हाइड्रोजन उत्पादन
हाइड्रोजन उत्पादन हाइड्रोजन गैस उत्पन्न करने के लिए औद्योगिक विधियों का परिवार है। 2020 तक, प्राकृतिक गैस और अन्य हल्के हाइड्रोकार्बन के भाप सुधार, भारी हाइड्रोकार्बन के आंशिक ऑक्सीकरण और कोयला गैसीकरण द्वारा जीवाश्म ईंधन से अधिकांश हाइड्रोजन (% 95%) का उत्पादन किया जाता है।[1][2] हाइड्रोजन उत्पादन के अन्य तरीकों में बायोमास गैसीकरण, शून्य-CO 2 उत्सर्जन मीथेन पायरोलिसिस और पानी के इलेक्ट्रोलिसिस सम्मलित हैं । बाद की प्रक्रियाएं, मीथेन पायरोलिसिस और पानी का इलेक्ट्रोलिसिस सीधे बिजली के किसी भी स्रोत से की जा सकती हैं, जैसे कि सौर ऊर्जा।
किसी भी औद्योगीकरण में हाइड्रोजन का उत्पादन महत्वपूर्ण भूमिका निभाता है, क्योंकि कई आवश्यक रासायनिक प्रक्रियाओं के लिए हाइड्रोजन की आवश्यकता होती है।[3] 2020 में, दुनिया भर में अधिकतर 87 मिलियन टन हाइड्रोजन का उत्पादन किया गया था[4] विभिन्न उपयोगों के लिए, जैसे तेल शोधशाला, हैबर प्रक्रिया के माध्यम से अमोनिया के उत्पादन में, और कार्बन मोनोआक्साइड की कमी के माध्यम से मेथनॉल के उत्पादन में। 2021 में वैश्विक हाइड्रोजन उत्पादन बाजार का मूल्य 135.94 बिलियन अमेरिकी डॉलर था, और 2030 तक 219.2 बिलियन अमेरिकी डॉलर तक बढ़ने की अपेक्षा है, 2021 से 2030 तक 5.4% की चक्रवृद्धि वार्षिक वृद्धि दर (सीएजीआर) के साथ।[5]
हाइड्रोजन उत्पादन के तरीके
हाइड्रोजन के व्यावसायिक उत्पादन के चार मुख्य स्रोत हैं: प्राकृतिक गैस, पेट्रोलियम, कोयला और इलेक्ट्रोलिसिस; जो विश्व के हाइड्रोजन उत्पादन का क्रमशः 48%, 30%, 18% और 4% है।[6] जीवाश्म ईंधन औद्योगिक हाइड्रोजन का प्रमुख स्रोत हैं।[7]कार्बन डाइऑक्साइड को प्राकृतिक गैस से हाइड्रोजन उत्पादन के लिए 70-85% दक्षता के साथ और अन्य हाइड्रोकार्बन से दक्षता की अलग-अलग डिग्री तक अलग किया जा सकता है।[8] विशेष रूप से, थोक हाइड्रोजन सामान्यतः मीथेन या प्राकृतिक गैस के भाप सुधार द्वारा निर्मित होता है।[9]
स्टीम मीथेन सुधार
स्टीम मीथेन रिफॉर्मिंग (एसएमआर) प्राकृतिक गैस से हाइड्रोजन के उत्पादन की एक विधि है, जो अधिकतर मीथेन (CH4). यह वर्तमान में औद्योगिक हाइड्रोजन का सबसे सस्ता स्रोत है। इस पद्धति से दुनिया का अधिकतर 50% हाइड्रोजन का उत्पादन किया जा रहा है।[10] प्रक्रिया में गैस को बीच में गर्म करना सम्मलित है 700–1,100 °C (1,292–2,012 °F) भाप और निकल कटैलिसीस की उपस्थिति में। परिणामी एंडोथर्मिक प्रक्रिया मीथेन अणुओं को तोड़ती है और कार्बन मोनोऑक्साइड और आणविक हाइड्रोजन (H2).[6]
इसके बाद कार्बन मोनोऑक्साइड गैस को फिर लौह ऑक्साइड या अन्य ऑक्साइड के ऊपर भाप के साथ पारित किया जा सकता है और जल-गैस शिफ्ट प्रतिक्रिया से निकलना पड़ सकता है। H2 की अधिक मात्रा प्राप्त करने के लिए जल-गैस शिफ्ट प्रतिक्रिया गुजरना पड़ता है। इस प्रक्रिया का नकारात्मक पक्ष यह है कि इसके उपोत्पाद CO2 , CO और अन्य ग्रीनहाउस गैसों के प्रमुख वायुमंडलीय विमोचन हैं ।[6]कच्चे माल की गुणवत्ता (प्राकृतिक गैस, समृद्ध गैस, मिट्टी का तेल, आदि) के आधार पर उत्पादित एक टन हाइड्रोजन भी 9 से 12 टन CO2 का उत्पादन करेगा। जो एक ग्रीनहाउस गैस कार्बन को पकड़ने और भंडारण हो सकती है।[11]
इस प्रक्रिया के लिए, उच्च तापमान वाली भाप (H2O) मीथेन (CH4) के साथ एंडोथर्मिक प्रतिक्रिया में सिनगैस उत्पन्न करने के लिए सिनगैस उत्पन्न करने के लिए एक करता है ।[12]
- CH4 + H2O → CO + 3 H2
दूसरे चरण में, अधिकतर
360 °C (680 °F) पर किए गए कम तापमान, एक्ज़ोथिर्मिक जल-गैस शिफ्ट प्रतिक्रिया के माध्यम से अतिरिक्त हाइड्रोजन उत्पन्न होता है:
- CO + H2O → CO2 + H2
अनिवार्य रूप से, CO2 को CO2 में ऑक्सीजन (O) रने के लिए ऑक्सीजन (O) परमाणु को अतिरिक्त पानी (भाप) से छीन लिया जाता है। यह ऑक्सीकरण प्रतिक्रिया को बनाए रखने के लिए ऊर्जा भी प्रदान करता है। प्रक्रिया को चलाने के लिए आवश्यक अतिरिक्त गर्मी सामान्यतः मीथेन के कुछ हिस्से को जलाकर आपूर्ति की जाती है।
अन्य जीवाश्म ईंधन विधियाँ
मीथेन पायरोलिसिस
मीथेन का पायरोलिसिस प्राकृतिक गैस से हाइड्रोजन उत्पादन प्रक्रिया है। पिघलने वाले उत्प्रेरक के माध्यम से प्रवाह के माध्यम से हाइड्रोजन पृथक्करण एक चरण में होता है[13] बबल कॉलम रिएक्टर में।[14] संभावित रूप से कम लागत वाले हाइड्रोजन उत्पादन के लिए यह नो-ग्रीनहाउस-गैस दृष्टिकोण है, जिसे इसकी क्षमता को बढ़ाने के लिए मापा जा रहा है[15] और बड़े पैमाने पर संचालन के लिए।[16][17]
प्रक्रिया उच्च तापमान (1065 डिग्री सेल्सियस या 1950 डिग्री फारेनहाइट) पर आयोजित की जाती है।[18][19][20] मीथेन पायरोलिसिस के अन्य रूप, जैसे मीथेन का थर्मो-कैटेलिटिक अपघटन, चूंकि, चुने गए उत्प्रेरक के आधार पर 600 डिग्री सेल्सियस - 1000 डिग्री सेल्सियस के बीच कम तापमान पर काम करने में सक्षम हैं।[21]
- CH
4(जी) → सी (एस) + 2 H
2(g) डेल्टा (अक्षर)|ΔH° = 74.8 जूल प्रति तिल|kJ/mol
औद्योगिक गुणवत्ता वाले ठोस कार्बन को तब विनिर्माण फीडस्टॉक या लैंडफिल के रूप में बेचा जा सकता है, यह वातावरण में जारी नहीं होता है और लैंडफिल में भूजल प्रदूषण नहीं करता है।
आंशिक ऑक्सीकरण
भारी हाइड्रोकार्बन से हाइड्रोजन का उत्पादन, जो उत्प्रेरक भाप सुधार के लिए अनुपयुक्त हैं, आंशिक ऑक्सीकरण द्वारा प्राप्त किया जाता है। एक ईंधन-वायु या ईंधन-ऑक्सीजन मिश्रण आंशिक रूप से दहन होता है, जिसके परिणामस्वरूप हाइड्रोजन- और कार्बन मोनोऑक्साइड युक्त सिन्गैस होता है। जल-गैस पारी प्रतिक्रिया के माध्यम से कार्बन मोनोऑक्साइड (और पानी) से अधिक हाइड्रोजन और कार्बन डाइऑक्साइड प्राप्त किया जाता है।[6] हाइड्रोजन से कार्बन मोनोऑक्साइड अनुपात को कम करने के लिए कार्बन डाइऑक्साइड को सह-खिलाया जा सकता है।
आंशिक ऑक्सीकरण प्रतिक्रिया तब होती है जब एक सुधारक या आंशिक ऑक्सीकरण रिएक्टर में एक स्तुईचिओमेटरी ईंधन-वायु मिश्रण या ईंधन-ऑक्सीजन आंशिक रूप से दहन होता है। थर्मल आंशिक ऑक्सीकरण (TPOX) और उत्प्रेरक आंशिक ऑक्सीकरण (CPOX) के बीच अंतर किया जाता है। रासायनिक प्रतिक्रिया सामान्य रूप लेती है:
- सीnHm + एन/2 O2 → एनCO + मी/2 H2
