कलन में, और अधिक सामान्यतःगणितीय विश्लेषण में, भागों या आंशिक एकीकरण द्वारा एकीकरण एक ऐसी प्रक्रिया है जो प्रकार्य (गणित) के एक उत्पाद (गणित) के अभिन्न (गणित) को उनके व्युत्पन्न और प्रतिअवकलज के उत्पाद के अभिन्न अंग के संदर्भ में खोजती है। यह प्रायः कार्यों के एक उत्पाद के प्रतिअवकलज को एक प्रतिअवकलज में बदलने के लिए उपयोग किया जाता है जिसके लिए एक समाधान अधिक आसानी से पाया जा सकता है। नियम को व्युत्पन्न के उत्पाद नियम के अभिन्न संस्करण के रूप में माना जा सकता है।
भाग सूत्र द्वारा एकीकरण कहता है:
या, मान लीजिये और जबकि और , सूत्र को अधिक संक्षिप्त रूप से लिखा जा सकता है:
गणितज्ञ ब्रुक टेलर ने भागों द्वारा एकीकरण की खोज की और पहली बार 1715 में इस विचार को प्रकाशित किया।[1][2] भागों द्वारा एकीकरण के अधिक सामान्य सूत्रीकरण रीमैन-स्टील्टजेस समाकल के लिए मौजूद हैं। अनुक्रम के लिए असतत गणित समधर्मी को भागों द्वारा संकलन कहा जाता है।
जहाँ हम एकीकरण की निरंतरता लिखने की उपेक्षा करते हैं। यह भागों द्वारा एकीकरण के लिए सूत्र उत्पन्न करता है:
या किसी प्रकार्य के अंतर के संदर्भ में ,
इसे प्रत्येक पक्ष में जोड़े गए अनिर्दिष्ट स्थिरांक वाले कार्यों की समानता के रूप में समझा जाना है। दो मानों x = a और x = b के बीच प्रत्येक पक्ष का अंतर लेना और कलन के मौलिक प्रमेय को लागू करना निश्चित अभिन्न संस्करण देता है:
मूल समाकल ∫ uv′ dx में अवकलज v′ होता है; प्रमेय को लागू करने के लिए, किसी को v' का प्रतिअवकलज v खोजना होगा, फिर परिणामी समाकल ∫ vu′ dx का मूल्यांकन करना होगा।
कम सुचारू कार्यों के लिए वैधता
u और v के लिए लगातार अलग-अलग होना जरूरी नहीं है। भागों द्वारा एकीकरण काम करता है अगर u पूरी तरह से निरंतर है और प्रकार्य नामित v' लेबेस्ग समाकलनीय है (लेकिन जरूरी नहीं कि निरंतर हो)।[3] (यदि v' में विच्छिन्नता का एक बिंदु है तो इसके प्रतिअवकलज v का उस बिंदु पर व्युत्पन्न नहीं हो सकता है।)
यदि एकीकरण का अंतराल सघन नहीं है, तो यह आवश्यक नहीं है कि u पूरे अंतराल में पूरी तरह से निरंतर हो या v' के लिए अंतराल में लेबेसेग पूर्णांक हो, उदाहरण के एक जोड़े के रूप में (जिसमें u और v निरंतर हैं और लगातार अलग-अलग) दिखाएगा। उदाहरण के लिए, अगर
अंतराल पर u पूर्णतः संतत नहीं है [1, ∞), लेकिन फिर भी
जब तक की सीमा का अर्थ लिया जाता है और जब तक दाहिनी ओर के दो पद परिमित हैं। यह तभी सच है जब हम चुनते हैं इसी प्रकार यदि
v' अंतराल पर [1, ∞) लेबेस्ग पूर्णांक नहीं है, लेकिन फिर भी
उसी व्याख्या के साथ।
कोई भी आसानी से इसी तरह के उदाहरण दे सकता है जिसमें u और v लगातार भिन्न नहीं होते हैं।
आगे, यदि खंड पर और परिबद्ध भिन्नता का एक कार्य है। तब
जहाँ परिबद्ध भिन्नता के कार्य के अनुरूप हस्ताक्षरित माप को दर्शाता है, और प्रकार्य से के विस्तार हैं। जो क्रमशः परिबद्ध भिन्नता और अवकलनीय हैं।[citation needed]
कई कार्यों का उत्पाद
तीन गुणित कार्यों, u(x), v(x), w(x) के लिए उत्पाद नियम को एकीकृत करना एक समान परिणाम देता है:
सामान्य तौर पर, n कारकों के लिए
जिससे होता है
मानसिक चित्रण
प्रमेय की चित्रमय व्याख्या। चित्रित वक्र चर टी द्वारा parametrized है।
(x, y) = (f(t), g(t)) द्वारा पैरामीट्रिक वक्र पर विचार करें। यह मानते हुए कि वक्र स्थानीय रूप से एक-से-एक और समाकलनीय है, हम परिभाषित कर सकते हैं
नीले क्षेत्र का क्षेत्रफल है
इसी प्रकार लाल क्षेत्र का क्षेत्रफल है
कुल क्षेत्रफल A1 + A2 छोटे वाले के क्षेत्रफल, x1y1 को घटाकर बड़े आयत x2y2 के क्षेत्रफल के बराबर है :
या, T के संदर्भ में,
या, अनिश्चित समाकलों के संदर्भ में, इसे इस रूप में लिखा जा सकता है
पुनर्व्यवस्थित:
इस प्रकार भागों द्वारा एकीकरण को आयतों के क्षेत्र और लाल क्षेत्र के क्षेत्र से नीले क्षेत्र के क्षेत्र को प्राप्त करने के बारे में सोचा जा सकता है।
यह मानसिक चित्रण यह भी बताता है कि क्यों भागों द्वारा एकीकरण एक व्युत्क्रम प्रकार्य f−1(x) का अभिन्न अंग खोजने में मदद कर सकता है जब फलन f(x) का समाकल ज्ञात हो। वास्तव में, प्रकार्य x(y) और y(x) व्युत्क्रम हैं, और पूर्णांकी ∫ x dy की गणना पूर्णांकी ∫ y dx को जानने के बाद की जा सकती है। विशेष रूप से, यह लघुगणक और व्युत्क्रम त्रिकोणमितीय कार्यों को एकीकृत करने के लिए भागों द्वारा एकीकरण के उपयोग की व्याख्या करता है। वास्तव में, अगर एक अंतराल पर एक अवकलनीय एक-से-एक कार्य है, तो भागों द्वारा एकीकरण का उपयोग के समाकल के संदर्भ में के समाकलन के सूत्र को प्राप्त करने के लिए किया जा सकता है। यह लेख, प्रतिलोम कार्यों के समाकलन में प्रदर्शित किया गया है।
अनुप्रयोग
प्रति-अवकलज ढूँढना
पूर्णांकी को हल करने के लिए विशुद्ध रूप से यांत्रिक प्रक्रिया के स्थान पर भागों द्वारा एकीकरण एक अनुमानी है; एकीकृत करने के लिए एक एकल कार्य दिया गया है, विशिष्ट रणनीति इस एकल प्रकार्य को दो कार्यों u(x)v(x) के उत्पाद में सावधानीपूर्वक अलग करना है, जैसे कि भागों के सूत्र द्वारा एकीकरण से अवशिष्ट अभिन्न एकल प्रकार्य की तुलना में मूल्यांकन करना आसान है। निम्नलिखित विधि सर्वोत्तम रणनीति को चित्रित करने में उपयोगी है:
दाईं ओर, u विभेदित है और v एकीकृत है; परिणामस्वरूप u को एक प्रकार्य के रूप में चुनना उपयोगी होता है जो विभेदित होने पर सरल हो, या v को एक प्रकार्य के रूप में चुनना उपयोगी होता है जो एकीकृत होने पर सरल हो। एक साधारण उदाहरण के रूप में, इस पर विचार करें:
चूँकि ln(x) का व्युत्पन्न 1/x है, एक (ln(x)) को u का हिस्सा बनाता है; क्योंकि 1/x2 का प्रतिअवकलज -1/x है। निम्न सूत्र अब प्राप्त होता है:
- 1/x2 का प्रतिअवकलज घात नियम के साथ पाया जा सकता है और वह 1/x है
वैकल्पिक रूप से, कोई u और v चुन सकता है जैसे कि निरस्तीकरण के कारण उत्पाद u' (∫v dx) सरल हो जाता है। उदाहरण के लिए, मान लीजिए कि कोई एकीकृत करना चाहता है:
यदि हम u(x) = ln(|sin(x)|) और v(x) = sec2x चुनते हैं तो u श्रृंखला नियम का उपयोग करके 1/ tan x में अंतर करता है और v tan x में एकीकृत होता है; तो सूत्र देता है:
