डिटेक्टर
  • परमाणु रिऐक्टर
  • सौंदर्यशास्र
  • व्यवस्थित तत्व का नाम

संदर्भ

  1. Jensen, William B. (2015). "आवर्त सारणी में लैंथेनम (एक्टिनियम) और ल्यूटेटियम (लॉरेन्सियम) की स्थिति: एक अद्यतन". Foundations of Chemistry. 17: 23–31. doi:10.1007/s10698-015-9216-1. S2CID 98624395. Retrieved 28 January 2021.
  2. Scerri, Eric (18 January 2021). "आवर्त सारणी के समूह 3 पर चर्चा पर अनंतिम रिपोर्ट". Chemistry International. 43 (1): 31–34. doi:10.1515/ci-2021-0115. S2CID 231694898.
  3. Luis A. Orozco (2003). "फ्रैनशियम". Chemical and Engineering News.
  4. The Manhattan Project. An Interactive History. US Department of Energy
  5. 5.0 5.1 5.2 Gray, Theodore (2009). तत्व: ब्रह्मांड में प्रत्येक ज्ञात परमाणु का एक दृश्य अन्वेषण. New York: Black Dog & Leventhal Publishers. p. 240. ISBN 978-1-57912-814-2.
  6. Actinide element, Encyclopædia Britannica on-line
  7. Although "actinoid" (rather than "actinide") means "actinium-like" and therefore should exclude actinium, that element is usually included in the series.
  8. Connelly, Neil G.; et al. (2005). "Elements". अकार्बनिक रसायन विज्ञान का नामकरण. London: Royal Society of Chemistry. p. 52. ISBN 978-0-85404-438-2.
  9. Greenwood, p. 1250
  10. Fields, P.; Studier, M.; Diamond, H.; Mech, J.; Inghram, M.; Pyle, G.; Stevens, C.; Fried, S.; Manning, W. (1956). "थर्मोन्यूक्लियर टेस्ट मलबे में ट्रांसप्लूटोनियम तत्व". Physical Review. 102 (1): 180. Bibcode:1956PhRv..102..180F. doi:10.1103/PhysRev.102.180.
  11. IUPAC Provisional Recommendations for the Nomenclature of Inorganic Chemistry (2004) Archived 2006-10-27 at the Wayback Machine (online draft of an updated version of the "Red Book" IR 3–6)
  12. Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean, eds. (2006). एक्टिनाइड और ट्रांसएक्टिनाइड तत्वों की रसायन विज्ञान (3rd ed.). Dordrecht, The Netherlands: Springer. ISBN 978-1-4020-3555-5.
  13. "कर्नकेमी".