गोल्डश्मिट वर्गीकरण
विक्टर गोल्डस्मिड्ट (1888-1947) द्वारा विकसित गोल्डश्मिड्ट वर्गीकरण एक भू-रासायनिक वर्गीकरण है जो पृथ्वी के भीतर रासायनिक तत्वों को उनके पसंदीदा मेजबान चरणों के अनुसार लिथोफाइल ( रॉक -लविंग), साइडरोफाइल ( लौह -प्रेमी) में समूहित करता है। लविंग या चाकोजेन-लविंग) और एटमोफाइल (गैस-लविंग) या वाष्पशील (तत्व या एक यौगिक जिसमें यह होता है परिवेश की सतह की स्थितियों में तरल या गैसीय होता है)।
कुछ तत्वों की एक से अधिक चरणों से समानता होती है। मुख्य समानता नीचे दी गई तालिका में दी गई है और प्रत्येक समूह की चर्चा उस तालिका के अनुसार होती है।
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group → | |||||||||||||||||||
↓ Period | |||||||||||||||||||
1 | 1 H |
2 He | |||||||||||||||||
2 | 3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | |||||||||||
3 | 11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | |||||||||||
4 | 19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr | |
5 | 37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe | |
6 | 55 Cs |
56 Ba |
71 Lu |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn | |
7 | 87 Fr |
88 Ra |
103 Lr |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og | |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb | ||||||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
Goldschmidt classification: Lithophile Siderophile Chalcophile Atmophile Trace/Synthetic
लिथोफाइल तत्व
लिथोफाइल वे तत्व हैं जो सतह पर या उसके पास रहते हैं क्योंकि वे ऑक्सीजन के साथ आसानी से जुड़ जाते हैं और ऐसे यौगिक बनाते हैं जो पृथ्वी की संरचना में नहीं डूबते हैं और लिथोफाइल तत्वों में जेसे : अल्युमीनियम, बोरान, बेरियम, फीरोज़ा, ब्रोमिन, कैल्शियम, क्लोरीन, क्रोमियम, सीज़ियम, एक अधातु तत्त्व, आयोडीन, हेफ़नियम, पोटैशियम, लिथियम, मैगनीशियम, सोडियम, नाइओबियम, ऑक्सीजन, फास्फोरस, रूबिडियम, स्कैंडियम, सिलिकॉन, स्ट्रोंटियम , टैंटलम, थोरियम, टाइटेनियम, यूरेनियम, वैनेडियम, अट्रियम, ज़र्कोनियम, टंगस्टन और लैंथेनाइड या दुर्लभ पृथ्वी तत्व (आरईई) सम्मिलित होते हैं।
लिथोफाइल तत्वों में मुख्य रूप से एस ब्लॉक और एफ ब्लॉक की अत्यधिक प्रतिक्रियाशील धातुएं होती हैं। उनमें कम संख्या में प्रतिक्रियाशील अधातुएं भी सम्मिलित हैं और डी-ब्लॉक की अधिक प्रतिक्रियाशील धातुएं जैसे टाइटेनियम, जिरकोनियम और वैनेडियम आदि। लिथोफाइल लिथोस से निकला है जिसका अर्थ है चट्टान और फीलियो जिसका अर्थ है प्रेम।
अधिकांश लिथोफाइल तत्व एक महान गैस (कभी-कभी अतिरिक्त एफ-इलेक्ट्रॉनों के साथ) के इलेक्ट्रॉन विन्यास के साथ बहुत स्थिर आयन बनाते हैं। कुछ जो नहीं करते हैं जैसे कि सिलिकॉन, फास्फोरस और बोरॉन ऑक्सीजन के साथ बहुत मजबूत सहसंयोजक बंधन बनाते हैं - प्राय: पाई बंधन सम्मिलित होते हैं। ऑक्सीजन के लिए उनकी मजबूत आत्मीयता लिथोफाइल तत्वों को सिलिका के साथ बहुत मजबूती से जोड़ती है जिससे अपेक्षाकृत कम घनत्व वाले खनिज बनते हैं जो पृथ्वी की पपड़ी में तैरते हैं। क्षार धातुओं द्वारा निर्मित अधिक घुलनशील खनिज समुद्री जल या अत्यंत रेगिस्तान में केंद्रित होते हैं जहाँ वे क्रिस्टलीकृत हो सकते हैं। कम घुलनशील लिथोफाइल तत्व प्राचीन शील्ड (भूविज्ञान) पर केंद्रित हैं जहां सभी घुलनशील खनिजों का अपक्षय किया जाता है।