इंटीग्रैंड 1 तक सरल हो जाता है, इसलिए एंटीडेरिवेटिव x है। एक सरल संयोजन ढूँढना प्रायः प्रयोग शामिल होता है।
कुछ अनुप्रयोगों में, यह सुनिश्चित करना आवश्यक नहीं हो सकता है कि भागों द्वारा एकीकरण द्वारा निर्मित अभिन्न का एक सरल रूप है; उदाहरण के लिए, संख्यात्मक विश्लेषण में, यह पर्याप्त हो सकता है कि इसका परिमाण छोटा है और इसलिए यह केवल एक छोटी त्रुटि शब्द का योगदान देता है। नीचे दिए गए उदाहरणों में कुछ अन्य विशेष तकनीकों का प्रदर्शन किया गया है।
बहुपद और त्रिकोणमितीय कार्य
गणना करने के लिए
होने देना:
तब:
जहाँ C समाकलन का एक स्थिरांक है।
रूप में x की उच्च शक्तियों के लिए
बार-बार भागों द्वारा एकीकरण का उपयोग करके इन जैसे अभिन्न का मूल्यांकन किया जा सकता है; प्रमेय का प्रत्येक अनुप्रयोग x की शक्ति को एक से कम करता है।
भागों द्वारा एकीकरण की कार्यप्रणाली की जांच करने के लिए आमतौर पर इस्तेमाल किया जाने वाला एक उदाहरण है
यहाँ, भागों द्वारा एकीकरण दो बार किया जाता है। पहले चलो
तब:
अब, शेष अभिन्न का मूल्यांकन करने के लिए, हम भागों द्वारा एकीकरण का फिर से उपयोग करते हैं:
फिर:
इन्हें एक साथ रखकर,
इस समीकरण के दोनों पक्षों में समान समाकल दिखाई देता है। प्राप्त करने के लिए अभिन्न को दोनों पक्षों में जोड़ा जा सकता है
जो पुनर्व्यवस्थित करता है
जहाँ फिर से C (और C′ = C/2) समाकलन का एक स्थिरांक है।
एक समान विधि का उपयोग छेदक घन का समाकल ज्ञात करने के लिए किया जाता है।
कार्यों को एकता से गुणा किया जाता है
दो अन्य प्रसिद्ध उदाहरण हैं जब भागों द्वारा एकीकरण को 1 और स्वयं के उत्पाद के रूप में व्यक्त किए गए प्रकार्य पर लागू किया जाता है। यह कार्य करता है यदि प्रकार्य का व्युत्पन्न ज्ञात है, और इस व्युत्पन्न समय x का अभिन्न अंग भी ज्ञात है।
पहला उदाहरण ∫ ln(x) dx है। हम इसे इस प्रकार लिखते हैं:
होने देना:
तब:
जहाँ C समाकलन का स्थिरांक है।
दूसरा उदाहरण व्युत्क्रम स्पर्शरेखा फलन आर्कटान (x) है:
जो कार्य DV होना है वह सूची में जो भी अंतिम हो। इसका कारण यह है कि सूची में नीचे के कार्यों में सामान्यतः उनके ऊपर के कार्यों की तुलना में आसान प्रतिअवकलज होते हैं। नियम को कभी-कभी विवरण के रूप में लिखा जाता है जहां डी डी के लिए खड़ा होता है और सूची के शीर्ष पर डीv होने के लिए चुना गया प्रकार्य होता है।
LIATE नियम को प्रदर्शित करने के लिए, समाकल पर विचार करें
LIATE नियम का पालन करते हुए, u = x, और dv = cos(x)dx, इसलिए du = dx, और v = sin(x), जो अभिन्न बनाता है
जो बराबर है
सामान्य तौर पर, कोई u और डीv चुनने की कोशिश करता है जैसे कि डु u से सरल है और डीv को एकीकृत करना आसान है। यदि इसके बजाय cos(x) को u के रूप में और xdx को dv के रूप में चुना गया था, तो हमारे पास समाकल होगा
जो, भागों के सूत्र द्वारा एकीकरण के पुनरावर्ती अनुप्रयोग के बाद, स्पष्ट रूप से एक अनंत पुनरावर्तन में परिणत होगा और कहीं नहीं ले जाएगा।