रचनाओं को मानते हुए तेल और कोयले को गर्म करने के आदर्श उदाहरण सी12H24 और सी24H12 क्रमशः इस प्रकार हैं:
- सी12H24 +602 → 12 CO + 12 एच2
- सी24H12 + 1202 → 24 CO + 6 एच2
प्लाज्मा सुधार
क्वार्नर प्रक्रिया या क्वार्नर प्रंगार काला एंड हाइड्रोजन प्रक्रिया (सीबी एंड एच)[22] तरल हाइड्रोकार्बन (सीnHm). फ़ीड की उपलब्ध ऊर्जा में से अधिकतर 48% हाइड्रोजन में, 40% सक्रिय कार्बन में और 10% अतितापित भाप में निहित है।[23] सीओ2 प्रक्रिया में उत्पन्न नहीं होता है।
प्लाज्मा गैसीकरण में मीथेन और प्राकृतिक गैस से हाइड्रोजन, गर्मी और कार्बन के उत्पादन के लिए प्लाज्मा आर्क अपशिष्ट निपटान तकनीक का उपयोग करके 2009 में इस प्रक्रिया का एक रूपांतर प्रस्तुत किया गया है।[24]
कोयला
कोयले से हाइड्रोजन के उत्पादन के लिए कोयला गैसीकरण का उपयोग किया जाता है। कोयला गैसीकरण की प्रक्रिया कोयले में आणविक बंधनों को तोड़ने के लिए भाप और ऑक्सीजन का उपयोग करती है और हाइड्रोजन और कार्बन मोनोऑक्साइड का गैसीय मिश्रण बनाती है।[25] कोयला गैसीकरण बनाम कोयला दहन से प्राप्त गैस से कार्बन डाइऑक्साइड और प्रदूषकों को अधिक आसानी से हटाया जा सकता है।[26][27] रूपांतरण के लिए एक अन्य विधि निम्न-तापमान और उच्च-तापमान कोयला कार्बोनाइजेशन है।[28] कोयले के पायरोलिसिस (ऑक्सीजन मुक्त ताप) से बनी कोक तंदूर गैस में अधिकतर 60% हाइड्रोजन होता है, बाकी में मीथेन, कार्बन मोनोऑक्साइड, कार्बन डाइऑक्साइड, अमोनिया, आणविक नाइट्रोजन और हाइड्रोजन सल्फाइड (एच) होता है।2एस)। दबाव-स्विंग सोखना प्रक्रिया द्वारा हाइड्रोजन को अन्य अशुद्धियों से अलग किया जा सकता है। जापान में इस्पात उद्योग ने इस विधि से हाइड्रोजन का उत्पादन किया है।
शिलातैल कोक
कोयला गैसीकरण के माध्यम से पेट्रोलियम कोक को हाइड्रोजन युक्त सिनगैस में भी बदला जा सकता है। उत्पादित सिनगैस में मुख्य रूप से हाइड्रोजन, कार्बन मोनोऑक्साइड और एच होते हैं2कोक फीड में सल्फर से एस. गैसीकरण अधिकतर किसी भी कार्बन स्रोत से हाइड्रोजन के उत्पादन का एक विकल्प है।[29]
समाप्त तेल के कुएं
घटे हुए तेल के कुओं में उपयुक्त रोगाणुओं को इंजेक्ट करने से उन्हें शेष, अप्राप्य तेल से हाइड्रोजन निकालने की अनुमति मिलती है। चूंकि केवल इनपुट सूक्ष्म जीव हैं, इसलिए उत्पादन लागत कम है। विधि भी केंद्रित उत्पादन करती है CO
2 जिसे पकड़ने और संग्रहित करने की आवश्यकता है।[30]
पानी से
जीवाश्म ईंधन के उपयोग के बिना हाइड्रोजन का उत्पादन करने के तरीकों में पानी के विभाजन या पानी के अणु को विभाजित करने की प्रक्रिया सम्मलित है (एच2O) इसके घटकों ऑक्सीजन हरा हाइड्रोजन में। जब पानी के बंटवारे के लिए ऊर्जा का स्रोत नवीकरणीय या निम्न-कार्बन होता है, तो उत्पादित हाइड्रोजन को कभी-कभी हरित हाइड्रोजन कहा जाता है। रूपांतरण कई तरीकों से पूरा किया जा सकता है, किन्तु सभी विधियां सामान्यतः जीवाश्म-ईंधन आधारित उत्पादन विधियों की तुलना में अधिक महंगी होती हैं।
इलेक्ट्रोलिसिस
अधिकतर 8 गीगावाट | 2020 में दुनिया भर में इलेक्ट्रोलिसिस क्षमता का GW स्थापित किया गया है, जो वैश्विक हाइड्रोजन उत्पादन का अधिकतर 4% है।[31]
इलेक्ट्रोलिसिस में पानी को हाइड्रोजन और ऑक्सीजन में विभाजित करने के लिए बिजली का उपयोग होता है। पानी का इलेक्ट्रोलिसिस 70-80% कुशल है (20-30% रूपांतरण हानि)[32][33] चूंकि प्राकृतिक गैस के भाप सुधार में 70 से 85% के बीच तापीय दक्षता होती है।[34] इलेक्ट्रोलिसिस की विद्युत दक्षता 82-86% तक पहुंचने की अपेक्षा है[35] 2030 से पहले, चूंकि इस क्षेत्र में प्रगति के रूप में स्थायित्व भी बनाए रखा जा रहा है।[36] जल इलेक्ट्रोलिसिस के बीच काम कर सकता है 50–80 °C (122–176 °F), चूंकि भाप मीथेन सुधार के बीच तापमान की आवश्यकता होती है 700–1,100 °C (1,292–2,012 °F).[37] दो विधियों के बीच का अंतर उपयोग की जाने वाली प्राथमिक ऊर्जा है; या तो बिजली (इलेक्ट्रोलिसिस के लिए) या प्राकृतिक गैस (भाप मीथेन सुधार के लिए)। पानी के उनके उपयोग के कारण, आसानी से उपलब्ध संसाधन, इलेक्ट्रोलिसिस और इसी प्रकार के पानी के बंटवारे के तरीकों ने वैज्ञानिक समुदाय के हित को आकर्षित किया है। हाइड्रोजन उत्पादन की लागत को कम करने के उद्देश्य से, इलेक्ट्रोलिसिस की अनुमति देने के लिए ऊर्जा के नवीकरणीय स्रोतों को लक्षित किया गया है।[25]
तीन मुख्य प्रकार के इलेक्ट्रोलाइटिक सेल, सॉलिड ऑक्साइड इलेक्ट्रोलाइजर सेल (SOECs), पॉलिमर इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिसिस (PEM) और क्षारीय इलेक्ट्रोलिसिस सेल (AECs) हैं।[38] परंपरागत रूप से, क्षारीय इलेक्ट्रोलाइज़र निवेश के स्थितियोंमें सस्ते होते हैं (वे सामान्यतः निकल उत्प्रेरक का उपयोग करते हैं), किन्तु कम कुशल होते हैं; इसके विपरीत, पीईएम इलेक्ट्रोलाइजर अधिक महंगे होते हैं (वे सामान्यतः महंगे प्लेटिनम समूह धातु उत्प्रेरक का उपयोग करते हैं) किन्तु अधिक कुशल होते हैं और उच्च वर्तमान घनत्व पर काम कर सकते हैं, और इसलिए संभवतः सस्ता हो सकता है यदि हाइड्रोजन का उत्पादन पर्याप्त रूप से बड़ा हो।[39] विनिर्देश सामान्यतः उच्च तापमान पर काम करते हैं 800 °C (1,470 °F). इन उच्च तापमानों पर, आवश्यक ऊर्जा की एक महत्वपूर्ण मात्रा तापीय ऊर्जा (गर्मी) के रूप में प्रदान की जा सकती है, और इसे उच्च तापमान इलेक्ट्रोलिसिस कहा जाता है। ऊष्मा ऊर्जा कई विभिन्न स्रोतों से प्रदान की जा सकती है, जिसमें अपशिष्ट औद्योगिक ताप, परमाणु ऊर्जा संयंत्र या केंद्रित सौर तापीय संग्राहक सम्मलित हैं। इसमें इलेक्ट्रोलिसिस के लिए आवश्यक विद्युत ऊर्जा की मात्रा को कम करके उत्पादित हाइड्रोजन की समग्र लागत को कम करने की क्षमता है।[40][41][42][43] पीईएम इलेक्ट्रोलिसिस सेल सामान्यतः नीचे काम करते हैं 100 °C (212 °F).[40]इन सेलों को तुलनात्मक रूप से सरल होने का लाभ है और व्यापक रूप से भिन्न वोल्टेज इनपुट को स्वीकार करने के लिए डिज़ाइन किया जा सकता है, जो उन्हें सौर सेल जैसे ऊर्जा के नवीकरणीय स्रोतों के उपयोग के लिए आदर्श बनाता है।[44] एईसी इलेक्ट्रोलाइट (केओएच या पोटेशियम कार्बोनेट) की उच्च सांद्रता और उच्च तापमान पर अधिकांशतः उच्च तापमान पर काम करते हैं 200 °C (392 °F).