ऑक्सीजन के लिए उनकी मजबूत आत्मीयता के कारण अधिकांश लिथोफाइल तत्व सौर मंडल में उनकी प्रचुरता के सापेक्ष पृथ्वी की पपड़ी में समृद्ध होते हैं। सबसे अधिक प्रतिक्रियाशील एस और एफ-ब्लॉक धातुएं जो या तो लवणीय या धातु हाइड्राइड बनाती हैं और पृथ्वी पर उनके सौर बहुतायत के सापेक्ष असाधारण रूप से समृद्ध होने के लिए जाने जाते हैं। ऐसा इसलिए है क्योंकि पृथ्वी के निर्माण के प्रारम्भिक चरणों के दौरान प्रत्येक रासायनिक तत्व के स्थिर रूप को नियंत्रित करने वाली प्रतिक्रिया हाइड्रोजन के साथ यौगिक बनाने मे इसकी क्षमता थी। इन परिस्थितियों में पृथ्वी के निर्माण के दौरान एस और एफ-ब्लॉक धातुएं अत्यधिक समृद्ध थीं। सबसे समृद्ध तत्व रूबिडीयाम, स्ट्रोंटियम और बेरियम हैं जो पृथ्वी की पपड़ी में लोहे की तुलना में भारी सभी तत्वों के द्रव्यमान का 50 प्रतिशत से अधिक हिस्सा होता हैं।
अधात्विक लिथोफिल्स - फॉस्फोरस और हलोजन - पेगमाटाइट और समुद्री जल में एस-ब्लॉक धातुओं के साथ आयनिक लवण के रूप में पृथ्वी पर स्थित हैं। फ्लोरीन के अपवाद के साथ जिसका हाइड्राइड हाइड्रोजन बंध बनाता है और इसलिए अपेक्षाकृत कम अस्थिरता का होता है इन तत्वों की पृथ्वी पर सांद्रता पृथ्वी के निर्माण के दौरान वाष्पशील हाइड्राइड से बचने के माध्यम से काफी कम हो गई है। यद्यपि वे पृथ्वी की पपड़ी में अपने सौर प्रचुरता के काफी पास सांद्रता में स्थित हैं फॉस्फोरस और भारी हैलोजन संभवतः पृथ्वी पर उनके सौर बहुतायत के सापेक्ष काफी कम हो गए हैं।
क्रोमियम, मोलिब्डेनम, लोहा और मैंगनीज सहित कई संक्रमण धातुएं लिथोफाइल और साइडरोफाइल दोनों विशेषताओं को दर्शाती हैं और इन दोनों परतों में पाई जा सकती हैं। हालांकि ये धातुएं ऑक्सीजन के साथ मजबूत बंधन बनाती हैं और कभी भी मुक्त अवस्था में पृथ्वी की पपड़ी में नहीं पाई जाती हैं। इन तत्वों के धात्विक रूपों को पृथ्वी के मूल में अवशेषों के रूप में स्थित होने की बहुत संभावना है जब वातावरण में ऑक्सीजन नहीं था। शुद्ध सिडरोफिल्स की तरह ये तत्व (लौह को छोड़कर) अपने सौर प्रचुरता के सापेक्ष क्रस्ट में काफी कम हो गए हैं।
ऑक्सीजन, लिथोफाइल धातुओं के लिए उनकी मजबूत आत्मीयता के कारण हालांकि वे पृथ्वी की पपड़ी में धातु तत्वों का बड़ा हिस्सा बनाते हैं और इलेक्ट्रोलीज़ के विकास से पहले कभी भी मुक्त धातुओं के रूप में उपलब्ध नहीं थे। इस विकास के साथ कई लिथोफाइल धातुएं संरचनात्मक धातुओं (मैग्नीशियम, एल्यूमीनियम, टाइटेनियम, वैनेडियम) या कम करने वाले एजेंट (सोडियम, मैग्नीशियम, कैल्शियम) के रूप में काफी मूल्य हैं।
