आयतन
Volume | |
---|---|
सामान्य प्रतीक | V |
Si इकाई | cubic metre |
अन्य इकाइयां | Litre, fluid ounce, gallon, quart, pint, tsp, fluid dram, in3, yd3, barrel |
SI आधार इकाइयाँ में | m3 |
व्यापक? | yes |
गहन? | no |
संरक्षित? | yes for solids and liquids, no for gases, and plasma[lower-alpha 1] |
Behaviour under समन्वय परिवर्तन | conserved |
आयाम | L3 |
आयतन त्रि-आयामी स्थान का माप (गणित) है।[1] सामान्यतः इसे SI (एसआई) व्युत्पन्न इकाइयों (जैसे घन मीटर और लीटर) या विभिन्न इम्पीरियल इकाइयों या संयुक्त राज्य की प्रथागत इकाइयों (जैसे गैलन, चौथाई गेलन, घन इंच) का उपयोग करके संख्यात्मक रूप से निर्धारित किया जाता है। लंबाई (क्यूब्ड) की परिभाषा मात्रा के साथ परस्पर संबंधित है। कंटेनर (धारक) में पदार्थ मात्रा को सामान्य रूप से धारक की क्षमता समझा जाता है अर्थात तरल पदार्थ (गैस या तरल) जिसे धारक धारण कर सकता है बल्कि इसके कि धारक स्वयं कितनी जगह विस्थापित करता है।
प्राचीन समय में समान आकार के प्राकृतिक कंटेनरों (धारक) और बाद में मानकीकृत कंटेनरों का उपयोग करके मात्रा को मापा जाता है। कुछ सरल त्रि-आयामी आकार अंकगणितीय सूत्रों का उपयोग करके सरलता से उनकी मात्रा की गणना कर सकते हैं। यदि आकार की सीमा के लिए कोई सूत्र उपस्थित है तब अधिक जटिल आकृतियों के आयतन की गणना अभिन्नकलन से की जा सकती है। शून्य, एक और द्वि-आयामी वस्तुओं का कोई आयतन नहीं होता है, चौथे और उससे उच्च आयामों में सामान्य आयतन के अनुरूप अवधारणा हाइपरवॉल्यूम है।
इतिहास
प्राचीन इतिहास
प्राचीन काल में आयतन मापन की सटीकता सामान्य रूप से 10–50 mL (0.3–2 US fl oz; 0.4–2 imp fl oz) के बीच होती थी।[2]: 8 आयतन गणना का सबसे पहला प्रमाण प्राचीन मिस्र और मेसोपोटामिया से गणितीय समस्याओं के रूप में आया घनाकार, बेलन, छिन्नक और शंकु जैसे साधारण आकार के आयतन का अनुमान लगाया गया था। गणित की इन समस्याओं को मास्को गणितीय पेपिरस (सी. 1820 ई.पू.) में लिखा गया है।[3]: 403 रीसनर पपीरस में प्राचीन मिस्रवासियों ने अनाज और तरल पदार्थों के लिए आयतन की ठोस इकाइयाँ लिखी हैं साथ ही सामग्री के ब्लॉकों के लिए लंबाई, चौड़ाई, गहराई और आयतन की तालिका भी लिखी है।[2]: 116 मिस्र के लोग लंबाई की अपनी इकाइयों (हाथ, हथेली, अंक) का उपयोग मात्रा की अपनी इकाइयों को तैयार करने के लिए करते हैं, जैसे कि आयतन हाथ[2]: 117 या डिने[3]: 396 (1 हाथ × 1 हाथ × 1 हाथ), आयतन हथेली (1 हाथ × 1 हाथ × 1 हथेली), और आयतन अंक (1 हाथ × 1 हाथ × 1 अंक)।[2]: 117
लगभग 300 ईसा पूर्व में लिखी गई यूक्लिड के तत्वों की अंतिम तीन पुस्तकों में समानांतर चतुर्भुज, शंकु, पिरामिड, बेलन और गोले के आयतन की गणना के लिए सटीक सूत्रों का विवरण देते हैं। सूत्रों को छोटे और सरल टुकड़ों में आकृतियों को विभाजित कर एकीकरण के एक आदिम रूप का उपयोग करके पूर्व गणितज्ञों द्वारा निर्धारित किया गया था।[3]: 403 एक शताब्दी बाद आर्किमिडीज (c. 287 – 212 ईसा पूर्व) कई आकृतियों के अनुमानित आयतन सूत्र का निर्माण किया जिसमें समाप्ति दृष्टिकोण की विधि का उपयोग किया गया जिसका अर्थ समान आकृतियों के पिछले ज्ञात सूत्रों से समाधान निकालना है। आकृतियों के साधारण एकीकरण की खोज स्वतंत्र रूप से तीसरी शताब्दी सीई (3rd Century CE) में लिउ हुई(Liu Hui), 5वीं शताब्दी (5th Century CE) सीई में जेड यूसी होंग्ज़ी, मध्य पूर्व और भारत में की गई थी।[3]: 404