औद्योगिक उत्पादन और दक्षता
आधुनिक हाइड्रोजन जनरेटर की क्षमता को हाइड्रोजन के प्रति मानक आयतन (MJ/m3), एच के मानक तापमान और दबाव को मानते हुए2. एक जनरेटर द्वारा उपयोग की जाने वाली ऊर्जा जितनी कम होगी, उसकी दक्षता उतनी ही अधिक होगी; एक 100%-कुशल इलेक्ट्रोलाइज़र खपत करेगा 39.4 kilowatt-hours per kilogram (142 MJ/kg) हाइड्रोजन का,[45] 12,749 joules per litre (12.75 MJ/m3). प्रैक्टिकल इलेक्ट्रोलिसिस सामान्यतः एक घूर्णन इलेक्ट्रोलाइज़र का उपयोग करता है, जहाँ केन्द्रापसारक बल पानी से गैस के बुलबुले को अलग करने में सहायता करता है।[46] 15 बार के दबाव में ऐसा इलेक्ट्रोलाइजर खपत कर सकता है 50 kilowatt-hours per kilogram (180 MJ/kg), और आगे 15 kilowatt-hours (54 MJ) यदि हाइड्रोजन कारों में उपयोग के लिए हाइड्रोजन को संपीडित किया जाता है।[47] पारंपरिक क्षारीय इलेक्ट्रोलिसिस की दक्षता अधिकतर 70% है,[48] चूंकि 82% तक की दक्षता के साथ उन्नत क्षारीय पानी इलेक्ट्रोलाइज़र उपलब्ध हैं।[49] उच्च ताप मान के उपयोग के लिए लेखांकन (क्योंकि उत्प्रेरक द्वारा आवश्यक भाप बनाने के लिए गर्मी के माध्यम से अक्षमता को सिस्टम में वापस पुनर्निर्देशित किया जा सकता है), पीईएम इलेक्ट्रोलिसिस के लिए औसत कार्य क्षमता अधिकतर 80% या 82% सबसे आधुनिक क्षारीय का उपयोग कर रही है। इलेक्ट्रोलाइजर।[50] पीईएम दक्षता अधिकतर 86% तक बढ़ने की अपेक्षा है[51] 2030 से पहले। पीईएम इलेक्ट्रोलाइज़र के लिए सैद्धांतिक दक्षता 94% तक अनुमानित है।[52]
2020 तक, इलेक्ट्रोलिसिस द्वारा हाइड्रोजन की लागत अधिकतर $3–8/kg है।[53]हाइड्रोजन के औद्योगिक उत्पादन को ध्यान में रखते हुए, और जल इलेक्ट्रोलिसिस (पीईएम या क्षारीय इलेक्ट्रोलिसिस) के लिए वर्तमान सर्वोत्तम प्रक्रियाओं का उपयोग करते हुए जिनकी प्रभावी विद्युत दक्षता 70-82% है,[54][55][56] 1 किलो हाइड्रोजन (जिसमें 143 MJ/kg या अधिकतर 40 kWh/kg की विशिष्ट ऊर्जा होती है) का उत्पादन करने के लिए 50–55 kWh बिजली की आवश्यकता होती है। $0.06/kWh की बिजली लागत पर, जैसा कि 2015 के लिए ऊर्जा हाइड्रोजन उत्पादन लक्ष्य विभाग में निर्धारित किया गया है,[57] हाइड्रोजन लागत $3/kg है।
2020 में हाइड्रोजन के लिए यूएस डीओई का लक्ष्य मूल्य $2.30/किग्रा है, जिसके लिए $0.037/kWh की बिजली लागत की आवश्यकता होती है, जो कि कई क्षेत्रों में पवन और सौर के लिए हालिया पीपीए निविदाओं को देखते हुए प्राप्त किया जा सकता है।[58] IRENA.ORG की रिपोर्ट वर्तमान समय के औद्योगिक हाइड्रोजन उत्पादन की एक व्यापक तथ्यात्मक रिपोर्ट है, जो अधिकतर 53 से 70 kWh प्रति किग्रा की खपत से अधिकतर 45 kWh/kg तक कम हो सकती है। H
2.[59] इलेक्ट्रोलिसिस द्वारा हाइड्रोजन के लिए आवश्यक थर्मोडायनामिक ऊर्जा 33 kWh/kg में बदल जाती है, जो कार्बन कैप्चर के साथ भाप में सुधार और मीथेन पायरोलिसिस से अधिक है।
स्टीम मीथेन रिफॉर्मिंग (SMR) से हाइड्रोजन पर इलेक्ट्रोलिसिस के फायदों में से एक यह है कि हाइड्रोजन का उत्पादन साइट पर किया जा सकता है, जिसका अर्थ है कि ट्रक या पाइपलाइन के माध्यम से डिलीवरी की महंगी प्रक्रिया से बचा जा सकता है।
स्टीम मीथेन रिफॉर्मिंग $1 के बीच है[53]-3/kg औसतन।[citation needed] यह पहले से ही कई क्षेत्रों में इलेक्ट्रोलिसिस लागत प्रतिस्पर्धी के माध्यम से हाइड्रोजन का उत्पादन करता है, जैसा कि नेल हाइड्रोजन द्वारा रेखांकित किया गया है[60] और अन्य, आईईए द्वारा एक लेख सहित[61] उन स्थितियों की जांच करना जो इलेक्ट्रोलिसिस के लिए प्रतिस्पर्धात्मक लाभ का कारण बन सकती हैं।
रासायनिक रूप से सहायक इलेक्ट्रोलिसिस
इलेक्ट्रोलिसिस सेल के तापमान में वृद्धि के माध्यम से इलेक्ट्रोलिसिस के लिए आवश्यक वोल्टेज को कम करने के अतिरिक्त, इलेक्ट्रोलाइज़र में उत्पादित ऑक्सीजन को ईंधन (जैसे कार्बन/कोयला,[62] मेथनॉल,[63][64] इथेनॉल,[65] चींटी का तेजाब,[66] ग्लिसरॉल,[66]आदि) रिएक्टर के ऑक्सीजन पक्ष में। यह आवश्यक विद्युत ऊर्जा को कम करता है और इस प्रकार से प्रदान की गई शेष ऊर्जा के साथ हाइड्रोजन की लागत को 40 ~ 60% से कम करने की क्षमता रखता है।[67] कार्बन/हाइड्रोकार्बन असिस्टेड वाटर इलेक्ट्रोलिसिस (CAWE) में कार्बन के विभिन्न स्रोतों जैसे निम्न-श्रेणी और उच्च सल्फर कोयले, बायोमास, अल्कोहल और मीथेन (प्राकृतिक गैस) में रासायनिक ऊर्जा का उपयोग करने की कम ऊर्जा गहन, स्वच्छ विधि की प्रस्तुत करने की क्षमता है। , जहां शुद्ध सीओ2 उत्पादित को अलग करने की आवश्यकता के बिना आसानी से पृथक किया जा सकता है।[68][69]
रेडियोलिसिस
परमाणु विकिरण रेडियोलिसिस के माध्यम से पानी के बंधन को तोड़ सकता है।[70][71] Mponeng सोने की खान, दक्षिण अफ्रीका में, शोधकर्ताओं ने बैक्टीरिया को प्राकृतिक रूप से उच्च विकिरण क्षेत्र में पाया। डेसल्फोटोमैकुलम के एक नए फ़ाइलोटाइप का प्रभुत्व वाला जीवाणु समुदाय मुख्य रूप से रेडिओलिसिस उत्पादित हाइड्रोजन पर फ़ीड कर रहा था।[72]
थेर्मलिसिस
पानी अधिकतर 2500 °C पर अनायास अलग हो जाता है, किन्तु यह थर्मोलिसिस सामान्य प्रक्रिया पाइपिंग और उपकरणों के लिए बहुत अधिक तापमान पर होता है, जिसके परिणामस्वरूप कम व्यावसायीकरण क्षमता होती है।[73]
सौर ऊर्जा के माध्यम से थर्मोलिसिस
सौर ऊर्जा पर आधारित जल थर्मोलिसिस के माध्यम से हाइड्रोजन उत्पादन में 2500 K तक पानी गर्म करने के लिए सौर ऊर्जा को सीधे एकत्रित करने के लिए केंद्रित सौर ऊर्जा का उपयोग करना सम्मलित है, जिस तापमान पर यह H में विघटित हो जाता है।2 और ओ2.[74] फोटोकैटलिसिस को लागू करके ताप तापमान को कम किया जा सकता है जो कम ऊर्जा के साथ पानी के अपघटन की अनुमति देता है।
बायोमास पर पायरोलिसिस
पायरोलिसिस को पायरोलिसिस तापमान के आधार पर विभिन्न प्रकारों में विभाजित किया जा सकता है, अर्थात् निम्न-तापमान धीमी पायरोलिसिस, मध्यम-तापमान तेज़ पायरोलिसिस, और उच्च-तापमान फ्लैश पायरोलिसिस।[75] स्रोत ऊर्जा मुख्य रूप से सौर ऊर्जा है, प्रकाश संश्लेषण की सहायता से हाइड्रोजन का उत्पादन करने के लिए पानी या बायोमास को विघटित करने के लिए। चूंकि, इस प्रक्रिया में अपेक्षाकृत कम हाइड्रोजन उपज और उच्च परिचालन लागत है। यह उद्योग के लिए एक व्यवहार्य प्रणाली नहीं है।
परमाणु-सहायता प्राप्त थर्मोलिसिस