गैर-धातु फॉस्फोरस और हैलोजन भी प्रारम्भिक रसायनज्ञों के लिए ज्ञात नहीं थे हालांकि इन तत्वों का उत्पादन धातु लिथोफिल्स की तुलना में कम कठिन है क्योंकि इलेक्ट्रोलिसिस केवल फ्लोरीन के साथ आवश्यक है। मौलिक क्लोरीन एक ऑक्सीकरण प्रतिनिधि के रूप में विशेष रूप से महत्वपूर्ण है - प्राय: सोडियम क्लोराइड के इलेक्ट्रोलिसिस द्वारा बनाया जाता है।
साइडरोफाइल तत्व
साइडरोफाइल (साइडरॉन, आयरन और फिलियो) तत्व संक्रमण तत्व हैं जो कोर में डूब जाते हैं क्योंकि वे लोहे में या तो ठोस समाधान के रूप में या पिघली हुई अवस्था में आसानी से घुल जाते हैं हालांकि कुछ स्रोत[1] साइडरोफिल्स की सूची में ऐसे तत्व सम्मिलित हैं जो संक्रमण धातु नहीं हैं जैसे जर्मेनियम। चर्चा की जा रही है कि तापमान के आधार पर अन्य स्रोत भी अपनी सूची में भिन्न हो सकते हैं - ग्रहण किए गए तापमान और दबाव के आधार पर नाइओबियम, वैनेडियम, क्रोमियम और मैंगनीज को साइडरोफिल्स माना जा सकता है या नहीं।[2] इस विषय को भी भ्रमित करना है कि कुछ तत्व जैसे कि उपरोक्त मैंगनीज साथ ही मोलिब्डेनम, ऑक्सीजन के साथ मजबूत बंधन बनाते हैं लेकिन मुक्त अवस्था में (जैसा कि वे आदिम पृथ्वी पर स्थित थे जब मुक्त ऑक्सीजन स्थित नहीं था) इतनी आसानी से मिश्रण कर सकते हैं कि लोहे के साथ वे रेशमी पपड़ी में ध्यान केंद्रित नहीं करते हैं जैसा कि वास्तविक लिथोफाइल तत्व करते हैं। लोहा इस बीच हर जगह है।
साइडरोफाइल तत्वों में अत्यधिक साइडरोफिलिक दयाता, रोडियाम, दुर्ग, रेनीयाम, आज़मियम, इरिडियम, प्लैटिनम और सोना, कुछ साइडरोफिलिक कोबाल्ट और निकल सम्मिलित होते हैं जो पहले उल्लिखित विवादित तत्वों के अतिरिक्त हैं - कुछ स्रोत[1]यहां तक कि टंगस्टन और चांदी भी सम्मिलित होते हैं।[3]
अधिकांश सिडरोफाइल तत्वों का ऑक्सीजन के लिए व्यावहारिक रूप से कोई संबंध नहीं है वास्तव में सोने के आक्साइड तत्वों के संबंध में रासायनिक स्थिरता अस्थिर हैं। वे कार्बन या गंधक के साथ मजबूत बंधन बनाते हैं लेकिन ये भी इतने मजबूत नहीं होते हैं कि वे चॉकोफाइल तत्वों से अलग हो सकें। इस प्रकार साइडरोफाइल तत्व पृथ्वी के कोर की घनी परत में लोहे के साथ धातु के बंधन से बंधे होते हैं जहां लोहे को ठोस रखने के लिए दबाव काफी अधिक हो सकता है। मैंगनीज, लोहा और मोलिब्डेनम ऑक्सीजन के साथ मजबूत बंधन बनाते हैं लेकिन मुक्त अवस्था में (जैसा कि वे आदिम पृथ्वी पर स्थित थे जब मुक्त ऑक्सीजन स्थित नहीं था) लोहे के साथ इतनी आसानी से मिल सकते हैं कि वे सिलिका की पपड़ी में केंद्रित नहीं होते हैं जैसा कि सच्चे लिथोफाइल तत्व। हालांकि ऑक्सीजन के प्रति मैंगनीज की महान प्रतिक्रियाशीलता के कारण मैंगनीज के अयस्क एल्यूमीनियम और टाइटेनियम के समान साइटों में पाए जाते हैं।
क्योंकि वे सघन कोर में इतने केंद्रित हैं और साइडरोफाइल तत्व पृथ्वी की पपड़ी में उनकी दुर्लभता के लिए जाने जाते हैं। उनमें से अधिकतर इसी वजह से हमेशा कीमती धातुओं के रूप में जाने जाते रहे हैं। इरिडियम पृथ्वी की पपड़ी के भीतर होने वाली सबसे दुर्लभ संक्रमण धातु है जिसमें प्रति अरब एक भाग से भी कम द्रव्यमान की बहुतायत है। कीमती धातु का खनन जमाव (भूविज्ञान) प्राय: अल्ट्रामैफिक चट्टानों के क्षरण के परिणामस्वरूप बनता है लेकिन पृथ्वी की पपड़ी में तत्वों की प्रचुरता की तुलना में भी अत्यधिक केंद्रित नहीं होते हैं जो प्राय: उनके सौर बहुतायत के नीचे परिमाण के कई क्रम होते हैं। हालाँकि वे पृथ्वी के मेंटल और पृथ्वी की संरचना में केंद्रित होते हैं। माना जाता है कि साइडरोफाइल तत्व पृथ्वी में एक पूरे (कोर सहित) रूप में स्थित हैं जो उनके सौर बहुतायत के पास पहुंच रहे हैं।