हालांकि अंगूठे का एक उपयोगी नियम, LIATE नियम के अपवाद हैं। इसके बजाय आईलेट क्रम में नियमों पर विचार करना एक सामान्य विकल्प है। साथ ही, कुछ मामलों में, बहुपद पदों को गैर-तुच्छ तरीकों से विभाजित करने की आवश्यकता होती है। उदाहरण के लिए, एकीकृत करना
एक सेट होगा
ताकि
फिर
अंत में, इसका परिणाम होता है
गणितीय विश्लेषण में प्रमेयों को सिद्ध करने के लिए भागों द्वारा एकीकरण का उपयोग प्रायः एक उपकरण के रूप में किया जाता है।
वालिस उत्पाद
वालिस अनंत उत्पाद के लिए
वालिस उत्पाद हो सकता है # एकीकरण का उपयोग कर सबूत।
गामा प्रकार्य एक विशेष प्रकार्य का एक उदाहरण है, जिसे अनुचित पूर्णांकी के रूप में परिभाषित किया गया है . भागों द्वारा एकीकरण इसे तथ्यात्मक कार्य के विस्तार के रूप में दिखाता है:
तब से
कब एक प्राकृतिक संख्या है, अर्थात , इस फॉर्मूले को बार-बार लागू करने से कारख़ाने का मिलता है:
रीमैन-लेबेस्गु लेम्मा दिखाने के लिए भागों द्वारा एकीकरण प्रायः हार्मोनिक विश्लेषण, विशेष रूप से फूरियर विश्लेषण में उपयोग किया जाता है। इसका सबसे आम उदाहरण इसका उपयोग यह दिखाने में है कि प्रकार्य के फूरियर रूपांतरण का क्षय उस प्रकार्य की चिकनाई पर निर्भर करता है, जैसा कि नीचे वर्णित है।
यदि f एक k-बार निरंतर भिन्न होने वाला कार्य है और k वें तक के सभी डेरिवेटिव अनंत पर शून्य तक क्षय हो जाते हैं, तो इसका फूरियर रूपांतरण संतुष्ट करता है
कहां f(k) f का kth डेरिवेटिव है। (दाईं ओर सटीक स्थिरांक फूरियर रूपांतरण # अन्य सम्मेलनों पर निर्भर करता है।) यह ध्यान देने से सिद्ध होता है
इसलिए हम प्राप्त व्युत्पन्न के फूरियर रूपांतरण पर भागों द्वारा एकीकरण का उपयोग करते हैं
इस गणितीय आगमन को लागू करने से सामान्य k का परिणाम मिलता है। किसी फलन के अवकलज का लाप्लास रूपांतरण ज्ञात करने के लिए इसी प्रकार की विधि का उपयोग किया जा सकता है।
फूरियर रूपांतरण का क्षय
उपरोक्त परिणाम हमें फूरियर रूपांतरण के क्षय के बारे में बताता है, क्योंकि यह इस प्रकार है कि यदि f और f(k) तब पूर्णांक हैं
दूसरे शब्दों में, यदि f इन शर्तों को पूरा करता है तो इसका फूरियर रूपांतरण कम से कम उतनी ही तेजी से अनंत पर क्षय करता है 1/|ξ|k. विशेष रूप से, अगर k ≥ 2 तो फूरियर रूपांतरण पूर्णांक है।
सबूत तथ्य का उपयोग करता है, जो फूरियर रूपांतरण # परिभाषा से तत्काल है
इसी विचार का प्रयोग इस उपखण्ड के प्रारंभ में बताई गई समानता पर देता है
इन दो असमानताओं का योग करना और फिर से विभाजित करना 1 + |2πξk| बताई गई असमानता देता है।
ऑपरेटर सिद्धांत में भागों द्वारा एकीकरण का एक उपयोग यह है कि यह दर्शाता है कि −∆ (जहाँ ∆ लाप्लास संकारक है) एक धनात्मक संकारक है L2 (एलपी स्पेस देखें। एलपी </सुप> स्थान)। यदि f सुचारू और ठोस रूप से समर्थित है, तो भागों द्वारा एकीकरण का उपयोग करके, हमारे पास है
अन्य अनुप्रयोग
स्टर्म-लिउविल सिद्धांत में सीमा की स्थिति का निर्धारण
विभिन्नताओं की कलन में uलर-लैग्रेंज समीकरण की व्युत्पत्ति
भागों द्वारा बार-बार एकीकरण
के दूसरे व्युत्पन्न को ध्यान में रखते हुए आंशिक एकीकरण के सूत्र के एलएचएस पर पूर्णांकी में आरएचएस पर पूर्णांकी के लिए बार-बार आवेदन करने का सुझाव दिया गया है:
डिग्री के डेरिवेटिव्स के लिए बार-बार आंशिक एकीकरण की इस अवधारणा का विस्तार करना n फलस्वरूप होता है
यह अवधारणा उपयोगी हो सकती है जब के लगातार अभिन्न अंग आसानी से उपलब्ध हैं (उदाहरण के लिए, सादे घातीय या साइन और कोसाइन, जैसा कि लाप्लास ट्रांसफ़ॉर्म या फूरियर ट्रांसफ़ॉर्म में), और जब nवें का व्युत्पन्न गायब हो जाता है (उदाहरण के लिए, डिग्री के साथ एक बहुपद समारोह के रूप में ). बाद की स्थिति आंशिक एकीकरण को दोहराना बंद कर देती है, क्योंकि आरएचएस-पूर्णांकी गायब हो जाता है।
आंशिक एकीकरण की उपरोक्त पुनरावृत्ति के दौरान पूर्णांकी
और और
संबंधित हो जाओ। इसे मनमाने ढंग से डेरिवेटिव के बीच स्थानांतरित करने के रूप में व्याख्या की जा सकती है और एकीकृत के भीतर, और उपयोगी साबित होता है, (रॉड्रिक्स का सूत्र देखें)।
भागों द्वारा सारणीबद्ध एकीकरण
उपरोक्त सूत्र की आवश्यक प्रक्रिया को तालिका में संक्षेपित किया जा सकता है; परिणामी विधि को सारणीबद्ध एकीकरण कहा जाता है[5] और फिल्म सामना करो और कार्य कर के दिखाओ (1988) में चित्रित किया गया था।[6]
उदाहरण के लिए, अभिन्न पर विचार करें
और ले लो
कॉलम ए में प्रकार्य को सूचीबद्ध करना शुरू करें और इसके बाद के डेरिवेटिव जब तक शून्य न हो जाए। फिर कॉलम बी में प्रकार्य को सूचीबद्ध करें और इसके बाद के अभिन्न अंग जब तक कॉलम बी का आकार कॉलम ए के समान न हो जाए। परिणाम इस प्रकार है:
# i
Sign
A: derivatives u(i)
B: integrals v(n−i)
0
+
1
−
2
+
3
−
4
+
में प्रविष्टियों का उत्पाद row i कॉलम ए और बी संबंधित चिह्न के साथ संबंधित पूर्णांकी देते हैं step i भागों द्वारा बार-बार एकीकरण के दौरान। Step i = 0 मूल समाकल प्राप्त करता है। में पूर्ण परिणाम के लिए step i > 0 द ith integral पिछले सभी उत्पादों में जोड़ा जाना चाहिए (0 ≤ j < i) की jth entry कॉलम ए और के (j + 1)st entry कॉलम बी के (यानी, कॉलम ए की पहली प्रविष्टि को कॉलम बी की दूसरी प्रविष्टि के साथ गुणा करें, कॉलम ए की दूसरी प्रविष्टि को कॉलम बी की तीसरी प्रविष्टि के साथ गुणा करें, आदि ...) दिए गए के साथ jth sign. यह प्रक्रिया एक प्राकृतिक पड़ाव पर आती है, जब उत्पाद, जो अभिन्न उत्पन्न करता है, शून्य होता है (i = 4 उदाहरण में)। पूरा परिणाम निम्नलिखित है (प्रत्येक पद में वैकल्पिक संकेतों के साथ):
यह प्रदान करता है
बार-बार आंशिक एकीकरण भी उपयोगी हो जाता है, जब क्रमशः कार्यों को अलग करने और एकीकृत करने के दौरान और उनके उत्पाद का परिणाम मूल इंटीग्रैंड के गुणक में होता है। इस मामले में इस सूचकांक के साथ पुनरावृत्ति को भी समाप्त किया जा सकता है i.यह घातीय और त्रिकोणमितीय कार्यों के साथ, अपेक्षित रूप से हो सकता है। उदाहरण के तौर पर विचार करें
# i
Sign
A: derivatives u(i)
B: integrals v(n−i)
0
+
1
−
2
+
इस मामले में इंडेक्स के लिए उचित चिह्न के साथ कॉलम ए और बी में शर्तों का उत्पाद i = 2 मूल इंटीग्रैंड के नकारात्मक गुण पैदा करता है (तुलना करें rows i = 0and i = 2).