आर्किमिडीज़ ने अनियमित वस्तु के आयतन की गणना करने का एक तरीका भी तैयार किया, वस्तु पानी के नीचे डुबो कर और प्रारंभिक और अंतिम पानी की मात्रा के बीच के अंतर को माप कर, जल आयतन अंतर वस्तु का आयतन है।[3]: 404 अत्यधिक लोकप्रिय होने के बाद भी आर्किमिडीज ने अत्यधिक सटीकता के कारण इसकी मात्रा और इस प्रकार इसकी घनत्व और शुद्धता को खोजने के लिए सोने के मुकुट को नहीं डुबोया।[4] इसके स्थान पर उन्होंने हीड्रास्टाटिक संतुलन का एक साधारण रूप तैयार किया। जिसमें मुकुट और एक समान भार वाले शुद्ध सोने का एक टुकड़ा पानी के नीचे डूबे हुए तराजू के दोनों सिरों पर रखा जाता है जो आर्किमिडीज के सिद्धांत के अनुसार झुक जाएगा।[5]
इकाइयों की गणना और मानकीकरण
मध्य युग में मात्रा मापने के लिए कई इकाइयाँ बनाई गईं जैसे कि सेस्टर, एम्बर (इकाई), कुम्ब (इकाई) और सीवन (इकाई)। ऐसी इकाइयों की विशाल मात्रा ने ब्रिटिश राजाओं को उन्हें मानकीकृत करने के लिए प्रेरित किया जिसकी परिणति इंग्लैंड के हेनरी III (तृतीय) द्वारा सन 1258 में ब्रेड और एले कानून के आकलन में हुई। न्याय व्यवस्था ने भार, लंबाई और मात्रा को मानकीकृत किया और साथ ही पेनी, औंस, पाउंड, गैलन और बुशल को पेश किया।[2]: 73–74 सन 1618 में लंदन फार्माकोपिया (मेडिसिन कंपाउंड कैटलॉग) ने रोमन गैलन [6] या कोंगियस[7]को अपनाया। मात्रा की एक मूल इकाई के रूप में और एपोथेकरीज़ के भार की इकाइयों की रूपांतरण तालिका दी।[6] इस समय के आसपास मात्रा माप अधिक सटीक होते जा रहे हैं और 1–5 mL (0.03–0.2 US fl oz; 0.04–0.2 imp fl oz) के बीच में अनिश्चितता कम होती जा रही है [2]: 8
17वीं शताब्दी की के प्रारंभ में बोनवेंट्योर कैवलियरी ने किसी भी वस्तु के आयतन की गणना करने के लिए आधुनिक समाकलन कैलकुलस (समाकलन गणित) के दर्शन को प्रस्तुत किया। उन्होंने कैवलियरी के सिद्धांत को तैयार किया जिसमें कहा गया था कि आकृति के पतले से पतले टुकड़े का उपयोग करने से परिणामी मात्रा अधिक से अधिक सटीक होगी। इस विचार को बाद में 17 वीं और 18 वीं शताब्दी में पियरे डी फर्मेट, जॉन वालिस, आइज़ैक बैरो, जेम्स ग्रेगरी (गणितज्ञ), आइजैक न्यूटन, गॉटफ्रीड विल्हेम लीबनिज और मारिया गेटाना अगनेसी द्वारा विस्तारित किया गया जिससे आधुनिक समाकलन गणित का निर्माण किया जो 21 वीं सदी में भी उपयोगी है।[3]: 404
मीट्रिक और पुनर्परिभाषा
7 अप्रैल 1795 में फ्रांसीसी कानून में छह इकाइयों का उपयोग करके मीट्रिक प्रणाली को औपचारिक रूप से परिभाषित किया गया था। इनमें से तीन आयतन से संबंधित हैं: जलाऊ लकड़ी के आयतन के लिए स्टीयर (1m3) ; लीटर (1 dm3) द्रव की मात्रा के लिए; और ग्राम, द्रव्यमान के लिए - अधिकतम घनत्व पर एक घन सेंटीमीटर पानी के द्रव्यमान के रूप में परिभाषित किया गया है 4 °C (39 °F).[citation needed] तीस साल बाद सन 1824 में इम्पीरियल गैलन को 17 डिग्री सेल्सियस (62 डिग्री फारेनहाइट) पर दस पाउंड पानी अधिकृत मात्रा वाले के रूप में परिभाषित किया गया था।[3]: 394 यूनाइटेड किंगडम के बाट और माप अधिनियम 1985 तक इस परिभाषा को और अधिक परिष्कृत किया गया था जो पानी के उपयोग के बिना 1 इम्पीरियल गैलन को ठीक 4.54609 लीटर के बराबर बनाता है।[8]