चॉकोफाइल तत्व
चॉकोफाइल तत्वों में : सिल्वर, हरताल, विस्मुट, कैडमियम, ताँबा, गैलियम, जर्मेनियम, मर्करी (तत्व), ईण्डीयुम, लेड, सल्फर, सुरमा, सेलेनियम, विश्वास करना, टेल्यूरियम, थालियम और जस्ता सम्मिलित हैं।[4]
चॉकोफाइल तत्व वे होते हैं जो सतह पर या उसके पास रहते हैं क्योंकि वे ऑक्सीजन के अतिरिक्त सल्फर और कुछ अन्य चाकोजेन के साथ आसानी से जुड़ जाते हैं और ऐसे यौगिक बनाते हैं जो पृथ्वी के कोर में नहीं डूबते हैं।
चॉकोफाइल तत्व वे धातुएँ और भारी अधातुएँ हैं जिनमें ऑक्सीजन के लिए कम आत्मीयता होती है और सल्फर के साथ अत्यधिक अघुलनशील सल्फाइड के रूप में बंधना पसंद करते हैं। चाल्कोफाइल ग्रीक खल्कोस (χαλκός) से निकला है जिसका अर्थ है अयस्क (इसका मतलब कांस्य या तांबा भी होता है लेकिन इस स्थिति में अयस्क प्रासंगिक अर्थ है) और विभिन्न स्रोतों से और इसका अर्थ "चॉकोजेन-लविंग" से लिया जाता है।
क्योंकि ये सल्फाइड लिथोफाइल तत्वों द्वारा निर्मित सिलिकेट खनिजों की तुलना में बहुत अधिक सघन होते हैं और पृथ्वी की पपड़ी के पहले क्रिस्टलीकरण के समय लिथोफाइल के नीचे चॉकोफाइल तत्व अलग हो जाते हैं। इसने पृथ्वी की पपड़ी में उनके सौर प्रचुरता के सापेक्ष उनकी कमी को जन्म दिया है हालांकि वे जो खनिज बनाते हैं वे गैर-धातु हैं और यह कमी साइडरोफाइल तत्वों के स्तर तक नहीं पहुंचती है।
हालाँकि उन्होंने आदिम पृथ्वी पर वाष्पशील हाइड्राइड्स का निर्माण किया था जब नियंत्रित रेडॉक्स प्रतिक्रिया हाइड्रोजन का ऑक्सीकरण या कमी थी कम धात्विक चॉकोफाइल तत्व पृथ्वी पर ब्रह्मांडीय प्रचुरता के सापेक्ष दृढ़ता से कम हो गए हैं। यह चाकोजेन्स सेलेनियम और टेल्यूरियम (जो क्रमशः वाष्पशील हाइड्रोजन सेलेनाइड और हाइड्रोजन टेल्यूराइड का गठन करता है) के लिए विशेष रूप से सच है जो इस कारण से पृथ्वी की पपड़ी में पाए जाने वाले दुर्लभ तत्वों में से हैं (चित्रण के लिए टेल्यूरियम केवल प्लैटिनम जितना ही प्रचुर मात्रा में है)।
सबसे अधिक धात्विक चॉकोफाइल तत्व (तांबा, जस्ता और बोरॉन समूहों के) पृथ्वी के कोर में लोहे के साथ कुछ हद तक मिश्रित हो सकते हैं। उनके सौर प्रचुरता के सापेक्ष पृथ्वी पर उनके समाप्त होने की संभावना नहीं है क्योंकि वे वाष्पशील हाइड्राइड नहीं बनाते हैं। जस्ता और गैलियम प्रकृति में कुछ हद तक लिथोफिल हैं क्योंकि वे प्राय: सिलिकेट या संबंधित खनिजों में होते हैं और ऑक्सीजन के साथ काफी मजबूत बंधन बनाते हैं। गैलियम मुख्य रूप से बाक्साइट से प्राप्त होता है और एक एल्यूमीनियम हाइड्रोक्साइड अयस्क जिसमें रासायनिक रूप से समान एल्यूमीनियम के लिए गैलियम आयन का विकल्प होता है।
