मॉसफेट: Difference between revisions
No edit summary |
No edit summary |
||
Line 326: | Line 326: | ||
यह एनालॉग स्विच P या N प्रकार के चार-टर्मिनल सरल MOSFET का उपयोग करता है। | यह एनालॉग स्विच P या N प्रकार के चार-टर्मिनल सरल MOSFET का उपयोग करता है। | ||
N-टाइप स्विच के मामले में, शरीर सबसे नकारात्मक आपूर्ति (आमतौर पर जीएनडी) से जुड़ा होता है और गेट का उपयोग स्विच नियंत्रण के रूप में किया जाता है।जब भी गेट वोल्टेज स्रोत वोल्टेज से कम से कम एक | N-टाइप स्विच के मामले में, शरीर सबसे नकारात्मक आपूर्ति (आमतौर पर जीएनडी) से जुड़ा होता है और गेट का उपयोग स्विच नियंत्रण के रूप में किया जाता है।जब भी गेट वोल्टेज स्रोत वोल्टेज से कम से कम एक थ्रेशोल्ड वोल्टेज से अधिक हो जाता है, तो MOSFET का संचालन होता है। वोल्टेज जितना अधिक होगा, उतना ही MOSFET आचरण कर सकता है।एक N-MOS स्विच v से कम सभी वोल्टेज पास करता है ''V''<sub>gate</sub> − ''V''<sub>tn</sub>. जब स्विच का संचालन हो रहा है, तो यह आम तौर पर ऑपरेशन के रैखिक (या ओमिक) मोड में संचालित होता है, क्योंकि स्रोत और नाली वोल्टेज आमतौर पर लगभग बराबर होंगे। | ||
P-MOS, के मामले में, शरीर सबसे सकारात्मक वोल्टेज से जुड़ा होता है, और गेट को स्विच को चालू करने के लिए कम क्षमता पर लाया जाता है। P-MOS स्विच V से अधिक सभी वोल्टेज पास करता है ''V''<sub>gate</sub> − ''V''<sub>tp</sub> (थ्रेशोल्ड वोल्टेज ''V''<sub>tp</sub> एन्हांसमेंट-मोड P-MOS के मामले में नकारात्मक है)। | P-MOS, के मामले में, शरीर सबसे सकारात्मक वोल्टेज से जुड़ा होता है, और गेट को स्विच को चालू करने के लिए कम क्षमता पर लाया जाता है। P-MOS स्विच V से अधिक सभी वोल्टेज पास करता है ''V''<sub>gate</sub> − ''V''<sub>tp</sub> (थ्रेशोल्ड वोल्टेज ''V''<sub>tp</sub> एन्हांसमेंट-मोड P-MOS के मामले में नकारात्मक है)। | ||
==== डुअल-टाइप(CMOS) ==== | ==== डुअल-टाइप(CMOS) ==== | ||
यह पूरक या CMOS प्रकार का स्विच एकल-प्रकार के स्विच की सीमाओं का मुकाबला करने के लिए एक P-MOS और एक N-MOS FET का उपयोग करता है। FETs में उनके नालियां और स्रोत समानांतर में जुड़े होते हैं, P-MOS, का शरीर उच्च क्षमता से जुड़ा होता है (v)<sub>DD</sub> और N-MOS का शरीर कम क्षमता (gnd) से जुड़ा हुआ है।स्विच को चालू करने के लिए, P-MOS का गेट कम क्षमता के लिए संचालित होता है और N-MOS का गेट उच्च क्षमता के लिए संचालित होता है। वोल्टेज के लिए ''V''<sub>DD</sub> − ''V''<sub> | यह पूरक या CMOS प्रकार का स्विच एकल-प्रकार के स्विच की सीमाओं का मुकाबला करने के लिए एक P-MOS और एक N-MOS FET का उपयोग करता है। FETs में उनके नालियां और स्रोत समानांतर में जुड़े होते हैं, P-MOS, का शरीर उच्च क्षमता से जुड़ा होता है (v)<sub>DD</sub> और N-MOS का शरीर कम क्षमता (gnd) से जुड़ा हुआ है।स्विच को चालू करने के लिए, P-MOS का गेट कम क्षमता के लिए संचालित होता है और N-MOS का गेट उच्च क्षमता के लिए संचालित होता है। वोल्टेज के लिए ''V''<sub>DD</sub> − ''V''<sub>tp</sub> and ''gnd'' − ''V''<sub>tp</sub>, दोनों FETs सिग्नल का संचालन करते हैं; से कम वोल्टेज के लिए ''gnd'' − ''V''<sub>tp</sub>, N-MOS अकेले संचालन करता है;और V से अधिक वोल्टेज के लिए ''V''<sub>DD</sub> − ''V''<sub>tn</sub> , P-MOS अकेले संचालित करता है। | ||
इस स्विच के लिए वोल्टेज सीमाएं दोनों FET के लिए गेट-स्रोत, गेट-ड्रेन और स्रोत-सूत्र वोल्टेज सीमाएं हैं।इसके अलावा, P-MOS आमतौर पर N-MOS की तुलना में दो से तीन गुना चौड़ा होता है, इसलिए स्विच को दो दिशाओं में गति के लिए संतुलित किया जाएगा। | इस स्विच के लिए वोल्टेज सीमाएं दोनों FET के लिए गेट-स्रोत, गेट-ड्रेन और स्रोत-सूत्र वोल्टेज सीमाएं हैं।इसके अलावा, P-MOS आमतौर पर N-MOS की तुलना में दो से तीन गुना चौड़ा होता है, इसलिए स्विच को दो दिशाओं में गति के लिए संतुलित किया जाएगा। | ||
Line 342: | Line 342: | ||
गेट सामग्री के लिए प्राथमिक मानदंड यह है कि यह एक अच्छा [[ कंडक्टर (सामग्री) ]] है। अत्यधिक डोपेड [[ पॉलीक्रिस्टलाइन सिलिकॉन ]] एक स्वीकार्य है, लेकिन निश्चित रूप से आदर्श कंडक्टर नहीं है, और मानक गेट सामग्री के रूप में इसकी भूमिका में कुछ और तकनीकी कमियों से भी ग्रस्त है। फिर भी, पॉलीसिलिकॉन के उपयोग के पक्ष में कई कारण हैं: | गेट सामग्री के लिए प्राथमिक मानदंड यह है कि यह एक अच्छा [[ कंडक्टर (सामग्री) ]] है। अत्यधिक डोपेड [[ पॉलीक्रिस्टलाइन सिलिकॉन ]] एक स्वीकार्य है, लेकिन निश्चित रूप से आदर्श कंडक्टर नहीं है, और मानक गेट सामग्री के रूप में इसकी भूमिका में कुछ और तकनीकी कमियों से भी ग्रस्त है। फिर भी, पॉलीसिलिकॉन के उपयोग के पक्ष में कई कारण हैं: | ||
# [[ थ्रेसहोल्ड वोल्टेज ]] (और परिणामस्वरूप स्रोत पर स्रोत पर नाली) को गेट सामग्री और चैनल सामग्री के बीच कार्य समारोह अंतर द्वारा संशोधित किया जाता है। क्योंकि पॉलीसिलिकॉन एक अर्धचालक है, इसके कार्य समारोह को डोपिंग के प्रकार और स्तर को समायोजित करके संशोधित किया जा सकता है। इसके अलावा, क्योंकि पॉलीसिलिकॉन में अंतर्निहित सिलिकॉन चैनल के रूप में एक ही [[ बैंडगैप ]] होता है, यह NMOS और PMOS दोनों उपकरणों के लिए कम | # [[ थ्रेसहोल्ड वोल्टेज ]] (और परिणामस्वरूप स्रोत पर स्रोत पर नाली) को गेट सामग्री और चैनल सामग्री के बीच कार्य समारोह अंतर द्वारा संशोधित किया जाता है। क्योंकि पॉलीसिलिकॉन एक अर्धचालक है, इसके कार्य समारोह को डोपिंग के प्रकार और स्तर को समायोजित करके संशोधित किया जा सकता है। इसके अलावा, क्योंकि पॉलीसिलिकॉन में अंतर्निहित सिलिकॉन चैनल के रूप में एक ही [[ बैंडगैप ]] होता है, यह NMOS और PMOS दोनों उपकरणों के लिए कम थ्रेशोल्ड वोल्टेज प्राप्त करने के लिए कार्य समारोह को ट्यून करने के लिए काफी सीधा है। इसके विपरीत, धातुओं के कार्य कार्यों को आसानी से संशोधित नहीं किया जाता है, इसलिए कम थ्रेशोल्ड वोल्टेज (LVT) प्राप्त करने के लिए कार्य फ़ंक्शन को ट्यून करना एक महत्वपूर्ण चुनौती बन जाता है। इसके अतिरिक्त, PMOS और NMOS दोनों उपकरणों पर कम-दहलीज उपकरण प्राप्त करने के लिए कभी-कभी प्रत्येक डिवाइस प्रकार के लिए विभिन्न धातुओं के उपयोग की आवश्यकता होती है। | ||
# सिलिकॉन- | # सिलिकॉन- SiO<sub>2</sub> इंटरफ़ेस का अच्छी तरह से अध्ययन किया गया है और अपेक्षाकृत कम दोषों के लिए जाना जाता है। इसके विपरीत कई मेटल-इन्सुलेटर इंटरफेस में दोषों के महत्वपूर्ण स्तर होते हैं जो [[ फर्मी स्तर पिनिंग ]], चार्जिंग, या अन्य घटनाओं को जन्म दे सकते हैं जो अंततः डिवाइस के प्रदर्शन को नीचा दिखाते हैं। | ||
# MOSFET [[ फैब्रिकेशन (सेमीकंडक्टर) ]] प्रक्रिया में, बेहतर प्रदर्शन करने वाले ट्रांजिस्टर बनाने के लिए कुछ उच्च-तापमान चरणों से पहले गेट सामग्री को जमा करना बेहतर होता है। इस तरह के उच्च तापमान कदम कुछ धातुओं को पिघला देंगे, धातु के प्रकारों को सीमित करते हैं जिनका उपयोग धातु-गेट-आधारित प्रक्रिया में किया जा सकता है। | # MOSFET [[ फैब्रिकेशन (सेमीकंडक्टर) ]] प्रक्रिया में, बेहतर प्रदर्शन करने वाले ट्रांजिस्टर बनाने के लिए कुछ उच्च-तापमान चरणों से पहले गेट सामग्री को जमा करना बेहतर होता है। इस तरह के उच्च तापमान कदम कुछ धातुओं को पिघला देंगे, धातु के प्रकारों को सीमित करते हैं जिनका उपयोग धातु-गेट-आधारित प्रक्रिया में किया जा सकता है। | ||
Line 349: | Line 349: | ||
* पॉलीसिलिकॉन एक महान कंडक्टर नहीं है (धातुओं की तुलना में लगभग 1000 गुना अधिक प्रतिरोधक) जो सामग्री के माध्यम से संकेत प्रसार की गति को कम करता है। डोपिंग के स्तर को बढ़ाकर प्रतिरोधकता को कम किया जा सकता है, लेकिन यहां तक कि अत्यधिक डोपेड पॉलीसिलिकॉन भी अधिकांश धातुओं की तरह प्रवाहकीय नहीं है। चालकता में सुधार करने के लिए, कभी-कभी एक उच्च तापमान वाली धातु जैसे कि [[ टंगस्टन ]], [[ टाइटेनियम ]], [[ कोबाल्ट ]], और हाल ही में निकेल को पॉलीसिलिकॉन की शीर्ष परतों के साथ मिश्र धातु दी जाती है। इस तरह की मिश्रित सामग्री को सिलाइड कहा जाता है। सिलाइड-पॉलीसिलिकॉन संयोजन में अकेले पॉलीसिलिकॉन की तुलना में बेहतर विद्युत गुण होते हैं और अभी भी बाद के प्रसंस्करण में पिघल नहीं जाते हैं। इसके अलावा दहलीज वोल्टेज अकेले पॉलीसिलिकॉन की तुलना में काफी अधिक नहीं है, क्योंकि सिलाइड सामग्री चैनल के पास नहीं है। जिस प्रक्रिया में गेट इलेक्ट्रोड और स्रोत और नाली क्षेत्रों दोनों पर सिलाइड का गठन किया जाता है, उसे कभी-कभी [[ सैलिसाइड ]], स्व-संरेखित सिलाइड कहा जाता है। | * पॉलीसिलिकॉन एक महान कंडक्टर नहीं है (धातुओं की तुलना में लगभग 1000 गुना अधिक प्रतिरोधक) जो सामग्री के माध्यम से संकेत प्रसार की गति को कम करता है। डोपिंग के स्तर को बढ़ाकर प्रतिरोधकता को कम किया जा सकता है, लेकिन यहां तक कि अत्यधिक डोपेड पॉलीसिलिकॉन भी अधिकांश धातुओं की तरह प्रवाहकीय नहीं है। चालकता में सुधार करने के लिए, कभी-कभी एक उच्च तापमान वाली धातु जैसे कि [[ टंगस्टन ]], [[ टाइटेनियम ]], [[ कोबाल्ट ]], और हाल ही में निकेल को पॉलीसिलिकॉन की शीर्ष परतों के साथ मिश्र धातु दी जाती है। इस तरह की मिश्रित सामग्री को सिलाइड कहा जाता है। सिलाइड-पॉलीसिलिकॉन संयोजन में अकेले पॉलीसिलिकॉन की तुलना में बेहतर विद्युत गुण होते हैं और अभी भी बाद के प्रसंस्करण में पिघल नहीं जाते हैं। इसके अलावा दहलीज वोल्टेज अकेले पॉलीसिलिकॉन की तुलना में काफी अधिक नहीं है, क्योंकि सिलाइड सामग्री चैनल के पास नहीं है। जिस प्रक्रिया में गेट इलेक्ट्रोड और स्रोत और नाली क्षेत्रों दोनों पर सिलाइड का गठन किया जाता है, उसे कभी-कभी [[ सैलिसाइड ]], स्व-संरेखित सिलाइड कहा जाता है। | ||