उच्च-तापमान-गैस-कूल्ड-रिएक्टर|उच्च-तापमान गैस-कूल्ड रिएक्टर (HTGR) सबसे आशाजनक CO 2 में से एक है।2-बड़े पैमाने पर पानी को विभाजित करके हाइड्रोजन का उत्पादन करने के लिए मुक्त परमाणु तकनीक। इस पद्धति में, सल्फर-आयोडीन चक्र|आयोडीन-सल्फर (IS) थर्मो-रासायनिक चक्र पानी को विभाजित करने के लिए और उच्च तापमान भाप इलेक्ट्रोलिसिस (HTSE) को परमाणु हाइड्रोजन उत्पादन के लिए मुख्य प्रक्रियाओं के रूप में चुना गया था। S-I चक्र तीन रासायनिक प्रतिक्रियाओं का अनुसरण करता है:[76] बन्सेन प्रतिक्रिया: I2+ तो2+ एह2ओ = एच2इसलिए4+2एचआई
HI अपघटन: 2HI=H2+ मैं2 सल्फ्यूरिक एसिड अपघटन: एच2इसलिए4=अतः2+1/या2+ एच2हे
IS चक्र के साथ HTGR की हाइड्रोजन उत्पादन दर अधिकतर 0.68 kg/s है, और बिजली संयंत्र की एक इकाई बनाने की पूंजी लागत $100 मिलियन है।
थर्मोकेमिकल चक्र
थर्मोकेमिकल चक्र पानी को उसके हाइड्रोजन और ऑक्सीजन घटकों में विभाजित करने के लिए रासायनिक प्रतिक्रियाओं के साथ पूरी प्रकार से ताप स्रोतों (थर्मो) को जोड़ते हैं।[77] चक्र शब्द का उपयोग इसलिए किया जाता है क्योंकि पानी, हाइड्रोजन और ऑक्सीजन के अतिरिक्त, इन प्रक्रियाओं में उपयोग किए जाने वाले रासायनिक यौगिकों को लगातार पुनर्नवीनीकरण किया जाता है। यदि बिजली का आंशिक रूप से एक इनपुट के रूप में उपयोग किया जाता है, तो परिणामी थर्मोकेमिकल चक्र को विकट: हाइब्रिड चक्र के रूप में परिभाषित किया जाता है।
सल्फर-आयोडीन चक्र (एसआई चक्र) एक थर्मोकेमिकल चक्र प्रक्रिया है जो अधिकतर 50% की दक्षता के साथ पानी से हाइड्रोजन उत्पन्न करता है। प्रक्रिया में उपयोग किए गए सल्फर और आयोडीन को पुनर्प्राप्त और पुन: उपयोग किया जाता है, और प्रक्रिया द्वारा खपत नहीं की जाती है। चक्र को बहुत उच्च तापमान के किसी भी स्रोत के साथ निष्पादित किया जा सकता है, अधिकतर 950 डिग्री सेल्सियस, जैसे सौर ऊर्जा प्रणालियों (सीएसपी) को केंद्रित करके और इसे बहुत उच्च तापमान रिएक्टर द्वारा हाइड्रोजन के उत्पादन के लिए उपयुक्त माना जाता है। उच्च तापमान परमाणु रिएक्टर,[78] और इस प्रकार, जापान में उच्च-तापमान इंजीनियरिंग टेस्ट रिएक्टर में अध्ययन किया जा रहा है।[79][80][81][82] अन्य हाइब्रिड चक्र हैं जो उच्च तापमान और कुछ बिजली दोनों का उपयोग करते हैं, जैसे कि कॉपर-क्लोरीन चक्र, इसे हाइब्रिड थर्मोकेमिकल चक्र के रूप में वर्गीकृत किया गया है क्योंकि यह प्रतिक्रिया चरणों में से एक में विद्युत रासायनिक प्रतिक्रिया का उपयोग करता है, यह 530 °C पर संचालित होता है और 43 प्रतिशत की दक्षता है।[83]
फेरोसिलिकॉन विधि
फेरोसिलिकॉन का उपयोग सेना द्वारा बैलून (विमान) के लिए जल्दी से हाइड्रोजन का उत्पादन करने के लिए किया जाता है। रासायनिक प्रतिक्रिया सोडियम हाइड्रॉक्साइड, फेरोसिलिकॉन और पानी का उपयोग करती है। जनरेटर एक ट्रक को फिट करने के लिए अधिक छोटा है और केवल थोड़ी मात्रा में विद्युत शक्ति की आवश्यकता होती है, सामग्री स्थिर होती है और ज्वलनशील नहीं होती है, और वे मिश्रित होने तक हाइड्रोजन उत्पन्न नहीं करते हैं।[84] प्रथम विश्व युद्ध के बाद से यह विधि उपयोग में रही है। एक भारी स्टील के दबाव वाले बर्तन को सोडियम हाइड्रॉक्साइड और फेरोसिलिकॉन से भरा जाता है, बंद किया जाता है, और पानी की नियंत्रित मात्रा डाली जाती है; हाइड्रॉक्साइड के घुलने से मिश्रण अधिकतर 93 डिग्री सेल्सियस तक गर्म हो जाता है और प्रतिक्रिया प्रारंभ हो जाती है; सोडियम सिलिकेट, हाइड्रोजन और भाप का उत्पादन होता है।[85]
फोटोबायोलॉजिकल वॉटर स्प्लिटिंग
एक शैवाल बायोरिएक्टर में जैविक हाइड्रोजन का उत्पादन किया जा सकता है।[86] 1990 के दशक के उत्तरार्ध में यह पता चला कि यदि शैवाल को गंधक से वंचित कर दिया जाए तो यह ऑक्सीजन के उत्पादन से, अर्थात सामान्य प्रकाश संश्लेषण से हाइड्रोजन के उत्पादन में बदल जाएगा। ऐसा लगता है कि उत्पादन अब 7-10 प्रतिशत ऊर्जा दक्षता (सूर्य के प्रकाश का हाइड्रोजन में रूपांतरण) बाधा को पार करके आर्थिक रूप से व्यवहार्य है।[87] हाइड्रोजन उत्पादन दर प्रति घंटे 10-12 मिलीलीटर प्रति लीटर संस्कृति के साथ।[88]
फोटोकैटलिटिक जल विभाजन
जल विभाजन प्रक्रिया के माध्यम से सौर ऊर्जा का हाइड्रोजन में रूपांतरण स्वच्छ और नवीकरणीय ऊर्जा प्रणालियों को प्राप्त करने के सबसे रोचक तरीकों में से एक है। चूंकि, यदि इस प्रक्रिया को फोटोवोल्टिक और इलेक्ट्रोलाइटिक सिस्टम का उपयोग करने के अतिरिक्त सीधे पानी में निलंबित फोटोकैटलिस्ट्स द्वारा सहायता प्रदान की जाती है, तो प्रतिक्रिया केवल एक चरण में होती है, इसे और अधिक कुशल बनाया जा सकता है।[89][90][91]
बायोहाइड्रोजन मार्ग
बायोमास और अपशिष्ट धाराएं सैद्धांतिक रूप से बायोमास गैसीफिकेशन, भाप सुधार, या जैविक रूपांतरण जैसे जैव उत्प्रेरक इलेक्ट्रोलिसिस के साथ बायोहाइड्रोजन में परिवर्तित हो सकती हैं।[67]या किण्वक हाइड्रोजन उत्पादन।[7]
भाप मीथेन सुधार, थर्मल क्रैकिंग, कोयला और बायोमास गैसीफिकेशन और पायरोलिसिस, इलेक्ट्रोलिसिस, और फोटोलिसिस जैसे हाइड्रोजन उत्पादन विधियों में जैविक अधिक पर्यावरण अनुकूल और कम ऊर्जा गहन हैं। इसके अतिरिक्त, अक्षय स्रोतों के रूप में कृषि बायोमास जैसे अपशिष्ट और कम मूल्य की सामग्री का उपयोग जैव रासायनिक मार्गों के माध्यम से हाइड्रोजन का उत्पादन करने के लिए किया जा सकता है। फिर भी, वर्तमान में हाइड्रोजन का उत्पादन मुख्य रूप से जीवाश्म ईंधन से होता है, विशेष रूप से प्राकृतिक गैस से, जो गैर-नवीकरणीय स्रोत हैं। हाइड्रोजन न केवल सबसे स्वच्छ ईंधन है, बल्कि कई उद्योगों, विशेष रूप से उर्वरक, पेट्रोकेमिकल और खाद्य उद्योगों में भी इसका व्यापक रूप से उपयोग किया जाता है।[92]
इससे हाइड्रोजन उत्पादन के लिए वैकल्पिक स्रोतों की जांच करना तर्कसंगत हो जाता है। हाइड्रोजन का उत्पादन करने के लिए मुख्य जैव रासायनिक प्रौद्योगिकियां अंधेरे और फोटो किण्वन प्रक्रियाएं हैं। डार्क फर्मेंटेशन में, सख्त एनारोब और वैकल्पिक एनारोब बैक्टीरिया सहित किण्वक सूक्ष्मजीवों द्वारा कार्बोहाइड्रेट को हाइड्रोजन में परिवर्तित किया जाता है। एक सैद्धांतिक अधिकतम 4 मोल एच2/ मोल ग्लूकोज का उत्पादन किया जा सकता है और हाइड्रोजन के अतिरिक्त, इस प्रक्रिया के समय शर्करा को वाष्पशील फैटी एसिड (वीएफए) और अल्कोहल को उप-उत्पादों के रूप में परिवर्तित किया जाता है। फोटोकिण्वक बैक्टीरिया वीएफए से हाइड्रोजन उत्पन्न करने में सक्षम हैं। इसलिए, अंधेरे किण्वन में बनने वाले मेटाबोलाइट्स को हाइड्रोजन की समग्र उपज बढ़ाने के लिए फोटो किण्वन में फीडस्टॉक के रूप में उपयोग किया जा सकता है।[92]
