गणित में, अभिलक्षण विधि आंशिक अवकल समीकरणों को हल करने की एक तकनीक है। विशिष्ट रूप से, यह प्रथम कोटि रैखिक अवकलन समीकरण पर लागू होता है, हालांकि सामान्यतः अभिलक्षण विधि किसी भी अतिपरवलयिक आंशिक अंतर समीकरण के लिए मान्य है। यह विधि एक आंशिक अवकल समीकरण को साधारण अवकल समीकरणों के एक समूह से कम करने के लिए है जिसके साथ उपयुक्त ऊनविम पृष्ठ पर दिए गए कुछ प्रारंभिक डेटा से प्राप्त हल को समाकलित किया जा सकता है।
प्रथम-कोटि पीडीई (आंशिक अवकलन समीकरण) के लिए, अभिलक्षण विधि वक्र के द्वारा जानकारी प्राप्त होती है (जिसे अभिलक्षण विधि वक्र या सिर्फ अभिलक्षण विधि कहा जाता है) जिसके साथ पीडीई एक साधारण अवकल समीकरण (ओडीई) बन जाता है।[1] एक बार ओ.डी.ई मिल जाने के बाद, इसे अभिलक्षण विधि वक्रों के साथ हल किया जा सकता है और मूल पी.डी.ई के हल में परिवर्तित किया जा सकता है।
सरलता के लिए, हम फिलहाल अपना ध्यान दो स्वतंत्र चर x और y के फलन के मामले तक ही सीमित रखते हैं। यदि एक आंशिक अवकल समीकरण रेखीय और अरैखिक समीकरण फॉर्म के क्वासिलिनियर पीडीई पर विचार करें
(1)
मान लीजिए कि हल z ज्ञात है, और R3 में सतही ग्राफ़ z = z(x,y) पर विचार करें। इस सतह के लिए एक सामान्य वेक्टर दिया गया है
परिणामस्वरूप,[2] समीकरण (1) सदिश क्षेत्र के ज्यामितीय कथन के समतुल्य है
उपरोक्त सामान्य वेक्टर के साथ इस वेक्टर फ़ील्ड के डॉट उत्पाद के लिए, प्रत्येक बिंदु पर सतह z = z(x,y) पर स्पर्शरेखा है। दूसरे शब्दों में, प्राप्त हल का ग्राफ इस सदिश क्षेत्र के समाकलन वक्रों का एक संघ होना चाहिए। इन समाकलन वक्रों को मूल आंशिक अंतर समीकरण का अभिलक्षणिक वक्र कहा जाता है और लैग्रेंज -चार्पिट समीकरणों द्वारा दिया जाता है।[3]
लैग्रेंज-चार्पिट समीकरणों का एक पैरामीट्रिजेशन अपरिवर्तनीय रूप[3]है:
रैखिक और समरैखिक मामले
अब फॉर्म के पीडीई पर विचार करें
इस पीडीई को रैखिक होने के लिए, गुणांक ai केवल स्थानिक चर के फलन हो सकते हैं, और यह u पर निर्भर नहीं करते हैं। इसके लिए अर्धरेखीय होने के लिए,[4] ai फलन के मान पर भी निर्भर हो सकता है, लेकिन यह किसी व्युत्पन्न पर निर्भर नहीं हो सकता है। यहां चर्चा के लिए इन दोनों मामलों के बीच अवकलन अनिवार्य नहीं है।
एक रेखीय या अर्धरेखीय पी.डी.ई के लिए, अभिलाक्षणिक वक्रों को पैरामीट्रिक रूप से दिया जाता है
जैसे कि ओ.डी.ई की निम्नलिखित प्रणाली संतुष्ट है
(2)
(3)
समीकरण (2) और (3) आंशिक अवकल समीकरण की विशेषताएँ देते हैं
क्वासिलिनियर केस के लिए सबूत
क्वैसिलिनियर मामले में, अभिलक्षण विधि का उपयोग ग्रोनवाल की असमानता के लिए उचित है। इसे उपरोक्त समीकरण के रूप में लिखा जा सकता है
हमें ओडीई के हलों और पीडीई के हलों के बीच अंतर करना चाहिए, जिन्हें हम नहीं जानते कि प्राथमिकता बराबर है। बड़े अक्षरों को हमारे द्वारा प्राप्त होने वाले ओ.डी.ई का हल होने दें