* जब ट्रांजिस्टर को बेहद स्केल किया जाता है, तो गेट ढांकता हुआ परत को बहुत पतली बनाना आवश्यक होता है, अत्याधुनिक प्रौद्योगिकियों में 1 | * जब ट्रांजिस्टर को बेहद स्केल किया जाता है, तो गेट ढांकता हुआ परत को बहुत पतली बनाना आवश्यक होता है, अत्याधुनिक प्रौद्योगिकियों में 1 NM है । यहां देखी गई एक घटना तथाकथित पाली की कमी का प्रभाव है, जहां ट्रांजिस्टर इनवर्जन में होने पर गेट ढांकता हुआ गेट के ढांकता हुआ के बगल में गेट पॉलीसिलिकॉन परत में एक कमी परत बनाई जाती है। इस समस्या से बचने के लिए, एक धातु गेट वांछित है। विभिन्न प्रकार के धातु के द्वार जैसे कि [[ टैंटलम ]], टंगस्टन, [[ टैंटलम नाइट्राइड ]], और [[ टाइटेनियम नाइट्राइड ]] का उपयोग किया जाता है, आमतौर पर उच्च-k परावैद्युतिकी के साथ संयोजन में। एक विकल्प पूरी तरह से सिलिकेटेड पॉलीसिलिकन गेट्स का उपयोग करना है, जिसे फुस्सी के रूप में जाना जाता है। | ||
वर्तमान उच्च प्रदर्शन सीपीयू धातु गेट प्रौद्योगिकी का उपयोग करते हैं, साथ में उच्च- | वर्तमान उच्च प्रदर्शन सीपीयू धातु गेट प्रौद्योगिकी का उपयोग करते हैं, साथ में उच्च-k परावैद्युतिकी, एक संयोजन जिसे हाई-, मेटल गेट (HKMG) के रूप में जाना जाता है। धातु के फाटकों के नुकसान कुछ तकनीकों से दूर हो जाते हैं:<ref>{{cite web|archive-url=https://web.archive.org/web/20100919004000/http://www.revera.com/VeraFlex/hkmg_approaches.htm|archive-date=19 September 2010|url= http://www.revera.com/VeraFlex/hkmg_approaches.htm|title=ReVera's FinFET Control|website=revera.com}}</ref> | ||
# थ्रेसहोल्ड वोल्टेज को उच्च- | # थ्रेसहोल्ड वोल्टेज को उच्च-k परावैद्युतिकी और मुख्य धातु के बीच एक पतली कार्य फ़ंक्शन धातु परत को शामिल करके ट्यून किया जाता है।यह परत काफी पतली है कि गेट का कुल कार्य कार्य मुख्य धातु और पतली धातु कार्य कार्यों (या तो एनीलिंग के दौरान मिश्र धातु के कारण, या केवल पतली धातु द्वारा अपूर्ण स्क्रीनिंग के कारण) से प्रभावित होता है। इस प्रकार थ्रेसहोल्ड वोल्टेज को पतली धातु की परत की मोटाई से ट्यून किया जा सकता है। | ||
# उच्च- | # उच्च-k परावैद्युतिकी (डाइलेक्ट्रिक्स) का अब अच्छी तरह से अध्ययन किया जाता है, और उनके दोषों को समझा जाता है। | ||
# HKMG प्रक्रियाएं मौजूद हैं जिन्हें उच्च तापमान की एनील का अनुभव करने के लिए धातुओं की आवश्यकता नहीं है;अन्य प्रक्रियाएं उन धातुओं का चयन करती हैं जो एनीलिंग स्टेप से बच सकती हैं। | # HKMG प्रक्रियाएं मौजूद हैं जिन्हें उच्च तापमान की एनील का अनुभव करने के लिए धातुओं की आवश्यकता नहीं है; अन्य प्रक्रियाएं उन धातुओं का चयन करती हैं जो एनीलिंग स्टेप से बच सकती हैं। | ||
=== इन्सुलेटर === | === इन्सुलेटर === | ||
चूंकि उपकरणों को छोटे बना दिया जाता है, इन्सुलेटिंग परतों को पतली बनाई जाती है, अक्सर [[ थर्मल ऑक्सीकरण ]] या सिलिकॉन ([[ लोको ]]स) के स्थानीयकृत ऑक्सीकरण के चरणों के माध्यम से।नैनो-स्केल डिवाइसों के लिए, चैनल से गेट इलेक्ट्रोड तक इन्सुलेटर के माध्यम से वाहक के कुछ बिंदु [[ क्वांटम टनलिंग ]] पर होता | चूंकि उपकरणों को छोटे बना दिया जाता है, इन्सुलेटिंग परतों को पतली बनाई जाती है, अक्सर [[ थर्मल ऑक्सीकरण ]] या सिलिकॉन ([[ लोको ]]स) के स्थानीयकृत ऑक्सीकरण के चरणों के माध्यम से।नैनो-स्केल डिवाइसों के लिए, चैनल से गेट इलेक्ट्रोड तक इन्सुलेटर के माध्यम से वाहक के कुछ बिंदु [[ क्वांटम टनलिंग ]] पर होता है। परिणामी [[ रिसाव (अर्धचालक) ]] वर्तमान को कम करने के लिए, एक उच्च ढांकता हुआ स्थिरांक वाली सामग्री का चयन करके इन्सुलेटर को पतला बनाया जा सकता है।यह देखने के लिए कि मोटाई और ढांकता हुआ स्थिरांक संबंधित हैं, ध्यान दें कि गॉस का नियम क्षेत्र को चार्ज करने के लिए जोड़ता है: | ||
: <math>Q = \kappa \epsilon_0 E, </math> | : <math>Q = \kappa \epsilon_0 E, </math> | ||
q = चार्ज घनत्व के साथ, κ = | q = चार्ज घनत्व के साथ, κ = परावैद्युतिकी स्थिरांक, ε<sub>0</sub> = खाली जगह की पारगम्यता और E = विद्युत क्षेत्र की पारगम्यता।इस कानून से ऐसा प्रतीत होता है कि चैनल में एक ही शुल्क को बनाए रखा जा सकता है, बशर्ते एक निचले क्षेत्र में κ को बढ़ाया जाता है।गेट पर वोल्टेज द्वारा दिया गया है: | ||
: <math>V_\text{G} = V_\text{ch} + E\, t_\text{ins} = V_\text{ch} + \frac{Q t_\text{ins}}{\kappa \epsilon_0}, </math> | : <math>V_\text{G} = V_\text{ch} + E\, t_\text{ins} = V_\text{ch} + \frac{Q t_\text{ins}}{\kappa \epsilon_0}, </math> | ||
''V''<sub>G</sub> = गेट वोल्टेज, V<sub>ch</sub> = इन्सुलेटर के चैनल पक्ष में वोल्टेज, और t<sub>ins</sub> = इन्सुलेटर मोटाई। इस समीकरण से पता चलता है कि जब इंसुलेटर की मोटाई बढ़ती है, तो गेट वोल्टेज नहीं बढ़ेगा, बशर्ते K रखने के लिए बढ़ जाए t<sub>ins</sub> / κ = स्थिर (अधिक विस्तार के लिए उच्च-परावैद्युतिकी (डाइलेक्ट्रिक्स) पर लेख देखें, और इस लेख में गेट-ऑक्साइड ( रिसाव (लीकेज) पर इस लेख में ऊपर सीधे स्थित है। | |||
एक MOSFET में इन्सुलेटर | एक MOSFET में इन्सुलेटर परावैद्युतिकी (डाइलेक्ट्रिक्स) है जो किसी भी घटना में सिलिकॉन ऑक्साइड हो सकता है, जो [[ लोको ]] द्वारा गठित किया जाता है लेकिन कई अन्य ढांकता हुआ सामग्री कार्यरत हैं। परावैद्युतिकी (डाइलेक्ट्रिक्स) के लिए सामान्य शब्द गेट है क्योंकि परावैद्युतिकी (डाइलेक्ट्रिक्स) गेट इलेक्ट्रोड के नीचे और MOSFET के चैनल के ऊपर सीधे स्थित है। | ||
=== जंक्शन डिजाइन === | === जंक्शन डिजाइन === |
Revision as of 22:38, 29 August 2022
मेटल-ऑक्साइड-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर (MOSFET, MOS-FET, या MOS FET) एक प्रकार का फील्ड-इफेक्ट ट्रांजिस्टर (FET) है, जो आमतौर पर सिलिकॉन के थर्मल ऑक्सीकरण द्वारा निर्मित होता है। इसमें एक अछूता गेट है, जिसका वोल्टेज डिवाइस की चालकता को निर्धारित करता है। लागू वोल्टेज की मात्रा के साथ चालकता को बदलने की इस क्षमता का उपयोग इलेक्ट्रॉनिक सिग्नल (इलेक्ट्रिकल इंजीनियरिंग) को बढ़ाने या स्विच करने के लिए किया जा सकता है। एक मेटल-इंसुलेटर-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर या मिसफेट एक शब्द है जो लगभग MOSFET का पर्यायवाची है।एक अन्य पर्यायवाची अछूता-गेट फील्ड-इफेक्ट ट्रांजिस्टर के लिए IGFET है।
फील्ड-इफेक्ट ट्रांजिस्टर के मूल सिद्धांत को पहली बार जूलियस एडगर लिलिएनफेल्ड द्वारा 1925 में पेटेंट कराया गया था।[1]
एक MOSFET का मुख्य लाभ यह है कि द्विध्रुवी ट्रांजिस्टर (द्विध्रुवी जंक्शन ट्रांजिस्टर/BJTS) के साथ तुलना करने पर लोड प्रवाह (करंट) को नियंत्रित करने के लिए कोई निवेश (इनपुट) करंट की आवश्यकता होती है।एक वृद्धि (एन्हांसमेंट) मोड MOSFET में, गेट टर्मिनल पर लागू वोल्टेज डिवाइस की चालकता को बढ़ाता है।रिक्तीकरण मोड ट्रांजिस्टर में, गेट पर लागू वोल्टेज चालकता को कम करता है।[2] MOSFET नाम में धातु कभी -कभी एक मिथ्या नाम होता है, क्योंकि गेट सामग्री पॉलीसिलिकॉन (पॉलीक्रिस्टलाइन सिलिकॉन) की एक परत हो सकती है। इसी तरह, नाम में ऑक्साइड एक मिथ्या नाम भी हो सकता है, क्योंकि विभिन्न ढांकता हुआ सामग्री का उपयोग छोटे लागू वोल्टेज के साथ मजबूत चैनलों को प्राप्त करने के उद्देश्य से किया जाता है।
MOSFET अब तक डिजिटल सर्किट सर्किट में सबसे आम ट्रांजिस्टर है, क्योंकि अरबों को मेमोरी चिप या माइक्रोप्रोसेसर में शामिल किया जा सकता है। चूंकि MOSFETS या तो P- प्रकार या N- प्रकार के अर्धचालक के साथ बनाया जा सकता है, इसलिए MOS ट्रांजिस्टर के पूरक जोड़े का उपयोग CMOS लॉजिक के रूप में बहुत कम बिजली की खपत के साथ स्विचिंग सर्किट बनाने के लिए किया जा सकता है।
इतिहास
इस तरह के ट्रांजिस्टर के मूल सिद्धांत को पहली बार जूलियस एडगर लिलिएनफेल्ड द्वारा 1925 में पेटेंट कराया गया था।[1]
एमओएस (MOS) ट्रांजिस्टर से मिलता -जुलता संरचना बेल वैज्ञानिकों विलियम शॉक्ले , जॉन बार्डीन और वाल्टर हाउसर ब्रेटेन द्वारा प्रस्तावित की गई थी, उनकी जांच के दौरान ट्रांजिस्टर प्रभाव की खोज हुई। सतह की स्थिति की समस्या के कारण संरचना प्रत्याशित प्रभावों को दिखाने में विफल रही: अर्धचालक पर ट्रैप सतह जो इलेक्ट्रॉनों को स्थिर रखती है। 1955 में कार्ल फ्रॉश और एल. डेरिक ने गलती से सिलिकॉन वेफर के ऊपर सिलिकॉन डाइऑक्साइड की एक परत विकसित की। आगे के शोध से पता चला कि सिलिकॉन डाइऑक्साइड अपमिश्रक (डोपेंट्स) को सिलिकॉन वेफर में फैलने से रोक सकता है। इस काम पर निर्माण मोहम्मद एम. अताला ने दिखाया कि सिलिकॉन डाइऑक्साइड सतह राज्यों के एक महत्वपूर्ण वर्ग की समस्या को हल करने में बहुत प्रभावी है।
इसके बाद अताला और डावोन कहंग ने एक उपकरण का प्रदर्शन किया, जिसमें एक आधुनिक MOS ट्रांजिस्टर की संरचना थी। उपकरण (डिवाइस) के पीछे के सिद्धांत वैसा ही थे, जिन्हें बार्डीन, शॉक्ले और ब्रेटन ने एक सतह क्षेत्र-प्रभाव उपकरण (डिवाइस) बनाने के अपने असफल प्रयास में आजमाया था।
यह उपकरण समकालीन द्विध्रुवी ट्रांजिस्टर की तुलना में लगभग 100 गुना धीमा था और शुरू में अधीन के रूप में देखा गया था। फिर भी कहंग ने डिवाइस के कई फायदे, विशेष रूप से निर्माण में आसानी और एकीकृत सर्किट में इसके अनुप्रयोग को इंगित किया।[3]
रचना
आमतौर पर पसंद का अर्धचालक सिलिकॉन होता है। हाल ही में, कुछ चिप निर्माताओं, सबसे विशेष रूप से आईबीएम और इंटेल , ने MOSFET चैनलों में सिलिकॉन और जर्मेनियम ( सिलिकॉन-जर्मेनियम ) के मिश्र धातु का उपयोग करना शुरू कर दिया है। दुर्भाग्य से, सिलिकॉन की तुलना में बेहतर विद्युत गुणों के साथ कई अर्धचालक, जैसे कि गैलियम आर्सेनाइड , अच्छे अर्धचालक-से-इन्सुलेटर इंटरफेस का निर्माण नहीं करते हैं, और इस प्रकार MOSFETs के लिए उपयुक्त नहीं हैं।अनुसंधान जारी है[when?] अन्य अर्धचालक सामग्रियों पर स्वीकार्य विद्युत विशेषताओं के साथ इंसुलेटर बनाने पर।
गेट करंट रिसाव के कारण बिजली की खपत में वृद्धि को दूर करने के लिए, गेट इन्सुलेटर के लिए सिलिकॉन डाइऑक्साइड के बजाय एक उच्च-k अचालक (डाइइलैक्ट्रिक) का उपयोग किया जाता है, जबकि पॉलीसिलिकॉन को मेटल गेट्स (जैसे इंटेल , 2009 द्वारा प्रतिस्थापित किया जाता है)[4])
गेट को चैनल से एक पतली इन्सुलेट परत, पारंपरिक रूप से सिलिकॉन डाइऑक्साइड और बाद में सिलिकॉन ऑक्सिनिट्राइड द्वारा अलग किया जाता है।कुछ कंपनियों ने 45 नैनोमीटर नोड में एक उच्च- κ अचालक (डाइइलैक्ट्रिक) और धातु गेट संयोजन पेश करना शुरू कर दिया है।