किण्वन हाइड्रोजन उत्पादन
बायोरिएक्टर में बायोहाइड्रोजन का उत्पादन किया जा सकता है। इस प्रक्रिया में हाइड्रोकार्बन का उपभोग करने वाले बैक्टीरिया और हाइड्रोजन और CO का उत्पादन सम्मलित है2. सह2 और हाइड्रोजन को अलग किया जा सकता है।
किण्वक हाइड्रोजन उत्पादन जैविक सब्सट्रेट का बायोहाइड्रोजन में किण्वन रूपांतरण है जो जीवाणु के एक विविध समूह द्वारा बहु एंजाइम प्रणालियों का उपयोग करके प्रकट होता है जिसमें एनारोबिक पाचन के समान तीन चरण सम्मलित होते हैं। डार्क किण्वन प्रतिक्रियाओं में प्रकाश ऊर्जा की आवश्यकता नहीं होती है, इसलिए वे दिन और रात में कार्बनिक यौगिकों से लगातार हाइड्रोजन का उत्पादन करने में सक्षम होते हैं। प्रकाश किण्वन अंधेरे किण्वन से भिन्न होता है क्योंकि यह केवल प्रकाश की उपस्थिति में आगे बढ़ता है। उदाहरण के लिए, रोडोबैक्टर स्पैरोइड्स SH2C के साथ फोटो-किण्वन को छोटे आणविक फैटी एसिड को हाइड्रोजन में परिवर्तित करने के लिए नियोजित किया जा सकता है।[93] हरे शैवाल द्वारा प्रत्यक्ष बायोफोटोलिसिस, सायनोबैक्टीरिया द्वारा अप्रत्यक्ष बायोफोटोलिसिस, एनारोबिक प्रकाश संश्लेषक बैक्टीरिया द्वारा फोटो-किण्वन और एनारोबिक किण्वक बैक्टीरिया द्वारा अंधेरे किण्वन का उपयोग करके किण्वित हाइड्रोजन उत्पादन किया जा सकता है। उदाहरण के लिए, एच. सैलिनारियम, एक अवायवीय प्रकाश संश्लेषक जीवाणु का उपयोग करके हाइड्रोजन उत्पादन पर अध्ययन, ई. कोलाई जैसे हाइड्रोजनेज़ दाता के साथ मिलकर साहित्य में रिपोर्ट किया गया है।[94] Enterobacter aerogenes एक अन्य हाइड्रोजन उत्पादक है।[95]
एंजाइमेटिक हाइड्रोजन पीढ़ी
शर्करा से हाइड्रोजन उत्पन्न करने के लिए विविध एंजाइमी मार्ग तैयार किए गए हैं।[96]
जैव उत्प्रेरित विद्युत अपघटन
अंधेरे किण्वन के अतिरिक्त, इलेक्ट्रोहाइड्रोजेनेसिस (रोगाणुओं का उपयोग कर इलेक्ट्रोलिसिस) एक और संभावना है। बिजली उत्पन्न करने के लिए माइक्रोबियल ईंधन कोशिकाओं, अपशिष्ट जल या पौधों का उपयोग किया जा सकता है। जैव उत्प्रेरक इलेक्ट्रोलिसिस को जैविक हाइड्रोजन उत्पादन (शैवाल) के साथ भ्रमित नहीं होना चाहिए, क्योंकि उत्तरार्द्ध केवल शैवाल का उपयोग करता है और बाद वाले के साथ, शैवाल स्वयं तुरंत हाइड्रोजन उत्पन्न करता है, जहां जैव उत्प्रेरक इलेक्ट्रोलिसिस के साथ, यह माइक्रोबियल ईंधन सेल और विभिन्न प्रकार के माध्यम से चलने के बाद होता है। जलीय पौधों की[97] उपयोग किया जा सकता है। इनमें ग्लिसेरिया मैक्सिमा, कॉर्डग्रास, चावल, टमाटर, ल्यूपिन और शैवाल सम्मलित हैं।[98]
नैनोगैल्वेनिक एल्यूमीनियम मिश्र धातु पाउडर
यूनाइटेड स्टेट्स आर्मी रिसर्च लेबोरेटरी द्वारा आविष्कार किया गया एक एल्यूमीनियम मिश्र धातु पाउडर | यू.एस. 2017 में आर्मी रिसर्च लेबोरेटरी को अपने अनूठे नैनोस्केल गैल्वेनिक माइक्रोस्ट्रक्चर के कारण पानी या किसी भी तरल युक्त पानी के संपर्क में आने पर हाइड्रोजन गैस का उत्पादन करने में सक्षम दिखाया गया था। यह कथित तौर पर किसी भी उत्प्रेरक, रसायन या बाहरी आपूर्ति की शक्ति की आवश्यकता के बिना सैद्धांतिक उपज के 100 प्रतिशत पर हाइड्रोजन उत्पन्न करता है।[99][100]
सीसी-एचओडी
CC-HOD (कैटेलिटिक कार्बन - हाइड्रोजन ऑन डिमांड) एक कम तापमान वाली प्रक्रिया है जिसमें कार्बन और अल्युमीनियम को डुबोया जाता है और अधिकतर गर्म किया जाता है 80 °C (176 °F), एक रासायनिक प्रतिक्रिया का कारण बनता है जो हाइड्रोजन उत्पन्न करता है।
पर्यावरणीय प्रभाव
2020 तक, अधिकांश हाइड्रोजन जीवाश्म ईंधन से उत्पन्न होता है, जिसके परिणामस्वरूप कार्बन डाइऑक्साइड उत्सर्जन होता है।[101] इसे अधिकांशतः ग्रे हाइड्रोजन के रूप में संदर्भित किया जाता है जब उत्सर्जन वायुमंडल में जारी किया जाता है, और कार्बन कैप्चर और स्टोरेज (सीसीएस) के माध्यम से उत्सर्जन पर कब्जा कर लिया जाता है।[102] यूएस अप और मिड-स्ट्रीम मीथेन रिसाव दर और भाप सुधार के माध्यम से उत्पादन को मानते हुए, ब्लू हाइड्रोजन का अनुमान लगाया गया है कि गर्मी के लिए गैस या कोयले को जलाने की तुलना में ग्रीनहाउस गैस पदचिह्न 20% अधिक और गर्मी के लिए डीजल जलाने की तुलना में 60% अधिक है। SMR) कार्बन डाइऑक्साइड कैप्चर के साथ रेट्रोफिटेड।[103] कार्बन डाइऑक्साइड के एकीकृत कैप्चर के साथ ऑटोथर्मल सुधार (एटीआर) का उपयोग संतोषजनक ऊर्जा दक्षता पर उच्च कैप्चर दर की अनुमति देता है और जीवन चक्र के आकलन ने कार्बन डाइऑक्साइड कैप्चर के साथ एसएमआर की तुलना में ऐसे संयंत्रों के लिए कम ग्रीनहाउस गैस उत्सर्जन दिखाया है।[104] यूरोप में कार्बन डाइऑक्साइड के एकीकृत अभिग्रहण के साथ एटीआर प्रौद्योगिकी के अनुप्रयोग का मूल्यांकन किया गया है कि प्राकृतिक गैस जलाने की तुलना में कम ग्रीनहाउस गैस पदचिह्न हैं, उदा। कार्बन डाइऑक्साइड को पकड़ने के लिए अधिक उपयुक्त रिएक्टर प्रकार के साथ संयुक्त प्राकृतिक गैस की कम कार्बन डाइऑक्साइड तीव्रता के कारण 68% की कमी के साथ H21 परियोजना के लिए।[105] नई, गैर-प्रदूषणकारी तकनीक मीथेन पायरोलिसिस का उपयोग करके हाइड्रोजन का उत्पादन किया गया[106] अधिकांशतः फ़िरोज़ा हाइड्रोजन के रूप में जाना जाता है। उच्च गुणवत्ता वाले हाइड्रोजन को सीधे प्राकृतिक गैस से उत्पादित किया जाता है और संबद्ध गैर-प्रदूषणकारी ठोस कार्बन को वायुमंडल में नहीं छोड़ा जाता है और फिर इसे औद्योगिक उपयोग के लिए बेचा जा सकता है या लैंडफिल में संग्रहीत किया जा सकता है।
अक्षय ऊर्जा स्रोतों से उत्पादित हाइड्रोजन को अधिकांशतः ग्रीन हाइड्रोजन कहा जाता है। अक्षय ऊर्जा स्रोतों से हाइड्रोजन के उत्पादन के दो व्यावहारिक तरीके हैं। एक गैस के लिए शक्ति का उपयोग करना है, जिसमें विद्युत शक्ति का उपयोग पानी के इलेक्ट्रोलिसिस से हाइड्रोजन का उत्पादन करने के लिए किया जाता है, और दूसरा भाप सुधारक में हाइड्रोजन का उत्पादन करने के लिए लैंडफिल गैस का उपयोग करना है। हाइड्रोजन ईंधन, जब पवन या सौर ऊर्जा जैसे ऊर्जा के नवीकरणीय स्रोतों द्वारा उत्पादित किया जाता है, एक नवीकरणीय ईंधन है।[107] इलेक्ट्रोलिसिस के माध्यम से परमाणु ऊर्जा से उत्पादित हाइड्रोजन को कभी-कभी हरे हाइड्रोजन के सबसेट के रूप में देखा जाता है, किन्तु इसे गुलाबी हाइड्रोजन भी कहा जा सकता है। Oskarshamn परमाणु ऊर्जा संयंत्र ने प्रति दिन किलोग्राम के क्रम में वाणिज्यिक गुलाबी हाइड्रोजन की आपूर्ति करने के लिए जनवरी 2022 में एक समझौता किया।[108]