यह देखते हुए कि RHS पर समाकलन का अपना समाकलन स्थिरांक हो सकता है , और अमूर्त अभिन्न को दूसरी तरफ लाकर देता है
और अंत में:
जहां सी = सी'/2।
उच्च आयाम
कलन के मौलिक प्रमेय के एक संस्करण को एक उपयुक्त उत्पाद नियम में लागू करके भागों द्वारा एकीकरण को कई चर के कार्यों तक बढ़ाया जा सकता है। बहुभिन्नरूपी कलन में ऐसी कई जोड़ियाँ संभव हैं, जिनमें एक अदिश-मूल्यवान फलन u और सदिश-मूल्यवान फलन (वेक्टर क्षेत्र) 'V' शामिल है।[7] वेक्टर कैलकुस पहचान # पहली व्युत्पन्न पहचान बताती है:
मान लीजिए का एक खुला सेट परिबद्ध सेट है टुकड़े की चिकनी सीमा (टोपोलॉजी) के साथ . अधिक एकीकृत करना मानक मात्रा प्रपत्र के संबंध में , और विचलन प्रमेय को लागू करने से, देता है:
कहां सीमा के लिए बाहरी इकाई सामान्य वेक्टर है, जो इसके मानक रीमैनियन वॉल्uम फॉर्म के संबंध में एकीकृत है . पुनर्व्यवस्थित करता है:
या दूसरे शब्दों में
प्रमेय की अवकलनीयता वर्ग आवश्यकताओं को शिथिल किया जा सकता है। उदाहरण के लिए, सीमा लिप्सचिट्ज़ निरंतर होने की आवश्यकता है, और कार्यों u, v को केवल सोबोलेव अंतरिक्ष एच में झूठ बोलने की जरूरत है1(Ω).
हरे रंग की पहली पहचान
निरंतर भिन्न होने वाले वेक्टर क्षेत्रों पर विचार करें और , कहां के लिए i-वें मानक आधार सदिश है . अब उपरोक्त एकीकरण को भागों में प्रत्येक पर लागू करें वेक्टर क्षेत्र का गुना :
संक्षेप में मैं भागों सूत्र द्वारा एक नया एकीकरण देता हूं:
मुकदमा , कहां , को ग्रीन की पहली पहचान के रूप में जाना जाता है:
यह भी देखें
Lebes gue-Stiltjes पूर्णांकी#हिस्सो द्वारा इंटीग्रेशन|लेबेस्ग्u-स्टिल्टजेस पूर्णांकी के लिए पार्ट्स द्वारा इंटीग्रेशन
द्विघात भिन्नता # सेमीमार्टिंगेल्स सेमीमार्टिंगेल्स के लिए, उनके द्विघात सहसंयोजन को शामिल करते हुए।
Hoffmann, Laurence D.; Bradley, Gerald L. (2004). Calculus for Business, Economics, and the Social and Life Sciences (8th ed.). pp. 450–464. ISBN0-07-242432-X.
Willard, Stephen (1976). Calculus and its Applications. Boston: Prindle, Weber & Schmidt. pp. 193–214. ISBN0-87150-203-8.
Washington, Allyn J. (1966). Technical Calculus with Analytic Geometry. Reading: Addison-Wesley. pp. 218–245. ISBN0-8465-8603-7.