इसका , अवकलन करने पर ज्ञात होता है
जो निम्न अभिक्रिया के समान है
जैसा हम चाहते हैं हम यह निष्कर्ष नहीं निकाल सकते कि उपरोक्त 0 है, क्योंकि पीडीई केवल हमें गारंटी देता है कि यह संबंध निम्न अभिक्रिया , , के लिए संतुष्ट है, और अभी तक इस अभिक्रिया के बारे में ज्ञात नहीं है
हालाँकि, हम इसे देख सकते हैं
चूंकि पीडीई द्वारा, अंतिम पद 0 है। यह बराबर है
त्रिभुज असमानता से, हमारे पास है
यह मानते हुए से कम हैं , हम इसे कम समय के लिए बाध्य कर सकते हैं। के चारों ओर सबसे पास वाला चुने यह इतना छोटा है कि स्थानीय रूप से लिप्सचिट्ज़ हैं। निरंतरता से, काफी छोटे के लिए. में रहेगा तब । इसलिए, सघनता से और के लिए इसके अतिरिक्त, कुछ के लिए के लिए । इससे,हमें ज्ञात होता है कि यह उपरोक्त के रूप में बाध्य है
कुछ के लिए । यह दिखाने के लिए ग्रोनवाल की असमानता का एक सीधा अनुप्रयोग है कि तब तक यह असमानता रहती है यदि तब । हमारे पास कुछ अंतराल है इस अंतराल में जैसे की । सबसे बड़ा इस तरह चुनें कि यह सत्य हो। फिर, निरंतरता से, बशर्ते ओ.डी.ई के पास के बाद भी कुछ अंतराल में एक हल हो, हम यह पता लगाने के लिए उपरोक्त तर्क को दोहरा सकते हैं कि एक बड़े अंतराल में ।
पूरी तरह से अरैखिक मामला
यदि आंशिक अवकलन समीकरण पर विचार करें
(4)
जहाँ चर pi आंशिक व्युत्पन्न के लिए आशुलिपि हैं
माना (xi(s),u(s),pi(s)) 'R2n+1' में एक वक्र है और u कोई हल है,
एक हल के साथ, (4) को s के सापेक्ष अवकलित करने पर प्राप्त होता है
जहां λ एक नियतांक है। इन समीकरणों को अधिक सममित रूप से लिखने पर, अभिलक्षण के लिए लैग्रेंज-चार्पिट समीकरण प्राप्त होता है
ज्यामितीय रूप से, पूरी तरह से गैर-रैखिक मामले में अभिलक्षण विधि की व्याख्या की जा सकती है कि अवकलन समीकरण के मोंज शंकु हर जगह हल के ग्राफ के लिए स्पर्शरेखा होना चाहिए। दूसरे क्रम के आंशिक अवकलन समीकरण को चरपिट विधि से हल किया जाता है।
उदाहरण
एक उदाहरण के रूप में, अभिवहन समीकरण पर विचार करें (यह उदाहरण पीडीई संकेतन और बुनियादी ओडीई के हल के साथ परिचित कराता है)।
जहाँ स्थिरांक है और और का एक फलन है हम इस प्रथम कोटि रैखिक अवकलन पी.डी.ई को उपयुक्त वक्र के साथ ओ.डी.ई में बदलना चाहते हैं; जो निम्न प्रकार है
जहाँ अभिलक्षण रेखा है। सबसे पहले, हमें श्रृंखला नियम द्वारा ज्ञात होता है
अब, अगर हम मान रखते हैं और हम पाते हैं
जो पीडीई के बायीं ओर है जिससे हमने शुरुआत की थी। वह इस प्रकार हैं
तो, अभिलक्षण रेखा के साथ , मूल पी.डी.ई ओ.डी.ई बन जाता है . कहने का तात्पर्य यह है कि गुणधर्मों के साथ-साथ हल भी स्थिर होता है। इस प्रकार, जहाँ और एक ही अभिलक्षण रेखा पर स्थित होता है। इसलिए, सामान्य हल निर्धारित करने के लिए, ओ.डी.ई की अभिलक्षण प्रणाली को हल करके अभिलक्षण की जानकारी रखने के लिए पर्याप्त है:
, दे रहा है हम जानते हैं ,
, दे रहा है हम जानते हैं ,
, दे रहा है हम जानते हैं .