As of 2020[update], ग्रे हाइड्रोजन और ब्लू हाइड्रोजन के लिए उत्पादन की अनुमानित लागत $1-1.80/किग्रा है,[109] और हरित हाइड्रोजन के लिए $2.50–6.80।[109]
94 मिलियन टन ग्रे हाइड्रोजन वर्तमान में 2022 तक जीवाश्म ईंधन का उपयोग करके वैश्विक रूप से उत्पादित किया जाता है, मुख्य रूप से प्राकृतिक गैस, और इसलिए ग्रीनहाउस गैस उत्सर्जन का एक महत्वपूर्ण स्रोत है।[110][111][112][113]
हाइड्रोजन का प्रयोग
हाइड्रोकार्बन के माध्यम से भारी पेट्रोलियम अंशों को लाइटर में बदलने के लिए हाइड्रोजन का उपयोग किया जाता है। यह दुनिया भर में 47 प्रतिशत भोजन उगाने के लिए सिंथेटिक नाइट्रोजन उर्वरक के उत्पादन के लिए प्राथमिक औद्योगिक विधि, हैबर प्रक्रिया के माध्यम से गंध प्रक्रिया, हाइड्रोडीसल्फराइजेशन और अमोनिया के उत्पादन सहित अन्य प्रक्रियाओं में भी उपयोग किया जाता है।[114] स्थानीय बिजली उत्पादन के लिए या संभावित रूप से परिवहन ईंधन के रूप में हाइड्रोजन का उपयोग ईंधन कोशिकाओं में किया जा सकता है।
क्लोरीन#औद्योगिक उत्पादन के उप-उत्पाद के रूप में हाइड्रोजन का उत्पादन होता है। चूंकि महंगी तकनीकों की आवश्यकता होती है, साइट पर अन्य प्रक्रियाओं में उपयोग के लिए हाइड्रोजन को ठंडा, संपीड़ित और शुद्ध किया जा सकता है या पाइपलाइन, सिलेंडर या ट्रकों के माध्यम से ग्राहक को बेचा जा सकता है। बल्क हाइड्रोजन के उत्पादन के कम खर्चीले तरीकों की खोज और विकास हाइड्रोजन अर्थव्यवस्था की स्थापना के लिए प्रासंगिक है।[7]
यह भी देखें
- अमोनिया उत्पादन
- कृत्रिम प्रकाश संश्लेषण
- बायोहाइड्रोजन
- हाइड्रोजन विश्लेषक
- हाइड्रोजन कंप्रेसर
- Hydrogen economy § Color codes
- हाइड्रोजन एमब्रिटिलमेन्ट
- हाइड्रोजन रिसाव परीक्षण
- हाइड्रोजन पाइपलाइन परिवहन
- हाइड्रोजन शोधक
- हाइड्रोजन शुद्धता
- हाइड्रोजन सुरक्षा
- हाइड्रोजन सेंसर
- हाइड्रोजन भंडारण
- हाइड्रोजन का भंडारण
- हाइड्रोजन टैंक
- हाइड्रोजन टैंकर
- हाइड्रोजन प्रौद्योगिकियां
- हाइड्रोजन वाल्व
- औद्योगिक गैस
- तरल हाइड्रोजन
- अगली पीढ़ी के परमाणु संयंत्र (आंशिक रूप से हाइड्रोजन उत्पादन के लिए)
- उत्तरी गैस नेटवर्क#Hy4heat
- लेन हाइड्रोजन उत्पादक
- लिंडे-फ्रैंक-कारो प्रक्रिया
- भूमिगत हाइड्रोजन भंडारण
संदर्भ
- ↑ Liu, Ke; Song, Chunshan; Subramani, Velu, eds. (2009). Hydrogen and Syngas Production and Purification Technologies. doi:10.1002/9780470561256. ISBN 9780470561256.
- ↑ "Life cycle emissions of hydrogen". 4thgeneration.energy. Retrieved 2020-05-27.
- ↑ Energy, U. S. D. o. The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions. 84 (Energy Information Administration, Washington, DC, 2008)
- ↑ Collins, Leigh (2021-05-18). "A net-zero world 'would require 306 million tonnes of green hydrogen per year by 2050': IEA | Recharge". Recharge | Latest renewable energy news (in English). Archived from the original on 2021-05-21.
- ↑ "Global Hydrogen Generation Market Size Report, 2030".
- ↑ 6.0 6.1 6.2 6.3 Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008). Introduction to hydrogen Technology. John Wiley & Sons. p. 249. ISBN 978-0-471-77985-8.
- ↑ 7.0 7.1 7.2 Häussinger, Peter; Lohmüller, Reiner; Watson, Allan M. (2011). "Hydrogen, 1. Properties and Occurrence". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_297.pub2. ISBN 978-3-527-30673-2.
- ↑ "About Hydrogen Fuel Cell Vehicles (They're Not Clean)". 4 June 2014.
- ↑ "How Fuel Processors Work". HowStuffWorks. October 4, 2000.
- ↑ Dincer, Ibrahim; Acar, Canan (2015). "Review and evaluation of hydrogen production methods for better sustainability". International Journal of Hydrogen Energy (in English). 40 (34): 11096. doi:10.1016/j.ijhydene.2014.12.035. ISSN 0360-3199.
- ↑ Collodi, Guido (2010-03-11). "Hydrogen Production via Steam Reforming with CO2 Capture" (PDF). CISAP4 4th International Conference on Safety and Environment in the Process Industry. Retrieved 2015-11-28.
- ↑ "HFCIT Hydrogen Production: Natural Gas Reforming". U.S. Department of Energy. 2008-12-15.
- ↑ Upham, D. Chester (17 November 2017). "Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon in a single reaction step commercial process (at potentially low-cost). This would provide no-pollution hydrogen from natural gas, essentially forever". Science. American Association for Advancement of Science. 358 (6365): 917–921. Bibcode:2017Sci...358..917U. doi:10.1126/science.aao5023. PMID 29146810. S2CID 206663568. Retrieved 31 October 2020.
- ↑ Upham, D. Chester (17 November 2017). "Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon in a single reaction step commercial process (at potentially low-cost). This would provide no-pollution hydrogen from natural gas, essentially forever". Science. American Association for Advancement of Science. 358 (6365): 917–921. Bibcode:2017Sci...358..917U. doi:10.1126/science.aao5023. PMID 29146810. S2CID 206663568. Retrieved 31 October 2020.
- ↑ Fernandez, Sonia. "Researchers at University of California - Santa Barbara chemical engineering team develop potentially low-cost, low-emissions, scalable technology that can convert methane to hydrogen without forming CO2". Phys-Org. American Institute of Physics. Retrieved 19 October 2020.
- ↑ BASF. "BASF researchers working on fundamentally new, low-carbon hydrogen production processes, Methane Pyrolysis". United States Sustainability. BASF. Retrieved 19 October 2020.