जब गेट और बॉडी टर्मिनलों के बीच एक वोल्टेज लागू किया जाता है, तो उत्पन्न विद्युत क्षेत्र ऑक्साइड के माध्यम से प्रवेश करता है और सेमीकंडक्टर-इन्सुलेटर इंटरफ़ेस में एक उलटा परत या चैनल बनाता है। उलटा परत एक चैनल प्रदान करती है जिसके माध्यम से वर्तमान स्रोत और नाली टर्मिनलों के बीच गुजर सकता है। गेट और शरीर के बीच वोल्टेज को अलग करना इस परत की विद्यु त चालकता को नियंत्रित करता है और इस तरह नाली और स्रोत के बीच वर्तमान प्रवाह को नियंत्रित करता है।इसे वृद्धि (एन्हांसमेंट) मोड के रूप में जाना जाता है।
ऑपरेशन
धातु-ऑक्साइड-सेमिकंडक्टर(अर्धचालक) संरचना
पारंपरिक धातु-ऑक्साइड-सेमिकंडक्टर (MOS) संरचना सिलिकॉन डाइऑक्साइड की एक परत को बढ़ाकर प्राप्त की जाती है (SiO
2) एक सिलिकॉन सब्सट्रेट के शीर्ष पर, आमतौर पर थर्मल ऑक्सीकरण द्वारा और धातु या पॉलीक्रिस्टलाइन सिलिकॉन की एक परत जमा करना (बाद वाला आमतौर पर उपयोग किया जाता है)।जैसा कि सिलिकॉन डाइऑक्साइड एक ढांकता हुआ सामग्री है, इसकी संरचना एक प्लानर संधारित्र के बराबर है, जिसमें एक अर्धचालक द्वारा प्रतिस्थापित इलेक्ट्रोड में से एक है।
जब वोल्टेज एक MOS संरचना में लागू किया जाता है, तो यह अर्धचालक में शुल्क के वितरण को संशोधित करता है। यदि हम एक p-प्रकार सेमीकंडक्टर पर विचार करते हैं) स्वीकर्ता का घनत्व (अर्धचालक), p छेद का घनत्व; p = NA तटस्थ थोक में), एक सकारात्मक वोल्टेज, , गेट से बॉडी तक (चित्र देखें) गेट-इन्सुलेटर/सेमीकंडक्टर इंटरफ़ेस से सकारात्मक रूप से चार्ज किए गए छेदों को मजबूर करके एक कमी परत बनाता है, जिससे इमोबाइल के एक वाहक-मुक्त क्षेत्र को उजागर किया जाता है, नकारात्मक रूप से चार्ज किए गए स्वीकर्ता आयनों (डोपिंग (सेमीकंडक्टर) (अर्धचालक) देखें))।यदि पर्याप्त है, नकारात्मक चार्ज वाहक की एक उच्च एकाग्रता एक उलटा परत में बनती है जो अर्धचालक और इन्सुलेटर के बीच इंटरफ़ेस के बगल में एक पतली परत में स्थित है।
परंपरागत रूप से, गेट वोल्टेज जिस पर उलटा परत में इलेक्ट्रॉनों का मात्रा घनत्व होता है, वह शरीर में छेद के आयतन घनत्व के समान होता है, जिसे थ्रेशोल्ड वोल्टेज कहा जाता है। जब ट्रांजिस्टर गेट और स्रोत के बीच वोल्टेज (v)GS थ्रेशोल्ड वोल्टेज से अधिक है (v)th , अंतर को ओवरड्राइव वोल्टेज के रूप में जाना जाता है।
p-टाइप बॉडी के साथ यह संरचना n-टाइप एमओएसएफईटी का आधार है, जिसके लिए n-टाइप स्रोत और नाली क्षेत्रों को जोड़ने की आवश्यकता होती है।
MOS संधारित्र (कैपेसिटर) और बैंड आरेख
This section does not cite any sources. (January 2019) (Learn how and when to remove this template message) |
एमओएस (MOS) संधारित्र संरचना MOSFET का दिल है। एक एमओएस (MOS) संधारित्र पर विचार करें जहां सिलिकॉनआधार (बेस ) p-टाइप का है। यदि गेट पर एक सकारात्मक वोल्टेज लागू किया जाता है, तो छेद जो p-टाइप सब्सट्रेट की सतह पर होते हैं, उन्हें लागू वोल्टेज द्वारा उत्पन्न विद्युत क्षेत्र द्वारा निरस्त कर दिया जाएगा। सबसे पहले, छेदों को बस हटा दिया जाएगा और सतह पर जो रहेगा वह स्वीकर्ता प्रकार के परमाणु (नकारात्मक) परमाणु होगा, जो सतह पर एक कमी क्षेत्र बनाता है। याद रखें कि एक छेद एक स्वीकर्ता परमाणु द्वारा बनाया गया है, उदाहरण- बोरान, जिसमें सिलिकॉन की तुलना में एक कम इलेक्ट्रॉन है। कोई यह पूछ सकता है कि यदि वे वास्तव में गैर-संस्थाएं (एंटिलिटीज) हैं तो छेद को कैसे हटा दिया जा सकता है? इसका उत्तर यह है कि वास्तव में ऐसा नहीं होता है कि एक छेद को हटा दिया जाता है, लेकिन इलेक्ट्रॉनों को सकारात्मक क्षेत्र द्वारा आकर्षित किया जाता है, और इन छेदों को भरते हैं, एक घटाव क्षेत्र बनाते हैं जहां कोई चार्ज वाहक मौजूद नहीं है क्योंकि इलेक्ट्रॉन अब परमाणु और स्थिर(इमोबाइल) पर तय होता है।
जैसे-जैसे गेट पर वोल्टेज बढ़ता है, एक बिंदु होगा, जिस पर कमी क्षेत्र के ऊपर की सतह को p-प्रकार से n-प्रकार में परिवर्तित किया जाएगा, क्योंकि थोक क्षेत्र से इलेक्ट्रॉनों को बड़े विद्युत क्षेत्र से आकर्षित करना शुरू हो जाएगा। इसे उलटा के रूप में जाना जाता है। दहलीज वोल्टेज जिस पर यह रूपांतरण होता है, एक MOSFET में सबसे महत्वपूर्ण मापदंडों में से एक है।
p-प्रकार के थोक के मामले में, उलटा तब होता है जब सतह पर आंतरिक ऊर्जा स्तर सतह पर फर्मी स्तर से छोटा हो जाता है। एक बैंड आरेख से इसे देख सकते हैं। याद रखें कि फर्मी स्तर चर्चा में अर्धचालक के प्रकार को परिभाषित करता है। यदि फर्मी स्तर आंतरिक स्तर के बराबर है, तो अर्धचालक आंतरिक, या शुद्ध प्रकार का है। यदि फर्मी स्तर चालन बैंड (वैलेंस बैंड) के करीब है, तो अर्धचालक प्रकार n-टाइप (p-टाइप) का होगा। इसलिए, जब गेट वोल्टेज को एक सकारात्मक अर्थ में (दिए गए उदाहरण के लिए) में बढ़ाया जाता है, तो यह आंतरिक ऊर्जा स्तर के बैंड को मोड़ देगा ताकि यह वैलेंस बैंड की ओर नीचे की ओर वक्र होगा। यदि फर्मी स्तर वैलेंस बैंड (p-प्रकार के लिए) के करीब स्थित है, तो एक बिंदु होगा जब आंतरिक स्तर फर्मी स्तर को पार करना शुरू कर देगा और जब वोल्टेज थ्रेशोल्ड वोल्टेज तक पहुंचता है, तो आंतरिक स्तर फर्मी स्तर को पार करता है , और वह है जिसे उलटा के रूप में जाना जाता है। उस बिंदु पर, अर्धचालक की सतह को p-प्रकार से n-प्रकार में उल्टा किया जाता है। याद रखें कि जैसा कि ऊपर कहा गया है, यदि फर्मी स्तर आंतरिक स्तर से ऊपर स्थित है, तो अर्धचालक n-प्रकार का होता है, इसलिए उलटा होता है, जब आंतरिक स्तर तक पहुंचता है और फर्मी स्तर को पार करता है (जो वैलेंस बैंड के करीब है), अर्धचालक फ़र्मी और आंतरिक ऊर्जा स्तरों के सापेक्ष पदों द्वारा निर्धारित किया जाता है।
संरचना और चैनल गठन
एक MOSFET एक शरीर के इलेक्ट्रोड और शरीर के ऊपर स्थित एक गेट इलेक्ट्रोड के बीच एक MOS धारिता (कैपेसिटेंस) द्वारा चार्ज एकाग्रता के स्वर-सामंजस्य (मॉड्यूलेशन) पर आधारित है और गेट ढांकता हुआ परत द्वारा अन्य सभी डिवाइस क्षेत्रों से अछूता है। यदि ऑक्साइड के अलावा अन्य डाइलेक्ट्रिक्स नियोजित हैं, तो डिवाइस को मेटल-इंसुलेटर-सेमिकंडक्टर एफईटी (FET) एमआईएसएफईटी( MISFET )के रूप में संदर्भित किया जा सकता है। MOS संधारित्र की तुलना में, MOSFET में दो अतिरिक्त टर्मिनल (स्रोत और नाली) शामिल हैं, जिनमें से प्रत्येक व्यक्तिगत उच्च डोपेड क्षेत्रों से जुड़ा है जो शरीर के क्षेत्र द्वारा अलग किए जाते हैं। ये क्षेत्र या तो p या n प्रकार हो सकते हैं, लेकिन वे दोनों एक ही प्रकार के होने चाहिए, और शरीर क्षेत्र के विपरीत प्रकार के। स्रोत और नाली (शरीर के विपरीत) को डोपिंग के प्रकार के बाद a "+" साइन द्वारा हस्ताक्षरित के रूप में अत्यधिक डोप किया जाता है।
यदि MOSFET एक n-चैनल l या NMOS FET है, तो स्रोत और नाली n+ क्षेत्र हैं और शरीर एक p क्षेत्र है। यदि MOSFET एक p-चैनल या p एमओएस एफईटी (pMOS FET)है, तो स्रोत और नाली p+ क्षेत्र हैं और शरीर एक n क्षेत्र है। स्रोत का नाम इसलिए रखा गया है क्योंकि यह चार्ज वाहक (n-चैनल के लिए इलेक्ट्रॉनों, p-चैनल के लिए छेद) का स्रोत है जो चैनल के माध्यम से प्रवाहित होता है; इसी तरह, नाली वह जगह है जहां चार्ज वाहक चैनल छोड़ देते हैं।
एक अर्धचालक में ऊर्जा बैंड का अधिभोग अर्धचालक ऊर्जा-बैंड किनारों के सापेक्ष फर्मी स्तर की स्थिति द्वारा निर्धारित किया जाता है।
पर्याप्त गेट वोल्टेज के साथ, वैलेंस बैंड किनारे को फर्मी स्तर से दूर चलाया जाता है, और शरीर से छेद गेट से दूर ले जाते हैं।
बड़े गेट पूर्वाग्रह पर, अब भी अर्धचालक (सेमीकंडक्टर) सतह के पास चालन बैंड किनारे को फर्मी स्तर के करीब लाया जाता है, जो p क्षेत्र और ऑक्साइड के बीच इंटरफेस में एक उलटा परत या n-चैनल में इलेक्ट्रॉनों के साथ सतह को बसता (पॉप्युलेट) है। यह आचरण चैनल स्रोत और नाली के बीच फैली हुई है, और वर्तमान के माध्यम से आयोजित किया जाता है जब दो इलेक्ट्रोड के बीच एक वोल्टेज लागू किया जाता है। गेट पर वोल्टेज को बढ़ाने से उलटा परत में एक उच्च इलेक्ट्रॉन घनत्व होता है और इसलिए स्रोत और नाली के बीच वर्तमान प्रवाह को बढ़ाता है। थ्रेशोल्ड वैल्यू के नीचे गेट वोल्टेज के लिए, चैनल हल्के से पॉप्युलेटेड है, और केवल एक बहुत छोटा सबथ्रेशोल्ड कंडक्शन करंट स्रोत और नाली के बीच प्रवाहित हो सकता है।
जब एक नकारात्मक गेट-स्रोत वोल्टेज (सकारात्मक स्रोत-गेट) लागू किया जाता है, तो यह n क्षेत्र की सतह पर एक p-चैनल बनाता है, n-चैनल मामले के अनुरूप, लेकिन शुल्क और वोल्टेज के विपरीत ध्रुवीयताओं के साथ। जब गेट और स्रोत के बीच थ्रेशोल्ड मान (p-चैनल के लिए एक नकारात्मक वोल्टेज) की तुलना में कम वोल्टेज कम नकारात्मक होता है, तो चैनल गायब हो जाता है और केवल एक बहुत छोटा सबथ्रेशोल्ड करंट स्रोत और नाली के बीच प्रवाहित हो सकता है। डिवाइस में इन्सुलेटर डिवाइस पर एक सिलिकॉन शामिल हो सकता है जिसमें एक बरिएड ऑक्साइड एक पतली अर्धचालक परत के नीचे बनता है। यदि गेट ढांकता हुआ और बरिएड ऑक्साइड क्षेत्र के बीच का चैनल क्षेत्र बहुत पतला है, तो चैनल को एक अल्ट्रैथिन चैनल क्षेत्र के रूप में संदर्भित किया जाता है, जिसमें पतली अर्धचालक परत के ऊपर या ऊपर दोनों तरफ गठित स्रोत और नाली क्षेत्रों के साथ। अन्य अर्धचालक सामग्री को नियोजित किया जा सकता है। जब स्रोत और नाली क्षेत्र पूरे या आंशिक रूप से चैनल के ऊपर बनते हैं, तो उन्हें उठाए गए स्रोत/नाली क्षेत्रों के रूप में संदर्भित किया जाता है।
Parameter | nMOSFET | pMOSFET | |
---|---|---|---|
Source/drain type | n-type | p-type | |
Channel type (MOS capacitor) |
n-type | p-type | |
Gate type |
Polysilicon | n+ | p+ |
Metal | φm ~ Si conduction band | φm ~ Si valence band | |
Well type | p-type | n-type | |
Threshold voltage, Vth |
|
| |
Band-bending | Downwards | Upwards | |
Inversion layer carriers | Electrons | Holes | |
Substrate type | p-type | n-type |
ऑपरेशन के मोड