इस मामले में, अभिलक्षण रेखा ढलान वाली सीधी रेखाएँ हैं, और u का मान किसी भी अभिलाक्षणिक रेखा के साथ स्थिर रहता है।
जिसमें α बहु-सूचकांक को दर्शाता है। P के अवकल संकारक का मुख्य प्रतीक, σP द्वारा निरूपित होता है, स्पर्शरेखा बंडल T∗X का फलन है जिसे इन स्थानीय निर्देशांक द्वारा परिभाषित किया गया है
जहां ξi समन्वय अंतर dxi द्वारा प्रेरित कोटेंगेंट बंडल पर फाइबर निर्देशांक हैं यद्यपि यह एक विशेष समन्वय प्रणाली का उपयोग करके परिभाषित किया गया है, ξi और xi से संबंधित परिवर्तन कानून यह सुनिश्चित करता है कि σP कॉटैंजेंट बंडल पर एक अच्छी तरह से परिभाषित फलन है।
फलन σP ξ चर में डिग्री k का सजातीय फलन है। σP के शून्य, T∗X के शून्य खंड से दूर, P के अभिलक्षण हैं। समीकरण F(x) = c द्वारा परिभाषित X की एक हाइपरसफ़ेस को x पर एक अभिलक्षण हाइपरसफ़ेस कहा जाता है यदि
अनिवार्य रूप से, एक अभिलक्षण हाइपरसफेस एक हाइपरसफेस है जिसका सामान्य बंडल P के अभिलाक्षणिक समुच्चय में है।
अभिलाक्षण का गुणात्मक विश्लेषण
पीडीई में गुणात्मक अंतर्दृष्टि प्राप्त करने के लिए अभिलाक्षण भी एक शक्तिशाली उपकरण हैं।
एक संपीड़ित तरल पदार्थ में संभावित प्रवाह के लिए तरंगों को खोजने के लिए अभिलक्षण क्रॉसिंग का उपयोग कर सकते हैं। सहज रूप से, हम प्रत्येक अभिलक्षण रेखा के बारे में सोच सकते हैं जिसका हल है। इस प्रकार, जब दो अभिलक्षण पार हो जाती हैं, तो फलन के बहुत से मान हो सकते है जिसके परिणामस्वरूप एक गैर-भौतिक हल होता है। शारीरिक रूप से, इस विरोधाभास को शॉक वेव, एक स्पर्शरेखा असततता या एक कमजोर असंबद्धता असंतुलन से हटा दिया जाता है और प्रारंभिक धारणाओं का उल्लंघन करते हुए गैर-संभावित प्रवाह का परिणाम हो सकता है।[5]
अभिलाक्षण पीडीई के डोमेन के हिस्से को कवर करने में विफल हो सकते हैं। इसे रेयरफैक्शन कहा जाता है, और इंगित करता है कि हल सामान्यतः केवल एक कमजोर, यानी अभिन्न समीकरण, अर्थ में मौजूद होता है।
अभिलाक्षणिक रेखाओं की दिशा हल के माध्यम से मूल्यों के प्रवाह को इंगित करती है, जैसा कि ऊपर दिए गए उदाहरण में दर्शाया गया है पीडीई को संख्यात्मक रूप से हल करते समय इस प्रकार का ज्ञान उपयोगी होता है क्योंकि यह इंगित कर सकता है कि समस्या के लिए कौन सी परिमित अंतर योजना सर्वोत्तम है।
↑Zachmanoglou, E. C.; Thoe, Dale W. (1976), "Linear Partial Differential Equations : Characteristics, Classification, and Canonical Forms", Introduction to Partial Differential Equations with Applications, Baltimore: Williams & Wilkins, pp. 112–152, ISBN0-486-65251-3
Polyanin, A. D.; Zaitsev, V. F.; Moussiaux, A. (2002), Handbook of First Order Partial Differential Equations, London: Taylor & Francis, ISBN0-415-27267-X
Polyanin, A. D. (2002), Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton: Chapman & Hall/CRC Press, ISBN1-58488-299-9