- ↑ Schneider, Stefan (2020). "State of the Art of Hydrogen Production via Pyrolysis of Natural Gas". ChemBioEng Reviews. Wiley Online Library. 7 (5): 150–158. doi:10.1002/cben.202000014.
- ↑ Clarke, Palmer (2020). "Dry reforming of methane catalyzed by molten metal alloys". Nature Catalysis. 3: 83–89. doi:10.1038/s41929-019-0416-2. S2CID 210862772. Retrieved 31 October 2020.
- ↑ Cartwright, Jon. "The reaction that would give us clean fossil fuels forever". NewScientist. New Scientist Ltd. Retrieved 30 October 2020.
- ↑ Karlsruhe Institute of Technology. "Hydrogen from methane without CO2 emissions". Phys.Org. Phys.Org. Retrieved 30 October 2020.
- ↑ Lumbers, Brock (2022). "Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production". International Journal of Hydrogen Energy. 47 (7): 4265–4283. doi:10.1016/j.ijhydene.2021.11.057. S2CID 244814932. Retrieved 16 March 2022.
- ↑ "Hydrogen technologies". www.interstatetraveler.us.
- ↑ [1][permanent dead link][full citation needed]
- ↑ "Kværner-process with plasma arc waste disposal technology". Archived from the original on 2014-03-13. Retrieved 2009-10-13.
- ↑ 25.0 25.1 Hordeski, M. F. Alternative fuels: the future of hydrogen. 171-199 (The Fairmont Press, inc., 2007).
- ↑ "Emissions Advantages of Gasification". National Energy Technology Laboratory. U.S. Department of Energy.
- ↑ "Emissions from burning coal". U.S. EIA. U.S. Energy Information Administration.
- ↑ Lee, Woon-Jae; Lee, Yong-Kuk (2001). "Internal Gas Pressure Characteristics Generated during Coal Carbonization in a Coke Oven". Energy & Fuels. 15 (3): 618–23. doi:10.1021/ef990178a.
- ↑ Gemayel, Jimmy El; MacChi, Arturo; Hughes, Robin; Anthony, Edward John (2014). "Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture". Fuel. 117: 1288–97. doi:10.1016/j.fuel.2013.06.045.
- ↑ Blain, Loz (2022-10-04). "Oil-eating microbes excrete the world's cheapest "clean" hydrogen". New Atlas (in English). Retrieved 2022-10-06.
- ↑ Petrova, Magdalena (2020-12-04). "Green hydrogen is gaining traction, but still has massive hurdles to overcome". CNBC. Retrieved 2021-06-20.
- ↑ "ITM - Hydrogen Refuelling Infrastructure - February 2017" (PDF). level-network.com. Retrieved 17 April 2018.
- ↑ "Cost reduction and performance increase of PEM electrolysers" (PDF). fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
- ↑ Kalamaras, Christos M.; Efstathiou, Angelos M. (2013). "Hydrogen Production Technologies: Current State and Future Developments". Conference Papers in Energy. 2013: 1–9. doi:10.1155/2013/690627.
- ↑ "Cost reduction and performance increase of PEM electrolysers" (PDF). fch.europa.eu. Fuel Cell and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
- ↑ "Report and Financial Statements 30 April 2016" (PDF). itm-power.com. Retrieved 17 April 2018.
- ↑ "Hydrogen Production: Natural Gas Reforming". energy.gov. US Department of Energy. Retrieved 17 April 2018.
- ↑ Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (2013). "Hydrogen production via solid electrolytic routes". Wiley Interdisciplinary Reviews: Energy and Environment. 2 (5): 473–487. doi:10.1002/wene.50. S2CID 135539661.
- ↑ Sebbahi, Seddiq; Nabil, Nouhaila; et al. (2022). "Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis". Materials Today: Proceedings (in English). 66: 140–145. doi:10.1016/j.matpr.2022.04.264. ISSN 2214-7853. S2CID 248467810.
- ↑ 40.0 40.1 Ogden, J.M. (1999). "Prospects for building a hydrogen energy infrastructure". Annual Review of Energy and the Environment. 24: 227–279. doi:10.1146/annurev.energy.24.1.227.
- ↑ Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Mogensen, Mogens (2008). "Highly efficient high temperature electrolysis". Journal of Materials Chemistry. 18 (20): 2331–40. doi:10.1039/b718822f.
- ↑ In the laboratory, water electrolysis can be done with a simple apparatus like a Hofmann voltameter:"Electrolysis of water and the concept of charge". Archived from the original on 2010-06-13.
- ↑ "Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'" (Press release). American Chemical Society. March 25, 2012. Archived from the original on December 10, 2019. Retrieved March 9, 2013.
- ↑ Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. (2009). "Direct coupling of an electrolyser to a solar PV system for generating hydrogen". International Journal of Hydrogen Energy. 34 (6): 2531–42. doi:10.1016/j.ijhydene.2009.01.053.
- ↑ Luca Bertuccioli; et al. (7 February 2014). "Development of water electrolysis in the European Union" (PDF). Client Fuel Cells and Hydrogen Joint Undertaking. Archived from the original (PDF) on 31 March 2015. Retrieved 2 May 2018.
- ↑ L. Lao; C. Ramshaw; H. Yeung (2011). "Process intensification: water electrolysis in a centrifugal acceleration field". Journal of Applied Electrochemistry. 41 (6): 645–656. doi:10.1007/s10800-011-0275-2. hdl:1826/6464. S2CID 53760672. Retrieved June 12, 2011.
- ↑ Stensvold, Tore (26 January 2016). «Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyr. Teknisk Ukeblad, .
- ↑ Stolten, Detlef (Jan 4, 2016). Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons. p. 898. ISBN 9783527674299. Retrieved 22 April 2018.
- ↑ thyssenkrupp. "Hydrogen from water electrolysis - solutions for sustainability". thyssenkrupp-uhde-chlorine-engineers.com. Archived from the original on 19 July 2018. Retrieved 28 July 2018.
- ↑ "ITM - Hydrogen Refuelling Infrastructure - February 2017" (PDF). level-network.com. Retrieved 17 April 2018.
- ↑ "Cost reduction and performance increase of PEM electrolysers" (PDF). fch.europa.eu. Fuel Cells and Hydrogen Joint Undertaking. Retrieved 17 April 2018.
- ↑ Bjørnar Kruse; Sondre Grinna; Cato Buch (13 February 2002). "Hydrogen—Status and Possibilities" (PDF). The Bellona Foundation. p. 20. Archived from the original on 16 September 2013.
{{cite web}}
: CS1 maint: unfit URL (link) - ↑ 53.0 53.1 Fickling, David (2 December 2020). "Hydrogen Is a Trillion Dollar Bet on the Future". Bloomberg.com (in English). Archived from the original on 2 December 2020.
green hydrogen .. current pricing of around $3 to $8 a kilogram .. gray hydrogen, which costs as little as $1
- ↑ Werner Zittel; Reinhold Wurster (1996-07-08). "Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis". HyWeb: Knowledge - Hydrogen in the Energy Sector. Ludwig-Bölkow-Systemtechnik GmbH.
- ↑ Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13). "Hydrogen—Status and Possibilities". The Bellona Foundation. Archived from the original (PDF) on 2011-07-02.
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
- ↑ "high-rate and high efficiency 3D water electrolysis". Grid-shift.com. Archived from the original on 2012-03-22. Retrieved 2011-12-13.
- ↑ "DOE Technical Targets for Hydrogen Production from Electrolysis". energy.gov. US Department of Energy. Retrieved 22 April 2018.
- ↑ Deign, Jason. "Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage". greentechmedia.com. Wood MacKenzie. Retrieved 22 April 2018.
- ↑ accessed June 22, 2021
- ↑ "Wide Spread Adaption of Competitive Hydrogen Solution" (PDF). nelhydrogen.com. Nel ASA. Retrieved 22 April 2018.
- ↑ Philibert, Cédric. "Commentary: Producing industrial hydrogen from renewable energy". iea.org. International Energy Agency. Retrieved 22 April 2018.
- ↑ Giddey, S; Kulkarni, A; Badwal, S.P.S (2015). "Low emission hydrogen generation through carbon assisted electrolysis". International Journal of Hydrogen Energy. 40 (1): 70–4. doi:10.1016/j.ijhydene.2014.11.033.
- ↑ Uhm, Sunghyun; Jeon, Hongrae; Kim, Tae Jin; Lee, Jaeyoung (2012). "Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process". Journal of Power Sources. 198: 218–22. doi:10.1016/j.jpowsour.2011.09.083.
- ↑ Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S (2017). "The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis". Electrochimica Acta. 229: 39–47. doi:10.1016/j.electacta.2017.01.106.
- ↑ Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S; Mulder, Roger J (2016). "Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation". Electrochimica Acta. 212: 744–57. doi:10.1016/j.electacta.2016.07.062.
- ↑ 66.0 66.1 Lamy, Claude; Devadas, Abirami; Simoes, Mario; Coutanceau, Christophe (2012). "Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)". Electrochimica Acta. 60: 112–20. doi:10.1016/j.electacta.2011.11.006.