एक MOSFET के संचालन को टर्मिनलों पर वोल्टेज के आधार पर, तीन अलग-अलग मोड में अलग किया जा सकता है। निम्नलिखित चर्चा में, एक सरलीकृत बीजीय मॉडल का उपयोग किया जाता है।[6] आधुनिक MOSFET विशेषताएं यहां प्रस्तुत बीजगणितीय मॉडल की तुलना में अधिक जटिल हैं।[7] एन्हांसमेंट-मोड n-चैनल MOSFET के लिए, तीन ऑपरेशनल मोड हैं:
- कटऑफ, सबथ्रेशोल्ड और कमजोर-इनवर्जन मोड
जब VGS < Vth :
यहाँ पर गेट-टू-सोर्स पूर्वाग्रह है और डिवाइस का थ्रेशोल्ड वोल्टेज है।
मूल थ्रेसहोल्ड मॉडल के अनुसार, ट्रांजिस्टर बंद हो जाता है, और नाली और स्रोत के बीच कोई चालन नहीं है। एक अधिक सटीक मॉडल इलेक्ट्रॉन ऊर्जा के फर्मी -डीआईआरएसी वितरण पर थर्मल ऊर्जा के प्रभाव को मानता है जो स्रोत पर कुछ अधिक ऊर्जावान इलेक्ट्रॉनों को चैनल में प्रवेश करने और नाली में प्रवाह करने की अनुमति देता है। यह एक सबथ्रेशोल्ड करंट में परिणाम है जो गेट-सोर्स वोल्टेज का एक घातीय कार्य है। जबकि नाली और स्रोत के बीच का वर्तमान आदर्श रूप से शून्य होना चाहिए जब ट्रांजिस्टर को टर्न-ऑफ स्विच के रूप में उपयोग किया जा रहा है, एक कमजोर-इनवर्सन करंट है, जिसे कभी-कभी सबथ्रेशोल्ड रिसाव कहा जाता है।
कमजोर व्युत्क्रम में जहां स्रोत थोक से बंधा होता है, वर्तमान में तेजी से भिन्न होता है जैसा कि लगभग दिया गया है:[8][9]
कहाँ पे = पर वर्तमान , थर्मल वोल्टेज और ढलान कारक n द्वारा दिया गया है:
साथ = कमी की परत की समाई और = ऑक्साइड परत की समाई।इस समीकरण का उपयोग आम तौर पर किया जाता है, लेकिन बल्क से बंधे स्रोत के लिए केवल एक पर्याप्त सन्निकटन है।बल्क से बंधे नहीं स्रोत के लिए, संतृप्ति में नाली वर्तमान के लिए सबथ्रेशोल्ड समीकरण है[10][11]
जहां क्या चैनल डिवाइडर है जो द्वारा दिया गया है:
साथ = कमी की परत की समाई और = ऑक्साइड परत की समाई।एक लंबे चैनल डिवाइस में, एक बार वर्तमान की कोई नाली वोल्टेज निर्भरता नहीं है , लेकिन चैनल की लंबाई कम होने के कारण नाली-प्रेरित बाधा कम होने से नाली वोल्टेज निर्भरता का परिचय होता है जो डिवाइस ज्यामिति (उदाहरण के लिए, चैनल डोपिंग, जंक्शन डोपिंग और इतने पर) पर एक जटिल तरीके से निर्भर करता है।अक्सर, दहलीज वोल्टेज Vth इस मोड के लिए गेट वोल्टेज के रूप में परिभाषित किया गया है, जिस पर वर्तमान I का एक चयनित मूल्य है ID0 उदाहरण के लिए, ID0 =1μA, जो एक ही Vth नहीं हो सकता है निम्नलिखित मोड के लिए समीकरणों में उपयोग किया जाता है।
कुछ माइक्रोपॉवर एनालॉग सर्किट को सबथ्रेशोल्ड चालन का लाभ उठाने के लिए डिज़ाइन किया गया है।[12][13][14] कमजोर-उलटा क्षेत्र में काम करके, इन सर्किटों में MOSFETS उच्चतम संभव ट्रांसकॉन्डक्टेंस-टू-वर्तमान अनुपात प्रदान करते हैं, अर्थात्: , लगभग एक द्विध्रुवी ट्रांजिस्टर का।[15]
सबथ्रेशोल्ड I -V वक्र थ्रेशोल्ड वोल्टेज पर तेजी से निर्भर करता है, किसी भी विनिर्माण भिन्नता पर एक मजबूत निर्भरता का परिचय देता है जो थ्रेशोल्ड वोल्टेज को प्रभावित करता है;उदाहरण के लिए: ऑक्साइड की मोटाई, जंक्शन की गहराई, या बॉडी डोपिंग में भिन्नता जो नाली-प्रेरित बाधा कम होने की डिग्री को बदलती है।फैब्रिकेशनल विविधताओं के लिए परिणामी संवेदनशीलता रिसाव और प्रदर्शन के लिए अनुकूलन को जटिल करती है।[16][17]
जब VGS > Vth और VDS < VGS − Vth:
ट्रांजिस्टर को चालू किया जाता है, और एक चैनल बनाया गया है जो नाली और स्रोत के बीच वर्तमान की अनुमति देता है। MOSFET एक अवरोधक की तरह संचालित होता है, जो स्रोत और नाली वोल्टेज दोनों के सापेक्ष गेट वोल्टेज द्वारा नियंत्रित होता है।नाली से स्रोत तक वर्तमान के रूप में मॉडल किया गया है:
कहाँ पे चार्ज-वाहक प्रभावी गतिशीलता है, गेट की चौड़ाई है, गेट की लंबाई है और प्रति यूनिट क्षेत्र में गेट ऑक्साइड कैपेसिटेंस है।घातीय सबथ्रेशोल्ड क्षेत्र से ट्रायोड क्षेत्र में संक्रमण उतना तेज नहीं है जितना कि समीकरणों का सुझाव है।
जब VGS > Vth और VDS ≥ (VGS – Vth):
स्विच चालू है, और एक चैनल बनाया गया है, जो नाली और स्रोत के बीच वर्तमान की अनुमति देता है।चूंकि ड्रेन वोल्टेज स्रोत वोल्टेज से अधिक है, इसलिए इलेक्ट्रॉन फैले हुए हैं, और चालन एक संकीर्ण चैनल के माध्यम से नहीं है, बल्कि एक व्यापक, दो या तीन-आयामी वर्तमान वितरण के माध्यम से इंटरफ़ेस से दूर और सब्सट्रेट में गहराई तक फैली हुई है। इस क्षेत्र की शुरुआत को चैनल की लंबाई मॉड्यूलेशन के रूप में भी जाना जाता है। नाली के पास चैनल क्षेत्र की कमी को इंगित करने के लिए चुटकी।यद्यपि चैनल डिवाइस की पूरी लंबाई का विस्तार नहीं करता है, नाली और चैनल के बीच विद्युत क्षेत्र बहुत अधिक है, और चालन जारी है।नाली की धारा अब ड्रेन वोल्टेज पर कमजोर रूप से निर्भर है और मुख्य रूप से गेट-सोर्स वोल्टेज द्वारा नियंत्रित होती है, और लगभग इस तरह से मॉडलिंग की जाती है:
अतिरिक्त कारक जिसमें λ, चैनल-लंबाई मॉड्यूलेशन पैरामीटर शामिल हैं, प्रारंभिक प्रभाव , या चैनल की लंबाई मॉड्यूलेशन के कारण नाली वोल्टेज पर वर्तमान निर्भरता मॉडल।इस समीकरण के अनुसार, एक प्रमुख डिजाइन पैरामीटर, MOSFET ट्रांसकॉन्डक्शन है:
जहां संयोजन Vov = VGS − Vth ओवरड्राइव वोल्टेज कहा जाता है,[22] और जहां VDSsat = VGS − Vth में एक छोटी सी असंतोष के लिए खाते जो अन्यथा ट्रायोड और संतृप्ति क्षेत्रों के बीच संक्रमण में दिखाई देगा।
एक अन्य प्रमुख डिजाइन पैरामीटर MOSFET आउटपुट प्रतिरोध R हैoutके द्वारा दिया गया:
- ।
rout , gDS का उलटा है जहां ।D संतृप्ति क्षेत्र में अभिव्यक्ति है।
यदि λ को शून्य के रूप में लिया जाता है, तो डिवाइस के परिणामों का एक अनंत आउटपुट प्रतिरोध होता है जो विशेष रूप से एनालॉग सर्किट में अवास्तविक सर्किट भविष्यवाणियों की ओर जाता है।
जैसे -जैसे चैनल की लंबाई बहुत कम हो जाती है, ये समीकरण काफी गलत हो जाते हैं।नए शारीरिक प्रभाव उत्पन्न होते हैं।उदाहरण के लिए, सक्रिय मोड में वाहक परिवहन वेग संतृप्ति द्वारा सीमित हो सकता है।जब वेग संतृप्ति हावी हो जाती है, तो संतृप्ति नाली की धारा v में द्विघात की तुलना में अधिक रैखिक होती हैGS।यहां तक कि छोटी लंबाई में, वाहक शून्य बिखरने के साथ परिवहन करते हैं, जिसे अर्ध-बैलिस्टिक परिवहन के रूप में जाना जाता है।बैलिस्टिक शासन में, वाहक एक इंजेक्शन वेग पर यात्रा करते हैं जो संतृप्ति वेग से अधिक हो सकता है और उच्च व्युत्क्रम चार्ज घनत्व पर फर्मी वेग का संपर्क करता है।इसके अलावा, नाली-प्रेरित बैरियर लोअरिंग ऑफ-स्टेट (कटऑफ) करंट को बढ़ाता है और क्षतिपूर्ति करने के लिए दहलीज वोल्टेज में वृद्धि की आवश्यकता होती है, जो बदले में संतृप्ति करंट को कम करता है।
शरीर का प्रभाव
एक अर्धचालक में ऊर्जा बैंड का अधिभोग अर्धचालक ऊर्जा-बैंड किनारों के सापेक्ष अर्धचालक भौतिकी में फर्मी स्तर स्थिति द्वारा निर्धारित किया जाता है। स्रोत-शरीर (बॉडी) pn-जंक्शन के एक स्रोत-से-सब्सट्रेट रिवर्स पूर्वाग्रह का अनुप्रयोग इलेक्ट्रॉनों और छेदों के लिए फर्मी स्तरों के बीच एक विभाजन का परिचय देता है, चैनल के लिए चैनल के लिए फर्मी स्तर को आगे बढ़ाता है, जिससे चैनल के अधिभोग को कम होता है।प्रभाव चैनल को स्थापित करने के लिए आवश्यक गेट वोल्टेज को बढ़ाने के लिए है, जैसा कि आंकड़े में देखा गया है।रिवर्स बायस के आवेदन द्वारा चैनल की ताकत में इस परिवर्तन को 'बॉडी इफेक्ट' कहा जाता है।
सीधे शब्दों में कहें, एक NMOS उदाहरण का उपयोग करते हुए, गेट-टू-बॉडी बायस VGB चालन-बैंड ऊर्जा स्तरों को स्थान देता है, जबकि स्रोत-से-शरीर पूर्वाग्रह vSB इंटरफ़ेस के पास इलेक्ट्रॉन फर्मी स्तर को स्थान देता है, इंटरफ़ेस के पास इन स्तरों के अधिभोग का निर्णय करता है, और इसलिए उलटा परत या चैनल की ताकत।
चैनल पर शरीर के प्रभाव को थ्रेसहोल्ड वोल्टेज के संशोधन का उपयोग करके वर्णित किया जा सकता है, जो निम्नलिखित समीकरण द्वारा अनुमानित है:
जहां VTB सब्सट्रेट पूर्वाग्रह के साथ थ्रेसहोल्ड वोल्टेज है, और VT0 शून्य है VSB थ्रेसहोल्ड वोल्टेज का मूल्य, शरीर प्रभाव पैरामीटर है, और 2φB जब सतह और थोक के बीच घटिया परत के बीच अनुमानित संभावित गिरावट है VSB = 0 और गेट पूर्वाग्रह यह सुनिश्चित करने के लिए पर्याप्त है कि एक चैनल मौजूद है।[23] जैसा कि यह समीकरण दिखाता है, एक रिवर्स पूर्वाग्रह VSB > 0 थ्रेसहोल्ड वोल्टेज VTB में वृद्धि का कारण बनता है और इसलिए चैनल पॉपुलेट होने से पहले एक बड़े गेट वोल्टेज की मांग करता है।
शरीर को दूसरे गेट के रूप में संचालित किया जा सकता है, और कभी -कभी बैक गेट के रूप में संदर्भित किया जाता है; शरीर के प्रभाव को कभी-कभी बैक-गेट प्रभाव कहा जाता है।[24]
सर्किट प्रतीक
MOSFET के लिए विभिन्न प्रकार के प्रतीकों का उपयोग किया जाता है। मूल डिजाइन आम तौर पर स्रोत के साथ चैनल के लिए एक पंक्ति है और नाली इसे समकोण पर छोड़ रही है और फिर चैनल के समान दिशा में समकोण पर वापस झुक रही है। कभी -कभी चैनल (ट्रांजिस्टर) के लिए तीन लाइन सेगमेंट का उपयोग किया जाता है और कमी मोड के लिए एक ठोस लाइन (अवक्षेप और वृद्धि मोड देखें)। एक अन्य पंक्ति गेट के लिए चैनल के समानांतर खींची गई है।
थोक (बल्क) या बॉडी कनेक्शन, यदि दिखाया गया है, तो पीएमओ या एनएमओ को इंगित करने वाले तीर के साथ चैनल के पीछे से जुड़ा हुआ दिखाया गया है। तीर हमेशा p से n तक इंगित करते हैं, इसलिए एनएमओएस (p-वेल या p-सब्सट्रेट में n-चैनल) में तीर (थोक से चैनल तक) की ओर इशारा करता है। यदि थोक (बल्क) स्रोत से जुड़ा होता है (जैसा कि आमतौर पर असतत उपकरणों के साथ होता है) तो कभी -कभी यह ट्रांजिस्टर छोड़ने वाले स्रोत के साथ मिलने के लिए कोण होता है। यदि बल्क को नहीं दिखाया गया है (जैसा कि अक्सर आईसी डिजाइन में होता है क्योंकि वे आम तौर पर सामान्य थोक होते हैं) एक उलटा प्रतीक का उपयोग कभी -कभी पीएमओ (PMOS) को इंगित करने के लिए किया जाता है, वैकल्पिक रूप से स्रोत पर एक तीर का उपयोग उसी तरह से किया जा सकता है जैसे कि द्विध्रुवी ट्रांजिस्टर के लिए ( NMOS के लिए, PMOS के लिए)।
JFET प्रतीकों के साथ वृद्धि-मोड और घटाव-मोड MOSFET प्रतीकों की तुलना। प्रतीकों का उन्मुखीकरण, (सबसे महत्वपूर्ण रूप से नाली के सापेक्ष स्रोत की स्थिति) ऐसी है कि अधिक सकारात्मक वोल्टेज पृष्ठ पर कम सकारात्मक वोल्टेज की तुलना में अधिक दिखाई देते हैं, जो कि पृष्ठ के नीचे प्रवाहित वर्तमान प्रवाहित होता है:[25][26][27]