सन 1960 में अंतरराष्ट्रीय मीटर नमूना से क्रिप्टन -86 परमाणुओं की नारंगी-लाल वर्णक्रमीय रेखा तक मीटर की पुनर्परिभाषा ने भौतिक वस्तुओं से मीटर, क्यूबिक मीटर और लीटर को सीमाओं से बाहर किया। यह अंतर्राष्ट्रीय प्रोटोटाइप (नमूना) मीटर में परिवर्तन के लिए मीटर और मीटर-व्युत्पन्न इकाइयों की मात्रा को लचीला बनाता है।[9] मीटर की परिभाषा को 1983 में प्रकाश की गति और सेकंड (जो कि सीज़ियम मानक से लिया गया है) का उपयोग करने के लिए परिभाषित किया गया और सन 2019 में स्पष्टता के लिए पुनर्परिभाषित किया गया था ।[10]
माप
किसी वस्तु के आयतन को सामान्य रूप से मापने का सबसे पुराना तरीका मानव शरीर का उपयोग करना है जैसे हाथ के आकार और चुटकी का उपयोग करना। जबकि मानव शरीर की विविधताएं इसे अविश्वसनीय बनाती हैं। मात्रा को मापने का एक अच्छा तरीका प्रकृति में पाए जाने वाले सुसंगत और लम्बी अवधि तक चलने वाले कंटेनरों का उपयोग करना है, जैसे कि लौकी, भेड़ या सुअर के पेट और मूत्राशय। इसके पश्चात जैसा कि धातु विज्ञान और कांच के उत्पादन में सुधार हुआ, आजकल कम मात्रा को सामान्य रूप से मानकीकृत मानव निर्मित कंटेनरों का उपयोग करके मापा जाता है।[3]: 393 कंटेनर के एक या एक से अधिक (गणित) अंश का उपयोग करके तरल पदार्थ या दानेदार सामग्री की छोटी मात्रा को मापने के लिए यह विधि सामान्य है। दानेदार सामग्री के लिए सपाट सतह बनाने हेतु कंटेनर को हिलाया या समतल किया जाता है। यह विधि मात्रा को मापने का सबसे सटीक तरीका नहीं है लेकिन इसका उपयोग खाना पकाने की सामग्री को मापने के लिए किया जाता है।[3]: 399
सूक्ष्म पैमाने पर तरल पदार्थ की मात्रा को मापने के लिए जीव विज्ञान और जैव रसायन में वायु विस्थापक पिपेट का उपयोग किया जाता है।[11] मापने वाले कैलिब्रेटेड कप और मापने वाले चम्मच खाना पकाने और दैनिक जीवन के अनुप्रयोगों के लिए पर्याप्त हैं, जबकि वे प्रयोगशाला के लिए पर्याप्त सटीक नहीं हैं। जहाँ तरल पदार्थ की मात्रा को अंशांकित सिलेंडरों, पिपेट और बड़ा (वॉल्यूमेट्रिक) फ्लास्क का उपयोग करके मापा जाता है। इस तरह के कैलिब्रेटेड कंटेनरों में सबसे बड़े पेट्रोलियम भंडारण टैंक होते हैं जिनमें से कुछ में 1,000,000 bbl (160,000,000 L) तरल पदार्थ को रखा जा सकता है।[3]: 399 इस पैमाने पर भी पेट्रोलियम के घनत्व और तापमान को जानकर इन टैंकों में अभी भी बहुत सटीक आयतन मापन किया जा सकता है।[3]: 403
जलाशय जैसे बड़े आयतन के लिए कंटेनर के आयतन को आकृतियों द्वारा प्रतिरूपित किया जाता है और गणित का उपयोग करके गणना की जाती है।[3]: 403 कंप्यूटर विज्ञान में कम्प्यूटेशनल ज्यामिति के क्षेत्र में संख्यात्मक रूप से वस्तुओं की मात्रा की गणना करने का कार्य अध्ययन किया जाता है, विभिन्न प्रकार की वस्तुओं के लिए इस गणना, [[सन्निकटन कलन विधि]] या सटीक एल्गोरिदम (कलन विधि) को करने के लिए कुशल एल्गोरिदम (कलन विधि) की जांच की जाती है। उदाहरण के लिए उत्तल आयतन सन्निकटन तकनीक प्रदर्शित करती है कि ओरेकल मशीन का उपयोग करके किसी भी उत्तल पिंड के आयतन का अनुमान कैसे लगाया जाए।[citation needed]