- ↑ 67.0 67.1 Badwal, Sukhvinder P. S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F (2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh....2...79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
- ↑ Ju, H; Badwal, S.P.S; Giddey, S (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production". Applied Energy. 231: 502–533. doi:10.1016/j.apenergy.2018.09.125. S2CID 117669840.
- ↑ Ju, Hyungkuk; Badwal, Sukhvinder; Giddey, Sarbjit (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production". Applied Energy. 231: 502–533. doi:10.1016/j.apenergy.2018.09.125. S2CID 117669840.
- ↑ An Introduction to Radiation Chemistry Chapter 7
- ↑ Nuclear Hydrogen Production Handbook Chapter 8
- ↑ Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt; Barbara Sherwood Lollar; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw; T. C. Onstott (2006). "Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome". Science. 314 (5798): 479–82. Bibcode:2006Sci...314..479L. doi:10.1126/science.1127376. PMID 17053150. S2CID 22420345.
- ↑ "Dream or Reality? Electrification of the Chemical Process Industries". www.aiche-cep.com (in English). Retrieved 2021-08-22.
- ↑ Wang, Mengjiao; Wang, Guizhou; Sun, Zhenxin; Zhang, Yukui; Xu, Dong (2019-10-01). "Review of renewable energy-based hydrogen production processes for sustainable energy innovation". Global Energy Interconnection (in English). 2 (5): 436–443. doi:10.1016/j.gloei.2019.11.019. ISSN 2096-5117. S2CID 213994188.
- ↑ Guoxin, Hu; Hao, Huang (May 2009). "Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent". Biomass and Bioenergy. 33 (5): 899–906. doi:10.1016/j.biombioe.2009.02.006. ISSN 0961-9534.
- ↑ Ping, Zhang; Laijun, Wang; Songzhe, Chen; Jingming, Xu (2018-01-01). "Progress of nuclear hydrogen production through the iodine–sulfur process in China". Renewable and Sustainable Energy Reviews (in English). 81: 1802–1812. doi:10.1016/j.rser.2017.05.275. ISSN 1364-0321.
- ↑ Producing hydrogen: The Thermochemical cycles
- ↑ IEA Energy Technology Essentials - Hydrogen Production & Distribution Archived 2011-11-03 at the Wayback Machine, April 2007
- ↑ "HTTR High Temperature engineering Test Reactor". Httr.jaea.go.jp. Archived from the original on 2014-02-03. Retrieved 2014-01-23.
- ↑ https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf Archived 2016-12-21 at the Wayback Machine. Progress in Nuclear Energy Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
- ↑ "Status report 101 - Gas Turbine High Temperature Reactor (GTHTR300C)" (PDF).
- ↑ "JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION: GTHTR300C" (PDF). Archived from the original (PDF) on 2017-08-10. Retrieved 2013-12-04.
- ↑ Chukwu, C., Naterer, G. F., Rosen, M. A., "Process Simulation of Nuclear-Produced Hydrogen with a Cu-Cl Cycle", 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4, 2008. "Process Simulation of Nuclear-Based Thermochemical Hydrogen Production with a Copper-Chlorine Cycle" (PDF). Archived from the original (PDF) on 2012-02-20. Retrieved 2013-12-04.
- ↑ Report No 40: The ferrosilicon process for the generation of hydrogen
- ↑ Candid science: conversations with famous chemists, István Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) ISBN 1-86094-228-8
- ↑ Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (2009). "Analytical approaches to photobiological hydrogen production in unicellular green algae". Photosynthesis Research. 102 (2–3): 523–40. doi:10.1007/s11120-009-9415-5. PMC 2777220. PMID 19291418.
- ↑ "DOE 2008 Report 25 %" (PDF).
- ↑ Jenvanitpanjakul, Peesamai (February 3–4, 2010). Renewable Energy Technology And Prospect On Biohydrogen Study In Thailand (PDF). Steering Committee Meeting and Workshop of APEC Research Network for Advanced Biohydrogen Technology. Taichung: Feng Chia University. Archived from the original (PDF) on July 4, 2013.
- ↑ Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; Del Valle, F.; Villoria De La Mano, José A.; Fierro, José L. G. (2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation". ChemSusChem. 2 (6): 471–85. doi:10.1002/cssc.200900018. PMID 19536754.
- ↑ Navarro, R.M.; Del Valle, F.; Villoria De La Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). "Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development". Photocatalytic Technologies. Advances in Chemical Engineering. Vol. 36. pp. 111–43. doi:10.1016/S0065-2377(09)00404-9. ISBN 978-0-12-374763-1.
- ↑ Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-Gómez, M.E. (September 2015). "Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes". Catalysis Today (in English). 252: 150–156. doi:10.1016/j.cattod.2014.11.007.
- ↑ 92.0 92.1 Asadi, Nooshin; Karimi Alavijeh, Masih; Zilouei, Hamid (2017). "Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran". International Journal of Hydrogen Energy. 42 (4): 1989–2007. doi:10.1016/j.ijhydene.2016.10.021.
- ↑ Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose". International Journal of Hydrogen Energy. 32 (2): 200–6. doi:10.1016/j.ijhydene.2006.06.034.
- ↑ Rajanandam, Brijesh; Kiran, Siva (2011). "Optimization of hydrogen production by Halobacterium salinarium coupled with E coli using milk plasma as fermentative substrate". Journal of Biochemical Technology. 3 (2): 242–4. Archived from the original on 2013-07-31. Retrieved 2013-03-09.
- ↑ Asadi, Nooshin; Zilouei, Hamid (March 2017). "Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes". Bioresource Technology. 227: 335–344. doi:10.1016/j.biortech.2016.12.073. PMID 28042989.
- ↑ Percival Zhang, Y-H; Sun, Jibin; Zhong, Jian-Jiang (2010). "Biofuel production by in vitro synthetic enzymatic pathway biotransformation". Current Opinion in Biotechnology. 21 (5): 663–9. doi:10.1016/j.copbio.2010.05.005. PMID 20566280.
- ↑ Strik, David P. B. T. B.; Hamelers (Bert), H. V. M.; Snel, Jan F. H.; Buisman, Cees J. N. (2008). "Green electricity production with living plants and bacteria in a fuel cell". International Journal of Energy Research. 32 (9): 870–6. doi:10.1002/er.1397. S2CID 96849691.
- "Living plants produce energy". Wageningen University and Research Centre (Press release). Archived from the original on 2010-05-17.
- ↑ Timmers, Ruud (2012). Electricity generation by living plants in a plant microbial fuel cell (PhD Thesis). ISBN 978-94-6191-282-4.[page needed]
- ↑ "Aluminum Based Nanogalvanic Alloys for Hydrogen Generation". U.S. Army Combat Capabilities Development Command Army Research Laboratory. Retrieved January 6, 2020.
- ↑ McNally, David (July 25, 2017). "Army discovery may offer new energy source". U.S. Army. Retrieved January 6, 2020.
- ↑ "You are being redirected..." 4thgeneration.energy.
- ↑ Welle, Deutsche. "First element in periodic table: Why all the fuss about hydrogen? | DW | 12.06.2020". DW.COM.
- ↑ No label or title -- debug: Q108067259, Wikidata Q108067259
- ↑ " Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis", Antonini et al. 2020, https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00222D
- ↑ "Facts on low-carbon hydrogen – A European perspective", ZEP Oct 2021, 2021, https://zeroemissionsplatform.eu/wp-content/uploads/ZEP-paper-Facts-on-low-carbon-hydrogen-%E2%80%93-A-European-perspective-October-2021.pdf
- ↑ Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R.; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (November 17, 2017). "Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon". Science. 358 (6365): 917–921. Bibcode:2017Sci...358..917U. doi:10.1126/science.aao5023. PMID 29146810. S2CID 206663568 – via www.science.org.
- ↑ "New Horizons for Hydrogen" (PDF). Research Review. National Renewable Energy Laboratory (2): 2–9. April 2004.
- ↑ Collins, Leigh (25 January 2022). "World first for nuclear-powered pink hydrogen as commercial deal signed in Sweden | Recharge". Recharge | Latest renewable energy news (in English).
- ↑ 109.0 109.1 Collins, Leigh (19 March 2020). "A wake-up call on green hydrogen: the amount of wind and solar needed is immense | Recharge". Recharge | Latest renewable energy news (in English). Archived from the original on 4 June 2021.
- ↑ "How does the energy crisis affect the transition to net zero?". European Investment Bank (in English). Retrieved 2022-12-23.
- ↑ "Hydrogen - Fuels & Technologies". IEA (in British English). Retrieved 2022-12-23.
- ↑ Castelvecchi, Davide (2022-11-16). "How the hydrogen revolution can help save the planet — and how it can't". Nature (in English). 611 (7936): 440–443. doi:10.1038/d41586-022-03699-0. S2CID 253525130.
- ↑ "Hydrogen". energy.ec.europa.eu (in English). Retrieved 2022-12-23.
- ↑ Ritchie, Hannah. "How many people does synthetic fertilizer feed?". Our World in Data. Global Change Data Lab. Retrieved 16 September 2021.
आगे की पढाई
- Francesco Calise; et al., eds. (2019). Solar Hydrogen Production. Academic Press. ISBN 978-0-12-814853-2.