यद्यपि पृथ्वी की पपड़ी में कोई भी चॉकोफाइल तत्व उच्च बहुतायत का नहीं है तो चॉकोफाइल तत्व व्यावसायिक रूप से महत्वपूर्ण धातुओं के थोक का निर्माण करते हैं। ऐसा इसलिए है क्योंकि लिथोफिल तत्वों को निष्कर्षण के लिए ऊर्जा-गहन इलेक्ट्रोलिसिस की आवश्यकता होती है और कोक (ईंधन) और चॉकोफिल्स की भू-रासायनिक सांद्रता के साथ कमी करके चॉकोफिल्स को आसानी से निकाला जा सकता है - जो चरम स्थितियों में औसत क्रस्टल बहुतायत से 100,000 गुना अधिक हो सकता है। तिब्बती पठार और बोलीविया अल्टीप्लानोजैसे उच्च पठारों में ये सबसे बड़ी समृद्धि होती है जहां प्लेट टकरावों के माध्यम से बड़ी मात्रा में चॉकोफाइल तत्वों को ऊपर उठाया जाता है। आधुनिक समय में इसका एक दुष्परिणाम यह है कि दुर्लभतम चॉकोफाइल्स (जैसेमरकरी) का इतना अधिक दोहन किया जाता है कि खनिजों के रूप में उनका मूल्य लगभग पूरी तरह से लुप्त हो जाता है।
वायुमंडलीय तत्व
वायुमंडलीय तत्व हैं: हाइड्रोजन, कार्बन, नाइट्रोजन और उत्कृष्ट गैसें[5]
एटमोफाइल तत्वों (जिन्हें वाष्पशील तत्व भी कहा जाता है) को ऐसे तत्वों के रूप में परिभाषित किया जाता है जो अधिकतर सतह पर या ऊपर रहते हैं क्योंकि वे सतह पर पाए जाने वाले तापमान और दबाव पर तरल पदार्थ और गैसों में होते हैं। महान गैसें स्थिर यौगिक नहीं बनाती हैं और मोनोएटोमिक गैस के रूप में होती हैं जबकि नाइट्रोजन इसके अलग-अलग परमाणुओं के लिए एक स्थिर विन्यास नहीं है और एक डायटोमिक अणु बनाता है जो इतना मजबूत होता है कि नाइट्रोजन के सभी ऑक्साइड नाइट्रोजन और ऑक्सीजन के संबंध में थर्मोडायनामिक रूप से अस्थिर होते हैं। नतीजतन प्रकाश संश्लेषण के माध्यम से मुक्त ऑक्सीजन के विकास के साथ अमोनिया आणविक नाइट्रोजन के लिए ऑक्सीकृत हो गया था जो पृथ्वी के वायुमंडल के चार-पांचवें हिस्से में आ गया है। कार्बन को एटमोफाइल के रूप में भी वर्गीकृत किया जाता है क्योंकि यह कार्बन मोनोआक्साइड (वातावरण में धीरे-धीरे ऑक्सीकृत) और कार्बन डाईऑक्साइड में ऑक्सीजन के साथ बहुत मजबूत एकाधिक बंधन बनाता है। उत्तरार्द्ध पृथ्वी के वायुमंडल का चौथा सबसे बड़ा घटक है जबकि कार्बन मोनोऑक्साइड स्वाभाविक रूप से ज्वालामुखियों में होता है और कुछ महीनों के वातावरण में रहने का समय होता है।
हाइड्रोजन जो मिश्रित पानी में होता है उसे एटमोफाइल के रूप में वर्गीकृत किया जाता है। पानी को वाष्पशील के रूप में वर्गीकृत किया गया है क्योंकि यह अधिकांश तरल या गैस है भले ही यह सतह पर एक ठोस यौगिक के रूप में स्थित हो। पानी को अन्य खनिजों में क्रिस्टलीकरण के पानी (जैसे जिप्सम) या हाइड्रॉक्सिल समूहों (जैसे तालक) के रूप में भी सम्मिलित किया जा सकता है जिससे हाइड्रोजन को कुछ लिथोफाइल चरित्र मिलता है।
चूँकि सभी एटमोफाइल तत्व या तो गैस होते हैं या वाष्पशील हाइड्राइड बनाते हैं पृथ्वी के निर्माण के दौरान वातावरण से होने वाले नुकसान के कारण एटमोफाइल तत्व पृथ्वी पर अपने सौर प्रचुरता के सापेक्ष पूरी तरह से समाप्त हो जाते हैं। भारी महान गैसें (क्रीप्टोण, क्सीनन) पृथ्वी पर सबसे दुर्लभ स्थिर तत्व हैं।
ट्रेस और सिंथेटिक तत्व