P-channel | |||||
---|---|---|---|---|---|
N-channel | |||||
JFET | MOSFET enh. | MOSFET enh. (no bulk) | MOSFET dep. |
योजनाबद्धता (स्कैमैटिक्स) में जहां G, S, D को लेबल नहीं किया जाता है, प्रतीक की विस्तृत विशेषताएं इंगित करती हैं कि कौन सा टर्मिनल स्रोत है और कौन सा नाली है। वृद्धि-मोड (एन्हांसमेंट-मोड) और कमी-मोड (डेप्लेशन-मोड )MOSFET प्रतीकों (कॉलम दो और पांच में) के लिए, स्रोत टर्मिनल त्रिभुज से जुड़ा हुआ है। इसके अतिरिक्त, इस आरेख में, गेट को एक L आकार के रूप में दिखाया गया है, जिसका इनपुट लेग D की तुलना में S के करीब है, यह भी दर्शाता है कि कौन सा है। हालांकि, इन प्रतीकों को अक्सर एक T आकार के गेट (इस पृष्ठ पर कहीं और) के साथ खींचा जाता है, इसलिए यह त्रिकोण है जिसे स्रोत टर्मिनल को इंगित करने के लिए भरोसा किया जाना चाहिए।
उन प्रतीकों के लिए जिनमें बल्क, या बॉडी, टर्मिनल दिखाया गया है, यह यहां आंतरिक रूप से स्रोत से जुड़ा हुआ है (यानी, कॉलम 2 और 5 में आरेखों में काले त्रिकोण)। यह एक विशिष्ट कॉन्फ़िगरेशन है, लेकिन किसी भी तरह से केवल महत्वपूर्ण कॉन्फ़िगरेशन नहीं है। सामान्य तौर पर, MOSFET एक चार-टर्मिनल डिवाइस है, और एकीकृत सर्किट में कई MOSFETs एक बॉडी कनेक्शन साझा करते हैं, जरूरी नहीं कि सभी ट्रांजिस्टर के स्रोत टर्मिनलों से जुड़े हों।
अनुप्रयोग
डिजिटल एकीकृत सर्किट जैसे कि माइक्रोप्रोसेसर और मेमोरी डिवाइस में प्रत्येक डिवाइस पर हजारों से लाखों एकीकृत MOSFET ट्रांजिस्टर होते हैं, जो तर्क गेट्स और डेटा स्टोरेज को लागू करने के लिए आवश्यक बुनियादी स्विचिंग फ़ंक्शन प्रदान करते हैं।असतत उपकरणों का उपयोग स्विच मोड पावर सप्लाई, वेरिएबल-फ्रीक्वेंसी ड्राइव और अन्य पावर इलेक्ट्रॉनिक्स एप्लिकेशन जैसे अनुप्रयोगों में व्यापक रूप से किया जाता है, जहां प्रत्येक डिवाइस हजारों वाट स्विच कर सकता है।यूएचएफ स्पेक्ट्रम तक रेडियो-फ्रीक्वेंसी एम्पलीफायरों ने एनालॉग सिग्नल और पावर एम्पलीफायरों के रूप में MOSFET ट्रांजिस्टर का उपयोग किया।रेडियो सिस्टम आवृत्तियों को परिवर्तित करने के लिए ऑसिलेटर, या आवृत्ति मिक्सर के रूप में MOSFETs का भी उपयोग करते हैं।MOSFET डिवाइस सार्वजनिक पते सिस्टम, ध्वनि सुदृढीकरण और घर और ऑटोमोबाइल ध्वनि प्रणाली के लिए ऑडियो-फ़्रीक्वेंसी पावर एम्पलीफायरों में भी लागू होते हैं[citation needed]
MOS एकीकृत सर्किट
स्वच्छ कमरों के विकास के बाद संदूषण को कम करने के लिए स्तरों को कम करने से पहले कभी नहीं सोचा गया था, और फोटोलिथोग्राफी का[28] और बहुत कम चरणों में सर्किट बनाने की अनुमति देने के लिए प्लानर प्रक्रिया , Si–SiO2 सिस्टम में उत्पादन की कम लागत (प्रति सर्किट आधार पर) और एकीकरण में आसानी के तकनीकी आकर्षण थे।इन दो कारकों के कारण, MOSFET IET में सबसे व्यापक रूप से इस्तेमाल किया जाने वाला ट्रांजिस्टर बन गया है।
जनरल माइक्रोइलेक्ट्रॉनिक्स ने 1964 में पहला वाणिज्यिक एमओएस इंटीग्रेटेड सर्किट पेश किया।[29] इसके अतिरिक्त, एक उच्च/निम्न स्विच में दो पूरक MOSFETs (P-चैनल और N-चैनल) को युग्मित करने की विधि, जिसे सीएमओएस (CMOS )के रूप में जाना जाता है, का मतलब है कि डिजिटल सर्किट वास्तव में स्विच किए जाने के अलावा बहुत कम शक्ति को भंग कर देते हैं।
1970 में शुरू होने वाले माइक्रोप्रोसेसर कालक्रम सभी एमओएस माइक्रोप्रोसेसर्स थे;यानी, पूरी तरह से PMOS तर्क से गढ़ा या NMOS लॉजिक से पूरी तरह से गढ़ा गया।1970 के दशक में, MOS माइक्रोप्रोसेसरों को अक्सर CMOS माइक्रोप्रोसेसर्स और द्विध्रुवी बिट-स्लाइस प्रोसेसर के साथ विपरीत किया गया था।[30]
CMOS सर्किट
MOSFET का उपयोग डिजिटल पूरक धातु-ऑक्साइड-सेमिकंडक्टर (CMOS) तर्क में किया जाता है,[31] जो बिल्डिंग ब्लॉक के रूप में P- और N-Channel MOSFET का उपयोग करता है।एकीकृत सर्किट में ओवरहीटिंग एक बड़ी चिंता है क्योंकि कभी अधिक ट्रांजिस्टर को कभी छोटे चिप्स में पैक किया जाता है। सीएमओएस (CMOS) लॉजिक बिजली की खपत को कम करता है क्योंकि कोई वर्तमान प्रवाह (आदर्श रूप से), और इस प्रकार कोई शक्ति (भौतिकी) का सेवन नहीं किया जाता है, सिवाय इसके कि जब लॉजिक गेट के इनपुट को स्विच किया जा रहा हो। CMOS एक PMOSFET के साथ प्रत्येक NMOSFET को पूरक करके और दोनों गेट्स और दोनों नालियों को एक साथ जोड़कर इस वर्तमान कमी को पूरा करता है।फाटकों पर एक उच्च वोल्टेज NMOSFET को आचरण करने का कारण होगा और PMOSFET का संचालन नहीं करेगा और गेट पर कम वोल्टेज रिवर्स का कारण बनता है। स्विचिंग समय के दौरान जब वोल्टेज एक राज्य से दूसरे राज्य में जाता है, तो दोनों MOSFETS संक्षेप में संचालित करेंगे।यह व्यवस्था बिजली की खपत और गर्मी सृजन को बहुत कम करती है।
डिजिटल
माइक्रोप्रोसेसर जैसी डिजिटल प्रौद्योगिकियों की वृद्धि ने किसी भी अन्य प्रकार के सिलिकॉन-आधारित ट्रांजिस्टर की तुलना में MOSFET तकनीक को तेजी से आगे बढ़ाने की प्रेरणा प्रदान की है।[32] डिजिटल स्विचिंग के लिए MOSFETs का एक बड़ा लाभ यह है कि गेट और चैनल के बीच ऑक्साइड परत DC करंट को गेट के माध्यम से बहने से रोकती है, जिससे बिजली की खपत कम हो जाती है और एक बहुत बड़ा इनपुट प्रतिबाधा देता है। गेट और चैनल के बीच का इंसुलेटिंग ऑक्साइड एक MOSFET को पहले और बाद के चरणों से एक लॉजिक चरण में प्रभावी रूप से अलग करता है, जो एक एकल MOSFET आउटपुट को MOSFET इनपुट की काफी संख्या में ड्राइव करने की अनुमति देता है। द्विध्रुवी ट्रांजिस्टर-आधारित तर्क (जैसे कि ट्रांजिस्टर-ट्रांसिस्टर लॉजिक) में इतनी उच्च प्रशंसक क्षमता नहीं है। यह अलगाव भी डिजाइनरों के लिए स्वतंत्र रूप से तर्क चरणों के बीच कुछ हद तक लोडिंग प्रभावों को अनदेखा करना आसान बनाता है। उस सीमा को ऑपरेटिंग आवृत्ति द्वारा परिभाषित किया गया है: जैसे -जैसे आवृत्तियों में वृद्धि होती है, MOSFETs का इनपुट प्रतिबाधा कम हो जाता है।
एनालॉग
डिजिटल सर्किट में MOSFET के फायदे सभी एनालॉग सर्किट में वर्चस्व में अनुवाद नहीं करते हैं। दो प्रकार के सर्किट ट्रांजिस्टर व्यवहार की विभिन्न विशेषताओं पर आकर्षित करते हैं। डिजिटल सर्किट स्विच करते हैं, अपना अधिकांश समय पूरी तरह से या पूरी तरह से बंद कर देते हैं। एक से दूसरे में संक्रमण केवल गति और चार्ज के संबंध में चिंता का विषय है। एनालॉग सर्किट संक्रमण क्षेत्र में संचालन पर निर्भर करते हैं जहां छोटे परिवर्तन vgs आउटपुट (नाली) करंट को मॉड्यूलेट कर सकते हैं। JFET और द्विध्रुवी जंक्शन ट्रांजिस्टर (BJT) को सटीक मिलान (एकीकृत सर्किट में आसन्न उपकरणों), उच्च ट्रांसकॉन्डक्टेंस और कुछ तापमान विशेषताओं के लिए पसंद किया जाता है, जो सर्किट तापमान के रूप में प्रदर्शन की पूर्वानुमान को सरल बनाए रखते हैं।
फिर भी, MOSFETs व्यापक रूप से कई प्रकार के एनालॉग सर्किटों में उपयोग किए जाते हैं क्योंकि उनके स्वयं के फायदे (शून्य गेट करंट, उच्च और समायोज्य आउटपुट प्रतिबाधा और बेहतर मजबूती बनाम BJTs जो कि स्थायी रूप से भी हल्के से एमिटर-बेस को तोड़कर नीचा दिखाया जा सकता है) के कारण।[vague] कई एनालॉग सर्किट की विशेषताओं और प्रदर्शन को उपयोग किए गए MOSFETS के आकार (लंबाई और चौड़ाई) को बदलकर ऊपर या नीचे किया जा सकता है। तुलना करके, द्विध्रुवी ट्रांजिस्टर में एक अलग स्केलिंग कानून का पालन करते हैं। गेट करंट (शून्य) और ड्रेन-सोर्स ऑफसेट वोल्टेज (शून्य) के बारे में MOSFETS की आदर्श विशेषताएं भी उन्हें लगभग आदर्श स्विच तत्व बनाती हैं, और स्विच किए गए कैपेसिटर एनालॉग सर्किट को भी व्यावहारिक बनाते हैं। उनके रैखिक क्षेत्र में, MOSFETS का उपयोग सटीक प्रतिरोधों के रूप में किया जा सकता है, जिसमें BJTS की तुलना में बहुत अधिक नियंत्रित प्रतिरोध हो सकता है। उच्च शक्ति सर्किट में, MOSFETs को कभी -कभी BJTs के रूप में थर्मल भगोड़ा से पीड़ित नहीं होने का फायदा होता है।[dubious ] इसका मतलब यह है कि पूर्ण एनालॉग सर्किट एक बहुत छोटे स्थान पर और सरल निर्माण तकनीकों के साथ सिलिकॉन चिप पर बनाया जा सकता है। MOSFETs आदर्श रूप से आगमनात्मक किकबैक के लिए सहिष्णुता के कारण आगमनात्मक भार स्विच करने के लिए अनुकूल हैं।
कुछ आईसीएस (ICs) एकल मिश्रित-सिग्नल एकीकृत सर्किट पर एनालॉग और डिजिटल MOSFET सर्किटरी को जोड़ते हैं, जिससे आवश्यक बोर्ड स्पेस भी छोटा हो जाता है। यह एक चिप स्तर पर डिजिटल सर्किट से एनालॉग सर्किट को अलग करने की आवश्यकता बनाता है, जिससे इन्सुलेटर (SOI) पर अलगाव के छल्ले और सिलिकॉन का उपयोग होता है।चूंकि MOSFETs को BJT की तुलना में दी गई बिजली की एक राशि को संभालने के लिए अधिक स्थान की आवश्यकता होती है, इसलिए निर्माण प्रक्रियाएं BJTS और MOSFETs को एकल डिवाइस में शामिल कर सकती हैं। यदि वे केवल एक BJT-FET और BICMOS (द्विध्रुवी-CMOS) होते हैं, तो मिश्रित-ट्रांसिस्टर डिवाइस को BI-FETs (द्विध्रुवी FET) कहा जाता है, यदि वे पूरक BJT-FETs होते हैं।ऐसे उपकरणों में अछूता गेट्स और उच्च वर्तमान घनत्व दोनों के फायदे हैं।
एनालॉग स्विच
This section does not cite any sources. (September 2016) (Learn how and when to remove this template message) |
MOSFET एनालॉग स्विच MOSFET का उपयोग एनालॉग सिग्नल को पारित करने के लिए करते हैं, और जब बंद होने पर उच्च प्रतिबाधा के रूप में। MOSFET स्विच में दोनों दिशाओं में सिग्नल प्रवाहित होते हैं।इस एप्लिकेशन में, स्रोत/नाली इलेक्ट्रोड के सापेक्ष वोल्टेज के आधार पर एक MOSFET विनिमय स्थानों का नाली और स्रोत होते हैं। स्रोत एक N-MOS के लिए अधिक नकारात्मक पक्ष है या P-MOS के लिए अधिक सकारात्मक पक्ष है।ये सभी स्विच इस बात पर सीमित हैं कि वे अपने गेट-सोर्स, गेट-ड्रेन और सोर्स-ड्रेन वोल्टेज द्वारा किन संकेतों को पास या रोक सकते हैं;वोल्टेज, वर्तमान, या बिजली की सीमा से अधिक स्विच को संभावित रूप से नुकसान पहुंचाएगा।
एकल-प्रकार
यह एनालॉग स्विच P या N प्रकार के चार-टर्मिनल सरल MOSFET का उपयोग करता है।