इकाइयां
आयतन की इकाई का सामान्य रूप घन (बीजगणित) (x3) लंबाई की एक इकाई है। उदाहरण के लिए यदि मीटर (m) को लंबाई की इकाई के रूप में चुना जाता है तो आयतन की संगत इकाई घन मीटर (m)3 होती है।[12] इस प्रकार आयतन एक SI व्युत्पन्न इकाई है और इसका विमीय विश्लेषण L3।
[13] आयतन की मीट्रिक इकाइयाँ मीट्रिक उपसर्गों का उपयोग 10 की शक्ति कड़ाई से करती हैं। आयतन की इकाइयों के लिए उपसर्गों को लागू करते समय जो कि घन लंबाई की इकाइयों में व्यक्त किए जाते हैं, घन संचालकों को उपसर्ग सहित लंबाई की इकाई पर लागू किया जाता है। घन सेंटीमीटर को घन मीटर में बदलने का एक उदाहरण है: 2.3 सेंटीमीटर3 = 2.3 (सेमी)3 = 2.3 (0.01 मीटर)3 = 0.0000023 मी3 (पांच शून्य)।[14]: 143
घन लंबाई इकाइयों के लिए आमतौर पर इस्तेमाल किए जाने वाले उपसर्ग घन मिलीमीटर (मिमी3), घन सेंटीमीटर (सेमी3), क्यूबिक डेसीमीटर (dm3), घन मीटर (एम3) और घन किलोमीटर (km3). उपसर्ग इकाइयों के बीच रूपांतरण इस प्रकार है: 1000 मिमी3 = 1 सेमी3, 1000 सेमी3 = 1 दिन3, और 1000 डीएम3 = 1 मि3 मीट्रिक प्रणाली में वॉल्यूम की इकाई के रूप में लीटर (L) भी शामिल है, जहां 1 L = 1 dm है3 = 1000 सेमी3 = 0.001 मी3</उप>।[14]: 145 लीटर इकाई के लिए, आमतौर पर इस्तेमाल किए जाने वाले उपसर्ग मिलीलीटर (mL), सेंटीलीटर (cL) और लीटर (L) होते हैं, जिनमें 1000 mL = 1 L, 10 mL = 1 cL, 10 cL = 1 dL, और 10 dL होते हैं = 1 एल।
लीटर आमतौर पर वस्तुओं के लिए उपयोग किया जाता है (जैसे कि तरल पदार्थ और ठोस पदार्थ जो डाले जा सकते हैं) जिन्हें उनके कंटेनर की क्षमता या आकार से मापा जाता है, जबकि क्यूबिक मीटर (और व्युत्पन्न इकाइयां) का उपयोग आमतौर पर या तो उनके आयामों द्वारा मापी गई वस्तुओं के लिए किया जाता है या उनका विस्थापन।[citation needed] विभिन्न अन्य इंपीरियल इकाइयां या संयुक्त राज्य प्रथागत इकाइयां|यू.एस. वॉल्यूम की प्रथागत इकाइयाँ भी उपयोग में हैं, जिनमें शामिल हैं:
- घन इंच, घन फुट, घन गज, एकड़ फुट, घन मील;
- न्यूनतम (संयुक्त), ड्रामा (यूनिट), द्रव औंस, पिंट;
- चम्मच, बड़ा चम्मच;
- गिल (वॉल्यूम), क्वार्ट, गैलन, बैरल (यूनिट);
- रस्सी (इकाई), पत्थर फेंकना, बुशल, होग्सहेड।
ज्ञात सबसे छोटी मात्रा जिस पर पदार्थ का कब्जा है, वह संभवतः प्रोटॉन है, जिसकी त्रिज्या 1 femtometer से छोटी मानी जाती है। इसका मतलब है कि इसकी मात्रा से छोटी होनी चाहिए 4.19×10−45 m3, हालांकि सटीक मान अभी भी 2019 तक प्रोटॉन त्रिज्या पहेली के रूप में बहस के अधीन है।[15] हाइड्रोजन परमाणु का वैन डेर वाल्स आयतन कहीं अधिक बड़ा होता है, जिसकी सीमा होती है 4.19×10−30 m3 को 7.24×10−30 m3 100 और 120 picometre के बीच की त्रिज्या वाले गोले के रूप में।[16] पैमाने के दूसरे छोर पर, पृथ्वी का आयतन लगभग है 1.083×1021 m3.[17] अवलोकन योग्य ब्रह्मांड में सबसे बड़ा संभावित आयतन स्वयं अवलोकनीय ब्रह्मांड है, at 2.85×1081 m3 के एक क्षेत्र द्वारा 8.8×1026 m त्रिज्या में।
क्षमता और मात्रा