सिंथेटिक तत्वों को वर्गीकरण से बाहर रखा गया है क्योंकि वे स्वाभाविक रूप से नहीं होते हैं।
ट्रेस रेडियोधर्मी तत्वों (जैसे Tc, Pm, Po, At, Rn, Fr, Ra, Ac, Pa, Np, Pu) को भी सिंथेटिक के रूप में माना जाता है। हालांकि ये प्रकृति में होते हैं और[6][7][8] उनकी घटना पूरी तरह से उनके लंबे समय तक रहने वाले माता-पिता Th और U पर निर्भर है और वे बहुत मोबाइल नहीं हैं। उदाहरण के लिए एक विशेष तत्त्व जिस का प्रभाव रेडियो पर पड़ता है और रसायन शास्त्र इसे एक चॉकोफाइल होने की भविष्यवाणी करता है लेकिन इसके अतिरिक्त इसके माता-पिता यूरेनियम के साथ लिथोफाइल के रूप में होता है। यहां तक कि रेडॉन जो कि एक गैस है उसके पास प्राय: क्षय होने से पहले मूल यूरेनियम स्रोत से बहुत दूर यात्रा करने का समय नहीं होता है। जरूरत पड़ने पर इन तत्वों को प्राय: यूरेनियम अयस्क से निष्कर्षण की थकाऊ और श्रमसाध्य प्रक्रिया का उपयोग करने के अतिरिक्त परमाणु रिएक्टर में कृत्रिम रूप से उत्पादित किया जाता है।
यह भी देखें
- रासायनिक तत्वों की प्रचुरता
- विक्टर गोल्डश्मिड्ट
- गोल्डश्मिड्ट सहिष्णुता कारक
संदर्भ
- ↑ 1.0 1.1 Richard J. Walker (2014), "Siderophile element constraints on the origin of the Moon", Philosophical Transactions of the Royal Society A, accessed 1 December 2015.
- ↑ Ball, Philip (2001). "पृथ्वी वैज्ञानिक अपने मतभेदों को दूर करते हैं". Nature. Macmillan Publishers Limited. doi:10.1038/news010104-6. Retrieved 5 June 2017.
- ↑ Ramanathan, A. L.; Bhattacharya, Prosun; Dittmar, Thorsten; Prasad, B.; Neupane, B. (2010). तटीय क्षेत्र के वातावरण का प्रबंधन और सतत विकास. Springer Science & Business Media. p. 166. ISBN 9789048130689. Retrieved 5 June 2017.
- ↑ Allaby, M. (2013). A dictionary of geology and earth sciences. Oxford University Press.
- ↑ Pinti D.L. (2018) Atmophile Elements. In: White W.M. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. doi:10.1007/978-3-319-39312-4_209
- ↑ Yoshida, Zenko; Johnson, Stephen G.; Kimura, Takaumi; Krsul, John R. (2006). "Neptunium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). एक्टिनाइड और ट्रांसएक्टिनाइड तत्वों की रसायन (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 699–812. doi:10.1007/1-4020-3598-5_6. ISBN 978-1-4020-3555-5. Archived from the original (PDF) on January 17, 2018.
- ↑ Curtis, David; Fabryka-Martin, June; Paul, Dixon; Cramer, Jan (1999). "Nature's uncommon elements: plutonium and technetium". Geochimica et Cosmochimica Acta. 63 (2): 275–285. Bibcode:1999GeCoA..63..275C. doi:10.1016/S0016-7037(98)00282-8.
- ↑ McGill, Ian. "Rare Earth Elements". Ullmann's Encyclopedia of Industrial Chemistry. Vol. 31. Weinheim: Wiley-VCH. p. 188. doi:10.1002/14356007.a22_607.
बाहरी संबंध
- Mineralogy notes 3
- W. M. White. Geochemistry. ISBN 978-0470656686; Chapter 7.2