N-टाइप स्विच के मामले में, शरीर सबसे नकारात्मक आपूर्ति (आमतौर पर जीएनडी) से जुड़ा होता है और गेट का उपयोग स्विच नियंत्रण के रूप में किया जाता है।जब भी गेट वोल्टेज स्रोत वोल्टेज से कम से कम एक थ्रेशोल्ड वोल्टेज से अधिक हो जाता है, तो MOSFET का संचालन होता है। वोल्टेज जितना अधिक होगा, उतना ही MOSFET आचरण कर सकता है।एक N-MOS स्विच v से कम सभी वोल्टेज पास करता है Vgate − Vtn. जब स्विच का संचालन हो रहा है, तो यह आम तौर पर ऑपरेशन के रैखिक (या ओमिक) मोड में संचालित होता है, क्योंकि स्रोत और नाली वोल्टेज आमतौर पर लगभग बराबर होंगे।
P-MOS, के मामले में, शरीर सबसे सकारात्मक वोल्टेज से जुड़ा होता है, और गेट को स्विच को चालू करने के लिए कम क्षमता पर लाया जाता है। P-MOS स्विच V से अधिक सभी वोल्टेज पास करता है Vgate − Vtp (थ्रेशोल्ड वोल्टेज Vtp एन्हांसमेंट-मोड P-MOS के मामले में नकारात्मक है)।
डुअल-टाइप(CMOS)
यह पूरक या CMOS प्रकार का स्विच एकल-प्रकार के स्विच की सीमाओं का मुकाबला करने के लिए एक P-MOS और एक N-MOS FET का उपयोग करता है। FETs में उनके नालियां और स्रोत समानांतर में जुड़े होते हैं, P-MOS, का शरीर उच्च क्षमता से जुड़ा होता है (v)DD और N-MOS का शरीर कम क्षमता (gnd) से जुड़ा हुआ है।स्विच को चालू करने के लिए, P-MOS का गेट कम क्षमता के लिए संचालित होता है और N-MOS का गेट उच्च क्षमता के लिए संचालित होता है। वोल्टेज के लिए VDD − Vtp and gnd − Vtp, दोनों FETs सिग्नल का संचालन करते हैं; से कम वोल्टेज के लिए gnd − Vtp, N-MOS अकेले संचालन करता है;और V से अधिक वोल्टेज के लिए VDD − Vtn , P-MOS अकेले संचालित करता है।
इस स्विच के लिए वोल्टेज सीमाएं दोनों FET के लिए गेट-स्रोत, गेट-ड्रेन और स्रोत-सूत्र वोल्टेज सीमाएं हैं।इसके अलावा, P-MOS आमतौर पर N-MOS की तुलना में दो से तीन गुना चौड़ा होता है, इसलिए स्विच को दो दिशाओं में गति के लिए संतुलित किया जाएगा।
तीन-राज्य तर्क | त्रि-राज्य सर्किटरी कभी-कभी अपने आउटपुट पर एक CMOS MOSFET स्विच को शामिल करता है, जब एक कम-ओहमिक, पूर्ण-रेंज आउटपुट के लिए प्रदान किया जाता है, और जब एक उच्च-ओहमिक, मध्य-स्तरीय सिग्नल बंद हो जाता है।
निर्माण
गेट सामग्री
गेट सामग्री के लिए प्राथमिक मानदंड यह है कि यह एक अच्छा कंडक्टर (सामग्री) है। अत्यधिक डोपेड पॉलीक्रिस्टलाइन सिलिकॉन एक स्वीकार्य है, लेकिन निश्चित रूप से आदर्श कंडक्टर नहीं है, और मानक गेट सामग्री के रूप में इसकी भूमिका में कुछ और तकनीकी कमियों से भी ग्रस्त है। फिर भी, पॉलीसिलिकॉन के उपयोग के पक्ष में कई कारण हैं:
- थ्रेसहोल्ड वोल्टेज (और परिणामस्वरूप स्रोत पर स्रोत पर नाली) को गेट सामग्री और चैनल सामग्री के बीच कार्य समारोह अंतर द्वारा संशोधित किया जाता है। क्योंकि पॉलीसिलिकॉन एक अर्धचालक है, इसके कार्य समारोह को डोपिंग के प्रकार और स्तर को समायोजित करके संशोधित किया जा सकता है। इसके अलावा, क्योंकि पॉलीसिलिकॉन में अंतर्निहित सिलिकॉन चैनल के रूप में एक ही बैंडगैप होता है, यह NMOS और PMOS दोनों उपकरणों के लिए कम थ्रेशोल्ड वोल्टेज प्राप्त करने के लिए कार्य समारोह को ट्यून करने के लिए काफी सीधा है। इसके विपरीत, धातुओं के कार्य कार्यों को आसानी से संशोधित नहीं किया जाता है, इसलिए कम थ्रेशोल्ड वोल्टेज (LVT) प्राप्त करने के लिए कार्य फ़ंक्शन को ट्यून करना एक महत्वपूर्ण चुनौती बन जाता है। इसके अतिरिक्त, PMOS और NMOS दोनों उपकरणों पर कम-दहलीज उपकरण प्राप्त करने के लिए कभी-कभी प्रत्येक डिवाइस प्रकार के लिए विभिन्न धातुओं के उपयोग की आवश्यकता होती है।
- सिलिकॉन- SiO2 इंटरफ़ेस का अच्छी तरह से अध्ययन किया गया है और अपेक्षाकृत कम दोषों के लिए जाना जाता है। इसके विपरीत कई मेटल-इन्सुलेटर इंटरफेस में दोषों के महत्वपूर्ण स्तर होते हैं जो फर्मी स्तर पिनिंग , चार्जिंग, या अन्य घटनाओं को जन्म दे सकते हैं जो अंततः डिवाइस के प्रदर्शन को नीचा दिखाते हैं।
- MOSFET फैब्रिकेशन (सेमीकंडक्टर) प्रक्रिया में, बेहतर प्रदर्शन करने वाले ट्रांजिस्टर बनाने के लिए कुछ उच्च-तापमान चरणों से पहले गेट सामग्री को जमा करना बेहतर होता है। इस तरह के उच्च तापमान कदम कुछ धातुओं को पिघला देंगे, धातु के प्रकारों को सीमित करते हैं जिनका उपयोग धातु-गेट-आधारित प्रक्रिया में किया जा सकता है।
जबकि पॉलीसिलिकॉन गेट पिछले बीस वर्षों के लिए वास्तविक मानक रहे हैं, उनके पास कुछ नुकसान हैं, जिनके कारण धातु के गेट्स द्वारा उनके भविष्य के प्रतिस्थापन का नेतृत्व किया है। इन नुकसान में शामिल हैं:
- पॉलीसिलिकॉन एक महान कंडक्टर नहीं है (धातुओं की तुलना में लगभग 1000 गुना अधिक प्रतिरोधक) जो सामग्री के माध्यम से संकेत प्रसार की गति को कम करता है। डोपिंग के स्तर को बढ़ाकर प्रतिरोधकता को कम किया जा सकता है, लेकिन यहां तक कि अत्यधिक डोपेड पॉलीसिलिकॉन भी अधिकांश धातुओं की तरह प्रवाहकीय नहीं है। चालकता में सुधार करने के लिए, कभी-कभी एक उच्च तापमान वाली धातु जैसे कि टंगस्टन , टाइटेनियम , कोबाल्ट , और हाल ही में निकेल को पॉलीसिलिकॉन की शीर्ष परतों के साथ मिश्र धातु दी जाती है। इस तरह की मिश्रित सामग्री को सिलाइड कहा जाता है। सिलाइड-पॉलीसिलिकॉन संयोजन में अकेले पॉलीसिलिकॉन की तुलना में बेहतर विद्युत गुण होते हैं और अभी भी बाद के प्रसंस्करण में पिघल नहीं जाते हैं। इसके अलावा दहलीज वोल्टेज अकेले पॉलीसिलिकॉन की तुलना में काफी अधिक नहीं है, क्योंकि सिलाइड सामग्री चैनल के पास नहीं है। जिस प्रक्रिया में गेट इलेक्ट्रोड और स्रोत और नाली क्षेत्रों दोनों पर सिलाइड का गठन किया जाता है, उसे कभी-कभी सैलिसाइड , स्व-संरेखित सिलाइड कहा जाता है।
- जब ट्रांजिस्टर को बेहद स्केल किया जाता है, तो गेट ढांकता हुआ परत को बहुत पतली बनाना आवश्यक होता है, अत्याधुनिक प्रौद्योगिकियों में 1 NM है । यहां देखी गई एक घटना तथाकथित पाली की कमी का प्रभाव है, जहां ट्रांजिस्टर इनवर्जन में होने पर गेट ढांकता हुआ गेट के ढांकता हुआ के बगल में गेट पॉलीसिलिकॉन परत में एक कमी परत बनाई जाती है। इस समस्या से बचने के लिए, एक धातु गेट वांछित है। विभिन्न प्रकार के धातु के द्वार जैसे कि टैंटलम , टंगस्टन, टैंटलम नाइट्राइड , और टाइटेनियम नाइट्राइड का उपयोग किया जाता है, आमतौर पर उच्च-k परावैद्युतिकी के साथ संयोजन में। एक विकल्प पूरी तरह से सिलिकेटेड पॉलीसिलिकन गेट्स का उपयोग करना है, जिसे फुस्सी के रूप में जाना जाता है।
वर्तमान उच्च प्रदर्शन सीपीयू धातु गेट प्रौद्योगिकी का उपयोग करते हैं, साथ में उच्च-k परावैद्युतिकी, एक संयोजन जिसे हाई-, मेटल गेट (HKMG) के रूप में जाना जाता है। धातु के फाटकों के नुकसान कुछ तकनीकों से दूर हो जाते हैं:[33]
- थ्रेसहोल्ड वोल्टेज को उच्च-k परावैद्युतिकी और मुख्य धातु के बीच एक पतली कार्य फ़ंक्शन धातु परत को शामिल करके ट्यून किया जाता है।यह परत काफी पतली है कि गेट का कुल कार्य कार्य मुख्य धातु और पतली धातु कार्य कार्यों (या तो एनीलिंग के दौरान मिश्र धातु के कारण, या केवल पतली धातु द्वारा अपूर्ण स्क्रीनिंग के कारण) से प्रभावित होता है। इस प्रकार थ्रेसहोल्ड वोल्टेज को पतली धातु की परत की मोटाई से ट्यून किया जा सकता है।
- उच्च-k परावैद्युतिकी (डाइलेक्ट्रिक्स) का अब अच्छी तरह से अध्ययन किया जाता है, और उनके दोषों को समझा जाता है।
- HKMG प्रक्रियाएं मौजूद हैं जिन्हें उच्च तापमान की एनील का अनुभव करने के लिए धातुओं की आवश्यकता नहीं है; अन्य प्रक्रियाएं उन धातुओं का चयन करती हैं जो एनीलिंग स्टेप से बच सकती हैं।
इन्सुलेटर
चूंकि उपकरणों को छोटे बना दिया जाता है, इन्सुलेटिंग परतों को पतली बनाई जाती है, अक्सर थर्मल ऑक्सीकरण या सिलिकॉन (लोको स) के स्थानीयकृत ऑक्सीकरण के चरणों के माध्यम से।नैनो-स्केल डिवाइसों के लिए, चैनल से गेट इलेक्ट्रोड तक इन्सुलेटर के माध्यम से वाहक के कुछ बिंदु क्वांटम टनलिंग पर होता है। परिणामी रिसाव (अर्धचालक) वर्तमान को कम करने के लिए, एक उच्च ढांकता हुआ स्थिरांक वाली सामग्री का चयन करके इन्सुलेटर को पतला बनाया जा सकता है।यह देखने के लिए कि मोटाई और ढांकता हुआ स्थिरांक संबंधित हैं, ध्यान दें कि गॉस का नियम क्षेत्र को चार्ज करने के लिए जोड़ता है:
q = चार्ज घनत्व के साथ, κ = परावैद्युतिकी स्थिरांक, ε0 = खाली जगह की पारगम्यता और E = विद्युत क्षेत्र की पारगम्यता।इस कानून से ऐसा प्रतीत होता है कि चैनल में एक ही शुल्क को बनाए रखा जा सकता है, बशर्ते एक निचले क्षेत्र में κ को बढ़ाया जाता है।गेट पर वोल्टेज द्वारा दिया गया है:
VG = गेट वोल्टेज, Vch = इन्सुलेटर के चैनल पक्ष में वोल्टेज, और tins = इन्सुलेटर मोटाई। इस समीकरण से पता चलता है कि जब इंसुलेटर की मोटाई बढ़ती है, तो गेट वोल्टेज नहीं बढ़ेगा, बशर्ते K रखने के लिए बढ़ जाए tins / κ = स्थिर (अधिक विस्तार के लिए उच्च-परावैद्युतिकी (डाइलेक्ट्रिक्स) पर लेख देखें, और इस लेख में गेट-ऑक्साइड ( रिसाव (लीकेज) पर इस लेख में ऊपर सीधे स्थित है।
एक MOSFET में इन्सुलेटर परावैद्युतिकी (डाइलेक्ट्रिक्स) है जो किसी भी घटना में सिलिकॉन ऑक्साइड हो सकता है, जो लोको द्वारा गठित किया जाता है लेकिन कई अन्य ढांकता हुआ सामग्री कार्यरत हैं। परावैद्युतिकी (डाइलेक्ट्रिक्स) के लिए सामान्य शब्द गेट है क्योंकि परावैद्युतिकी (डाइलेक्ट्रिक्स) गेट इलेक्ट्रोड के नीचे और MOSFET के चैनल के ऊपर सीधे स्थित है।
जंक्शन डिजाइन
स्रोत-टू-बॉडी और ड्रेन-टू-बॉडी पी-एन जंक्शन तीन प्रमुख कारकों के कारण बहुत अधिक ध्यान देने की वस्तु हैं: उनका डिज़ाइन वर्तमान-वोल्टेज विशेषता को प्रभावित करता है। डिवाइस की वर्तमान-वोल्टेज (I-V) विशेषताओं, आउटपुट प्रतिरोध को कम करना,और जंक्शन कैपेसिटेंस के लोडिंग प्रभाव के माध्यम से डिवाइस की गति भी, और अंत में, जंक्शन रिसाव के कारण स्टैंड-बाय पावर अपव्यय का घटक। [[file:MOSFET junction structure.png|thumb|upright=1.2|MOSFET उथले जंक्शन एक्सटेंशन, उठाया स्रोत और नाली और हेलो इम्प्लांट दिखाते हैं।ऑक्साइड स्पेसर्स द्वारा गेट से अलग किए गए स्रोत और नाली को अलग किया गया थ्रेशोल्ड वोल्टेज और आई-वी वक्रों पर चैनल की लंबाई मॉड्यूलेशन प्रभाव के नाली प्रेरित बाधा को उथले जंक्शन एक्सटेंशन का उपयोग करके कम किया जाता है।इसके अलावा, हेलो डोपिंग का उपयोग किया जा सकता है, अर्थात, एक ही डोपिंग प्रकार के बहुत पतले भारी डोप किए गए क्षेत्रों के अलावा, जो कि घटाव क्षेत्रों की सीमा को सीमित करने के लिए जंक्शन की दीवारों के खिलाफ शरीर तंग है।[34] कैपेसिटिव प्रभाव उठाए गए स्रोत और नाली ज्यामितीयों का उपयोग करके सीमित होते हैं जो कि सिलिकॉन के बजाय अधिकांश संपर्क क्षेत्र सीमा मोटी ढांकता हुआ बनाते हैं।[35] जंक्शन डिजाइन की ये विभिन्न विशेषताएं आंकड़े में (कलात्मक लाइसेंस के साथ) दिखाई गई हैं।