क्षमता सामग्री की अधिकतम मात्रा है जो एक कंटेनर धारण कर सकता है, मात्रा या वजन में मापा जाता है। हालाँकि, निहित मात्रा को कंटेनर की क्षमता या इसके विपरीत भरने की आवश्यकता नहीं है। कंटेनर केवल एक विशिष्ट मात्रा में भौतिक मात्रा रख सकते हैं, वजन नहीं (व्यावहारिक चिंताओं को छोड़कर)। उदाहरण के लिए, ए 50,000 bbl (7,900,000 L) टैंक जो बस पकड़ सकता है 7,200 t (15,900,000 lb) ईंधन तेल में समान नहीं होगा 7,200 t (15,900,000 lb) मिट्टी का तेल का, नेफ्था के कम घनत्व और इस प्रकार बड़ी मात्रा के कारण।[3]: 390–391
गणना
इंटीग्रल कैलकुलस
आयतन की गणना समाकलन कलन (गणना) का एक महत्वपूर्ण भाग है। जिनमें से एक, एक ही तल पर रेखा (ज्यामिति) के चारों ओर एक समतल वक्र को घुमाकर परिक्रमण के ठोस के आयतन की गणना कर रहा है। वॉशर या डिस्क एकीकरण विधि का उपयोग घुमाव के अक्ष के समानांतर अक्ष द्वारा एकीकृत करते समय किया जाता है। सामान्य समीकरण को इस प्रकार लिखा जा सकता है:
ज्यामितीय मॉडलिंग
एक [[बहुभुज जाल]] बहुभुज का उपयोग करके वस्तु की सतह का प्रतिनिधित्व करता है। वॉल्यूम जाल स्पष्ट रूप से इसकी मात्रा और सतह के गुणों को परिभाषित करता है।
विभेदक ज्यामिति
This section may be too technical for most readers to understand.August 2022) (Learn how and when to remove this template message) ( |
अंतर ज्यामिति में, गणित की एक शाखा, अलग करने योग्य कई गुना पर वॉल्यूम फॉर्म टॉप डिग्री का विभेदक रूप है (यानी, जिसकी डिग्री कई गुना के आयाम के बराबर है) जो कहीं भी शून्य के बराबर नहीं है। एक मैनिफोल्ड का वॉल्यूम फॉर्म होता है अगर और केवल अगर यह एडजस्टेबल हो। एक कुंडा कई गुना में असीम रूप से कई वॉल्यूम फॉर्म होते हैं, क्योंकि वॉल्यूम फॉर्म को गैर-लुप्त होने वाले फ़ंक्शन से गुणा करने से एक और वॉल्यूम फॉर्म प्राप्त होता है। गैर-उन्मुख कई गुना पर, इसके बजाय कई गुना पर घनत्व की कमजोर धारणा को परिभाषित किया जा सकता है। वॉल्यूम फॉर्म को इंटीग्रेट करने से उस फॉर्म के अनुसार कई गुना वॉल्यूम मिलता है।
एक अभिविन्यास (अंतरिक्ष) स्यूडो-रीमैनियन मैनिफोल्ड का एक प्राकृतिक आयतन रूप है। स्थानीय निर्देशांक में, इसे इस रूप में व्यक्त किया जा सकता है
व्युत्पन्न मात्रा
- घनत्व पदार्थ का द्रव्यमान प्रति इकाई आयतन है, या कुल द्रव्यमान को कुल आयतन से विभाजित किया जाता है।[17]
- विशिष्ट आयतन द्रव्यमान, या घनत्व के व्युत्क्रम द्वारा विभाजित कुल आयतन है।[18]
- मात्रात्मक प्रवाह दर या डिस्चार्ज (हाइड्रोलॉजी) द्रव का आयतन है जो किसी दिए गए सतह से प्रति यूनिट समय में गुजरता है।
- वॉल्यूमेट्रिक ताप क्षमता पदार्थ की ऊष्मा क्षमता को उसके आयतन से विभाजित करती है।
यह भी देखें
- सामान भत्ता
- बनच-तर्स्की विरोधाभास
- [[आयामी वजन]]
- आयाम
टिप्पणियाँ
- ↑ At constant temperature and pressure, ignoring other states of matter for brevity
संदर्भ
- ↑ "SI Units - Volume". National Institute of Standards and Technology. April 13, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Imhausen, Annette (2016). Mathematics in Ancient Egypt: A Contextual History. Princeton University Press. ISBN 978-1-4008-7430-9. OCLC 934433864.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 Treese, Steven A. (2018). History and Measurement of the Base and Derived Units. Cham, Switzerland: Springer Science+Business Media. ISBN 978-3-319-77577-7. LCCN 2018940415. OCLC 1036766223.
- ↑ Rorres, Chris. "The Golden Crown". Drexel University. Archived from the original on 11 March 2009. Retrieved 24 March 2009.
- ↑ Graf, E. H. (2004). "Just what did Archimedes say about buoyancy?". The Physics Teacher. 42 (5): 296–299. Bibcode:2004PhTea..42..296G. doi:10.1119/1.1737965. Archived from the original on 2021-04-14. Retrieved 2022-08-07.
- ↑ 6.0 6.1 "Balances, Weights and Measures" (PDF). Royal Pharmaceutical Society. 4 Feb 2020. p. 1. Archived (PDF) from the original on 20 May 2022. Retrieved 13 August 2022.
- ↑ Cardarelli, François (6 Dec 2012). Scientific Unit Conversion: A Practical Guide to Metrication (2nd ed.). London: Springer Science+Business Media. p. 151. ISBN 978-1-4471-0805-4. OCLC 828776235.
- ↑ Cook, James L. (1991). Conversion Factors. Oxford [England]: Oxford University Press. pp. xvi. ISBN 0-19-856349-3. OCLC 22861139.
- ↑ Marion, Jerry B. (1982). Physics For Science and Engineering. CBS College Publishing. p. 3. ISBN 978-4-8337-0098-6.
- ↑ "Mise en pratique for the definition of the metre in the SI" (PDF). International Bureau of Weights and Measures. Consultative Committee for Length. 20 May 2019. p. 1. Archived (PDF) from the original on 13 August 2022. Retrieved 13 August 2022.
- ↑ "Use of Micropipettes" (PDF). Buffalo State College. Archived from the original (PDF) on 4 August 2016. Retrieved 19 June 2016.
- ↑ "Area and Volume". National Institute of Standards and Technology. February 25, 2022. Archived from the original on August 7, 2022. Retrieved August 7, 2022.
- ↑ Lemons, Don S. (16 March 2017). A Student's Guide to Dimensional Analysis. New York: Cambridge University Press. p. 38. ISBN 978-1-107-16115-3. OCLC 959922612.
- ↑ International Bureau of Weights and Measures (2019-05-20), SI Brochure: The International System of Units (SI) (PDF) (9th ed.), ISBN 978-92-822-2272-0, archived (PDF) from the original on 2017-01-13
- ↑ 15.0 15.1 "Volumes by Integration" (PDF). Rochester Institute of Technology. 22 September 2014. Archived (PDF) from the original on 2 February 2022. Retrieved 12 August 2022.
- ↑ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks Cole Cengage Learning. ISBN 978-0-495-01166-8.
- ↑ Benson, Tom (7 May 2021). "Gas Density". Glenn Research Center. Archived from the original on 2022-08-09. Retrieved 2022-08-13.
- ↑ Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill. p. 11. ISBN 0-07-238332-1.
बाहरी संबंध
- Perimeters, Areas, Volumes at Wikibooks
- Volume at Wikibooks