स्केलिंग
This section is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. (September 2016) (Learn how and when to remove this template message) |
[[file:Intel gate length trend.PNG|thumb|upright=1.2|इंटेल सीपीयू ट्रांजिस्टर गेट की लंबाई की प्रवृत्ति [[file:WIde-swing MOSFET mirror.PNG|thumb|upright=1.2|MOSFET संस्करण का लाभ उठाया वर्तमान दर्पण ;एम1 और एम2 सक्रिय मोड में हैं, जबकि एम3 और एम4 ओमिक मोड में हैं, और प्रतिरोधों की तरह काम करते हैं।परिचालन एम्पलीफायर प्रतिक्रिया प्रदान करता है जो एक उच्च आउटपुट प्रतिरोध को बनाए रखता है।
पिछले दशकों में, MOSFET (जैसा कि डिजिटल लॉजिक के लिए उपयोग किया जाता है) को लगातार आकार में बढ़ाया गया है;विशिष्ट MOSFET चैनल की लंबाई एक बार कई माइक्रोमीटर थे, लेकिन आधुनिक एकीकृत सर्किट दसियों नैनोमीटर की चैनल लंबाई के साथ MOSFET को शामिल कर रहे हैं।स्केलिंग कानून पर रॉबर्ट एच। डेनार्ड का काम यह मानने में महत्वपूर्ण था कि यह चल रही कमी संभव थी।इंटेल ने 2009 के अंत में 32 & nbsp; एनएम फीचर साइज (चैनल के साथ और भी कम होने के साथ) की एक प्रक्रिया का उत्पादन शुरू किया। अर्धचालक उद्योग एक रोडमैप, सेमीकंडक्टर्स के लिए अंतर्राष्ट्रीय प्रौद्योगिकी रोडमैप बनाए रखता है,[36] जो MOSFET विकास के लिए गति निर्धारित करता है। ऐतिहासिक रूप से, MOSFET के आकार को कम करने के साथ कठिनाइयाँ अर्धचालक डिवाइस निर्माण प्रक्रिया के साथ जुड़ी हुई हैं, बहुत कम वोल्टेज का उपयोग करने की आवश्यकता है, और खराब विद्युत प्रदर्शन के साथ सर्किट रीडिज़ाइन और इनोवेशन (छोटे MOSFETS उच्च रिसाव धाराएं और कम आउटपुट प्रतिरोध का प्रदर्शन करते हैं )।
छोटे MOSFETs कई कारणों से वांछनीय हैं। ट्रांजिस्टर को छोटा बनाने का मुख्य कारण किसी दिए गए चिप क्षेत्र में अधिक से अधिक डिवाइस पैक करना है। यह एक छोटे क्षेत्र में एक ही कार्यक्षमता के साथ एक चिप में होता है, या एक ही क्षेत्र में अधिक कार्यक्षमता के साथ चिप्स। चूंकि एक वेफर (इलेक्ट्रॉनिक्स) के लिए निर्माण लागत अपेक्षाकृत तय होती है, इसलिए प्रति एकीकृत सर्किट की लागत मुख्य रूप से उन चिप्स की संख्या से संबंधित होती है जो प्रति वेफर का उत्पादन किया जा सकता है। इसलिए, छोटे आईसीएस प्रति चिप प्रति अधिक चिप्स की अनुमति देते हैं, प्रति चिप की कीमत कम करते हैं। वास्तव में, पिछले 30 वर्षों में एक नई तकनीक नोड पेश किए जाने के बाद प्रति चिप ट्रांजिस्टर की संख्या हर 2-3 साल में दोगुनी हो गई है। उदाहरण के लिए, 45 एनएम तकनीक में निर्मित माइक्रोप्रोसेसर में MOSFETs की संख्या 65 एनएम चिप में दोगुनी हो सकती है। ट्रांजिस्टर घनत्व का यह दोहरीकरण पहली बार 1965 में गॉर्डन मूर द्वारा देखा गया था और इसे आमतौर पर मूर के नियम के रूप में जाना जाता है।[37] यह भी उम्मीद की जाती है कि छोटे ट्रांजिस्टर तेजी से स्विच करें। उदाहरण के लिए, आकार में कमी के लिए एक दृष्टिकोण MOSFET का एक स्केलिंग है जिसे आनुपातिक रूप से कम करने के लिए सभी डिवाइस आयामों की आवश्यकता होती है। मुख्य डिवाइस आयाम चैनल की लंबाई, चैनल की चौड़ाई और ऑक्साइड मोटाई हैं। जब उन्हें समान कारकों द्वारा कम किया जाता है, तो ट्रांजिस्टर चैनल प्रतिरोध नहीं बदलता है, जबकि गेट कैपेसिटेंस को उस कारक द्वारा काट दिया जाता है। इसलिए, एक समान कारक के साथ ट्रांजिस्टर तराजू की आरसी देरी । हालांकि यह पारंपरिक रूप से पुरानी प्रौद्योगिकियों के लिए मामला रहा है, अत्याधुनिक MOSFETS के लिए ट्रांजिस्टर आयामों की कमी के लिए जरूरी नहीं कि उच्च चिप गति में अनुवाद किया जाए क्योंकि इंटरकनेक्ट के कारण देरी अधिक महत्वपूर्ण है।
चैनल की लंबाई के साथ MOSFETs का उत्पादन एक माइक्रोमीटर की तुलना में बहुत छोटा है, एक चुनौती है, और अर्धचालक डिवाइस निर्माण की कठिनाइयाँ हमेशा एकीकृत सर्किट प्रौद्योगिकी को आगे बढ़ाने में एक सीमित कारक हैं। हालांकि परमाणु परत के बयान जैसी प्रक्रियाओं ने छोटे घटकों के लिए निर्माण में सुधार किया है, MOSFET के छोटे आकार (कुछ दसियों नैनोमीटर से कम) ने परिचालन समस्याएं पैदा की हैं:
- उच्च सबथ्रेशोल्ड चालन
- जैसा कि MOSFET ज्यामिति सिकुड़ जाता है, विश्वसनीयता बनाए रखने के लिए गेट पर लागू होने वाले वोल्टेज को कम किया जाना चाहिए। प्रदर्शन को बनाए रखने के लिए, MOSFET की दहलीज वोल्टेज को भी कम करना होगा। चूंकि थ्रेशोल्ड वोल्टेज कम हो जाता है, ट्रांजिस्टर को सीमित वोल्टेज स्विंग के साथ पूरा टर्न-ऑन करने के लिए पूर्ण टर्न-ऑफ से स्विच नहीं किया जा सकता है; सर्किट डिज़ाइन ऑन केस में मजबूत करंट और ऑफ केस में कम करंट के बीच एक समझौता है, और एप्लिकेशन यह निर्धारित करता है कि एक दूसरे पर एक का पक्ष लेना है या नहीं। सबथ्रेशोल्ड रिसाव (सबथ्रेशोल्ड कंडक्शन, गेट-ऑक्साइड रिसाव और रिवर्स-बायस्ड जंक्शन रिसाव सहित), जिसे अतीत में नजरअंदाज कर दिया गया था, अब आधुनिक उच्च-प्रदर्शन वीएलएसआई चिप्स की कुल बिजली की खपत के आधे से ऊपर का उपभोग कर सकता है।[38][39]
- गेट-ऑक्साइड रिसाव में वृद्धि
- गेट ऑक्साइड, जो गेट और चैनल के बीच इन्सुलेटर के रूप में कार्य करता है, को ट्रांजिस्टर चालू होने पर चैनल चालकता और प्रदर्शन को बढ़ाने के लिए जितना संभव हो उतना पतला बनाया जाना चाहिए और ट्रांजिस्टर बंद होने पर सबथ्रेशोल्ड रिसाव को कम करने के लिए। हालांकि, वर्तमान गेट ऑक्साइड के साथ लगभग 1.2 & nbsp; नैनोमीटर की मोटाई के साथ (जो सिलिकॉन में ~ 5 & nbsp; परमाणु मोटी है) क्वांटम टनलिंग की क्वांटम यांत्रिकी घटना गेट और चैनल के बीच होती है, जिससे बिजली की खपत में वृद्धि होती है। सिलिकॉन डाइऑक्साइड को पारंपरिक रूप से गेट इन्सुलेटर के रूप में इस्तेमाल किया गया है। सिलिकॉन डाइऑक्साइड में हालांकि एक मामूली ढांकता हुआ स्थिरांक होता है। गेट ढांकता हुआ के ढांकता हुआ स्थिरांक को बढ़ाने से उच्च समाई बनाए रखते हुए एक मोटी परत की अनुमति मिलती है (कैपेसिटेंस ढांकता हुआ स्थिर और ढांकता हुआ मोटाई के विपरीत आनुपातिक है)। बाकी सभी समान, एक उच्च ढांकता हुआ मोटाई गेट और चैनल के बीच ढांकता हुआ के माध्यम से क्वांटम टनलिंग करंट को कम कर देती है। इंसुलेटर जिनमें सिलिकॉन डाइऑक्साइड (उच्च- κ डाइलेक्ट्रिक्स के रूप में संदर्भित) की तुलना में एक बड़ा ढांकता हुआ स्थिर होता है, जैसे कि समूह IVB धातु सिलिकेट्स उदा। 45 नैनोमीटर प्रौद्योगिकी नोड से गेट रिसाव को कम करने के लिए हाफनियम और जिरकोनियम सिलिकेट्स और ऑक्साइड का उपयोग किया जा रहा है। दूसरी ओर, नए गेट इन्सुलेटर की बाधा ऊंचाई एक महत्वपूर्ण विचार है; सेमीकंडक्टर और ढांकता हुआ (और वैलेंस बैंड एनर्जी में इसी अंतर) के बीच चालन बैंड ऊर्जा में अंतर भी रिसाव वर्तमान स्तर को प्रभावित करता है। पारंपरिक गेट ऑक्साइड, सिलिकॉन डाइऑक्साइड के लिए, पूर्व बाधा लगभग 8 इलेक्ट्रॉनवोल्ट है। कई वैकल्पिक डायलेक्ट्रिक्स के लिए मूल्य काफी कम है, टनलिंग करंट को बढ़ाने के लिए प्रवृत्त, कुछ हद तक उच्च ढांकता हुआ स्थिरांक के लाभ को नकारता है। अधिकतम गेट-स्रोत वोल्टेज महत्वपूर्ण रिसाव होने से पहले गेट ढांकता हुआ द्वारा बनाए रखने में सक्षम विद्युत क्षेत्र की ताकत से निर्धारित होता है। चूंकि इन्सुलेट डाइलेक्ट्रिक को पतला बनाया जाता है, इसलिए इसके भीतर विद्युत क्षेत्र की ताकत एक निश्चित वोल्टेज के लिए ऊपर जाती है। यह पतले ढांकता हुआ के साथ कम वोल्टेज का उपयोग करके आवश्यक है।
- बढ़ा हुआ जंक्शन रिसाव
- उपकरणों को छोटा बनाने के लिए, जंक्शन डिजाइन अधिक जटिल हो गया है, जिससे उच्च डोपिंग (अर्धचालक) स्तर, उथले जंक्शन, हेलो डोपिंग और आगे, आगे,[40][41] सभी नाली-प्रेरित बाधा कम होने के लिए (#Junction डिजाइन पर अनुभाग देखें)।इन जटिल जंक्शनों को रखने के लिए, क्षति को दूर करने के लिए पूर्व में उपयोग किए जाने वाले एनीलिंग चरणों को और विद्युत रूप से सक्रिय दोषों को बंद कर दिया जाना चाहिए[42] जंक्शन रिसाव बढ़ रहा है।भारी डोपिंग भी पतली कमी परतों और अधिक पुनर्संयोजन केंद्रों के साथ जुड़ा हुआ है, जिसके परिणामस्वरूप रिसाव वर्तमान में वृद्धि होती है, यहां तक कि जाली क्षति के बिना भी।
- नाली-प्रेरित बैरियर लोअरिंग (DIBL) और VT रोल ऑफ
- शॉर्ट-चैनल प्रभाव के कारण, चैनल का गठन पूरी तरह से गेट द्वारा नहीं किया जाता है, लेकिन अब नाली और स्रोत भी चैनल गठन को प्रभावित करते हैं।जैसे -जैसे चैनल की लंबाई कम होती जाती है, स्रोत और नाली के घटने वाले क्षेत्र एक साथ आते हैं और दहलीज वोल्टेज बनाते हैं (v)T) चैनल की लंबाई का एक कार्य।इसे वी कहा जाता हैT धड़ल्ले से बोलना।वीT स्रोत वोल्टेज v के लिए नाली का कार्य भी बन जाता हैDS।जैसा कि हम v बढ़ाते हैंDS, कमी वाले क्षेत्र आकार में बढ़ते हैं, और काफी मात्रा में आरोप V द्वारा कम हो जाता हैDS।चैनल बनाने के लिए आवश्यक गेट वोल्टेज को तब कम किया जाता है, और इस प्रकार, वीT वी में वृद्धि के साथ घटता हैDS। इस प्रभाव को ड्रेन प्रेरित बैरियर लोअरिंग (DIBL) कहा जाता है।
- कम आउटपुट प्रतिरोध
- एनालॉग ऑपरेशन के लिए, अच्छे लाभ के लिए एक उच्च MOSFET आउटपुट प्रतिबाधा की आवश्यकता होती है, जो कहना है, MOSFET करंट को केवल लागू नाली-से-स्रोत वोल्टेज के साथ थोड़ा भिन्न होना चाहिए। चूंकि उपकरणों को छोटा बनाया जाता है, इसलिए नाली का प्रभाव इन दो इलेक्ट्रोडों की बढ़ती निकटता के कारण गेट के साथ अधिक सफलतापूर्वक प्रतिस्पर्धा करता है, जिससे नाली वोल्टेज के लिए MOSFET वर्तमान की संवेदनशीलता बढ़ जाती है। आउटपुट प्रतिरोध में परिणामी कमी का मुकाबला करने के लिए, सर्किट को अधिक जटिल बनाया जाता है, या तो अधिक उपकरणों की आवश्यकता होती है, उदाहरण के लिए कैस्कोड और कैस्केड एम्पलीफायर ों, या परिचालन एम्पलीफायरों का उपयोग करके फीडबैक सर्किटरी द्वारा, उदाहरण के लिए एक सर्किट जैसे कि आसन्न आकृति में।
- निचला ट्रांसकॉन्डक्टेंस
- MOSFET का ट्रांसकॉन्डक्शन इसके लाभ को तय करता है और छेद या इलेक्ट्रॉन गतिशीलता (डिवाइस प्रकार के आधार पर) के लिए आनुपातिक है, कम से कम कम नाली वोल्टेज के लिए। जैसे -जैसे MOSFET का आकार कम हो जाता है, चैनल के क्षेत्र में वृद्धि होती है और डोपेंट अशुद्धता का स्तर बढ़ जाता है। दोनों परिवर्तन वाहक की गतिशीलता को कम करते हैं, और इसलिए ट्रांसकंडक्शन। जैसा कि चैनल की लंबाई नाली वोल्टेज में आनुपातिक कमी के बिना कम हो जाती है, चैनल में विद्युत क्षेत्र को बढ़ाती है, परिणाम वाहक का वेग संतृप्ति है, वर्तमान और ट्रांसकॉन्डक्शन को सीमित करता है।
- इंटरकनेक्ट कैपेसिटेंस
- पारंपरिक रूप से, स्विचिंग समय गेट्स के गेट कैपेसिटेंस के लिए मोटे तौर पर आनुपातिक था। हालांकि, ट्रांजिस्टर छोटे और अधिक ट्रांजिस्टर बनने के साथ चिप पर रखे जा रहे हैं, कैपेसिटेंस (चिप के विभिन्न हिस्सों के बीच धातु-परत के कनेक्शन की समाई ) कैपेसिटेंस का एक बड़ा प्रतिशत बन रहा है।[43][44] संकेतों को इंटरकनेक्ट के माध्यम से यात्रा करना पड़ता है, जिससे देरी और कम प्रदर्शन में वृद्धि होती है।
- हीट प्रोडक्शन
- एक एकीकृत सर्किट पर MOSFETs का बढ़ता घनत्व पर्याप्त स्थानीयकृत गर्मी उत्पादन की समस्याओं को बनाता है जो सर्किट ऑपरेशन को बिगाड़ सकता है। सर्किट उच्च तापमान पर अधिक धीरे -धीरे काम करते हैं, और विश्वसनीयता और कम जीवनकाल को कम कर दिया है। हीट सिंक और अन्य शीतलन उपकरणों और विधियों को अब माइक्रोप्रोसेसर्स सहित कई एकीकृत सर्किट के लिए आवश्यक है। पावर MOSFETS थर्मल रनवे का खतरा है। जैसा कि उनका ऑन-स्टेट प्रतिरोध तापमान के साथ बढ़ता है, यदि लोड लगभग एक निरंतर-वर्तमान भार है, तो बिजली की हानि इसी तरह से बढ़ जाती है, जिससे आगे गर्मी पैदा होती है। जब हीटसिंक तापमान को काफी कम रखने में सक्षम नहीं होता है, तो जंक्शन का तापमान जल्दी और अनियंत्रित रूप से बढ़ सकता है, जिसके परिणामस्वरूप डिवाइस का विनाश होता है।
- प्रक्रिया भिन्नता
- MOSFETs छोटे होने के साथ, सिलिकॉन में परमाणुओं की संख्या जो ट्रांजिस्टर के कई गुणों का उत्पादन करती है, कम हो रही है, जिसके परिणामस्वरूप डोपेंट संख्या और प्लेसमेंट का नियंत्रण अधिक अनिश्चित है। चिप निर्माण के दौरान, यादृच्छिक प्रक्रिया भिन्नताएं सभी ट्रांजिस्टर आयामों को प्रभावित करती हैं: लंबाई, चौड़ाई, जंक्शन की गहराई, ऑक्साइड मोटाई आदि, और ट्रांजिस्टर सिकुड़ने के रूप में समग्र ट्रांजिस्टर आकार का अधिक प्रतिशत बन जाते हैं। ट्रांजिस्टर की विशेषताएं कम निश्चित हो जाती हैं, अधिक सांख्यिकीय। निर्माण की यादृच्छिक प्रकृति का मतलब है कि हम नहीं जानते कि कौन सा विशेष उदाहरण MOSFETS वास्तव में सर्किट के एक विशेष उदाहरण में समाप्त हो जाएगा। यह अनिश्चितता एक कम इष्टतम डिजाइन को मजबूर करती है क्योंकि डिज़ाइन को विभिन्न प्रकार के संभावित घटक MOSFETs के लिए काम करना चाहिए। प्रक्रिया भिन्नता (अर्धचालक), विनिर्माणता (आईसी), विश्वसनीयता इंजीनियरिंग और सांख्यिकीय प्रक्रिया नियंत्रण के लिए डिजाइन देखें।[45]
- मॉडलिंग चुनौतियां
- आधुनिक आईसीएस कंप्यूटर-सिम्युलेटेड हैं, जो कि पहले से निर्मित लॉट से काम करने वाले सर्किट प्राप्त करने के लक्ष्य के साथ हैं।जैसा कि उपकरणों को छोटा किया जाता है, प्रसंस्करण की जटिलता से यह अनुमान लगाना मुश्किल हो जाता है कि अंतिम उपकरण कैसा दिखता है, और भौतिक प्रक्रियाओं के मॉडलिंग के रूप में अच्छी तरह से अधिक चुनौतीपूर्ण हो जाता है।इसके अलावा, परमाणु प्रक्रियाओं की संभाव्य प्रकृति के कारण संरचना में सूक्ष्म विविधताएं सांख्यिकीय (न केवल नियतात्मक) भविष्यवाणियों की आवश्यकता होती है।ये कारक पर्याप्त सिमुलेशन बनाने के लिए गठबंधन करते हैं और पहली बार सही निर्माण में सही हैं।
अन्य प्रकार
डुअल-गेट
[[file:FINFET MOSFET.png|thumb|upright=1.2| फिनफेट
दोहरे-गेट MOSFET में एक टेट्रोड कॉन्फ़िगरेशन होता है, जहां दोनों गेट डिवाइस में वर्तमान को नियंत्रित करते हैं। यह आमतौर पर रेडियो आवृत्ति अनुप्रयोगों में छोटे-सिग्नल उपकरणों के लिए उपयोग किया जाता है, जहां निरंतर क्षमता पर नाली-साइड गेट को पूर्वाग्रह करने से मिलर प्रभाव के कारण लाभ की हानि कम हो जाती है, कैस्कोड कॉन्फ़िगरेशन में दो अलग-अलग ट्रांजिस्टर की जगह। आरएफ सर्किट में अन्य सामान्य उपयोगों में लाभ नियंत्रण और मिश्रण (आवृत्ति रूपांतरण) शामिल हैं। टेट्रोड विवरण, हालांकि सटीक, वैक्यूम-ट्यूब टेट्रोड को दोहराता नहीं है। वैक्यूम-ट्यूब टेट्रोड्स, एक स्क्रीन ग्रिड का उपयोग करते हुए, ट्रायोड वैक्यूम ट्यूबों की तुलना में बहुत कम ग्रिड-प्लेट कैपेसिटेंस और बहुत अधिक आउटपुट प्रतिबाधा और वोल्टेज लाभ का प्रदर्शन करते हैं। ये सुधार आमतौर पर परिमाण (10 गुना) या काफी अधिक का एक क्रम है। टेट्रोड ट्रांजिस्टर (चाहे द्विध्रुवी जंक्शन या क्षेत्र-प्रभाव) इस तरह की एक महान डिग्री के सुधार का प्रदर्शन नहीं करते हैं।
फिनफेट इन्सुलेटर पर एक डबल-गेट सिलिकॉन है। सिलिकॉन-ऑन-इन्सुलेटर डिवाइस, छोटे चैनलों के प्रभावों को कम करने और नाली-प्रेरित अवरोध को कम करने के लिए कई ज्यामितीयों में से एक को पेश किया जा रहा है। फिन स्रोत और नाली के बीच संकीर्ण चैनल को संदर्भित करता है। फिन के दोनों ओर एक पतली इन्सुलेट ऑक्साइड परत इसे गेट से अलग करती है। फिन के शीर्ष पर एक मोटी ऑक्साइड के साथ सोई फिनफेट्स को डबल-गेट कहा जाता है और शीर्ष पर एक पतली ऑक्साइड वाले लोगों के साथ-साथ पक्षों को ट्रिपल-गेट फिनफेट्स कहा जाता है।[46][47]
कमी-मोड
कमी-मोड MOSFET उपकरण हैं, जो पहले से वर्णित मानक वृद्धि-मोड उपकरणों की तुलना में कम आमतौर पर उपयोग किए जाते हैं।ये MOSFET डिवाइस हैं जिन्हें डोप किया जाता है ताकि एक चैनल गेट से स्रोत तक शून्य वोल्टेज के साथ भी मौजूद हो।चैनल को नियंत्रित करने के लिए, एक नकारात्मक वोल्टेज गेट पर (एन-चैनल डिवाइस के लिए) पर लागू होता है, चैनल को कम करता है, जो डिवाइस के माध्यम से वर्तमान प्रवाह को कम करता है।संक्षेप में, डीप्लेशन-मोड डिवाइस एक सामान्य रूप से बंद (ऑन) स्विच के बराबर है, जबकि एन्हांसमेंट-मोड डिवाइस एक सामान्य रूप से ओपन (ऑफ) स्विच के बराबर है।[48] रेडियो आवृत्ति क्षेत्र में उनके कम शोर के आंकड़े के कारण, और बेहतर लाभ (इलेक्ट्रॉनिक्स) #Power लाभ, इन उपकरणों को अक्सर RF फ्रंट एंड में द्विध्रुवी जंक्शन ट्रांजिस्टर के लिए पसंद किया जाता है। RF फ्रंट-एंड जैसे टेलीविजन सेट में।
रिक्तीकरण-मोड MOSFET परिवारों में सीमेंस और टेलीफंकन द्वारा BF960 और 1980 के दशक में BF980 फिलिप्स (बाद में NXP अर्धचालक बनने के लिए) शामिल हैं, जिनके डेरिवेटिव का उपयोग अभी भी स्वचालित लाभ नियंत्रण और RF फ़्रीक्वेंसी मिक्सर फ्रंट-एंड में किया जाता है।
मेटल-इन्सुलेटर-सेमिकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर (MISFET)
धातु-विज्ञान-सेमिकंडक्टर फील्ड-इफेक्ट-ट्रांसिस्टर,[49][50][51] या MISFET, MOSFET की तुलना में अधिक सामान्य शब्द है और अछूता-गेट फील्ड-इफेक्ट ट्रांजिस्टर (IGFET) का पर्यायवाची है।सभी MOSFETS MISFETs हैं, लेकिन सभी MISFETS MOSFETs नहीं हैं।
एक MISFET में गेट ढांकता हुआ इन्सुलेटर एक MOSFET में सिलिकॉन डाइऑक्साइड है, लेकिन अन्य सामग्रियों को भी नियोजित किया जा सकता है।गेट ढांकता हुआ सीधे गेट इलेक्ट्रोड के नीचे और मिसफेट के चैनल (सेमीकंडक्टर) के ऊपर स्थित है।धातु शब्द का उपयोग ऐतिहासिक रूप से गेट सामग्री के लिए किया जाता है, भले ही अब यह आमतौर पर डोपिंग (सेमीकंडक्टर) पॉलीसिलिकॉन या कुछ अन्य गैर-धातु है।
इन्सुलेटर प्रकार हो सकते हैं:
- सिलिकॉन डाइऑक्साइड, MOSFETS में
- कार्बनिक इंसुलेटर (जैसे, undoped ट्रांस-पॉलीसेटिलीन; साइनाओथाइल पुलुलान , सीईपी[52]), कार्बनिक-आधारित FETs के लिए।[51]
NMOS लॉजिक
समान वर्तमान ड्राइविंग क्षमता के उपकरणों के लिए, एन-चैनल MOSFETS को पी-चैनल MOSFETs की तुलना में छोटा बनाया जा सकता है, पी-चैनल चार्ज वाहक (इलेक्ट्रॉन छेद) के कारण एन-चैनल चार्ज वाहक (इलेक्ट्रॉन), और उत्पादन की तुलना में कम इलेक्ट्रॉन गतिशीलता होती है।सिलिकॉन सब्सट्रेट पर केवल एक प्रकार का MOSFET सस्ता और तकनीकी रूप से सरल है।ये NMOS लॉजिक के डिजाइन में ड्राइविंग सिद्धांत थे जो N-Channel MOSFETS का उपयोग विशेष रूप से करते हैं।हालांकि, लीकेज करंट की उपेक्षा करते हुए, सीएमओएस लॉजिक के विपरीत, एनएमओएस लॉजिक पावर का उपभोग करता है, जब कोई स्विचिंग नहीं हो रही है।प्रौद्योगिकी में प्रगति के साथ, CMOS लॉजिक ने 1980 के दशक के मध्य में NMOS लॉजिक को विस्थापित कर दिया, ताकि डिजिटल चिप्स के लिए पसंदीदा प्रक्रिया बन सके।
पावर मोसफेट
[[file:Power mos cell layout.svg|thumb|upright=1.2|एक पावर MOSFET का क्रॉस सेक्शन, वर्ग कोशिकाओं के साथ।एक विशिष्ट ट्रांजिस्टर कई हजार कोशिकाओं का गठन किया जाता है
पावर MOSFETS की एक अलग संरचना है।[53] अधिकांश बिजली उपकरणों के साथ, संरचना ऊर्ध्वाधर है और प्लानर नहीं है।एक ऊर्ध्वाधर संरचना का उपयोग करते हुए, ट्रांजिस्टर के लिए उच्च अवरुद्ध वोल्टेज और उच्च वर्तमान दोनों को बनाए रखना संभव है।ट्रांजिस्टर की वोल्टेज रेटिंग एन-एपिटैक्सी लेयर (क्रॉस सेक्शन देखें) की डोपिंग और मोटाई का एक कार्य है, जबकि वर्तमान रेटिंग चैनल की चौड़ाई (चैनल को व्यापक, वर्तमान में उच्च) का एक कार्य है।एक प्लानर संरचना में, वर्तमान और ब्रेकडाउन वोल्टेज रेटिंग दोनों चैनल आयामों (क्रमशः चैनल की चौड़ाई और लंबाई) का एक कार्य है, जिसके परिणामस्वरूप सिलिकॉन एस्टेट का अक्षम उपयोग होता है।ऊर्ध्वाधर संरचना के साथ, घटक क्षेत्र लगभग वर्तमान के लिए आनुपातिक है जो इसे बनाए रख सकता है, और घटक मोटाई (वास्तव में एन-एपिटैक्सियल परत की मोटाई) ब्रेकडाउन वोल्टेज के लिए आनुपातिक है।[54] पार्श्व संरचना के साथ पावर MOSFETs मुख्य रूप से उच्च-अंत ऑडियो एम्पलीफायरों और उच्च-शक्ति पीए सिस्टम में उपयोग किए जाते हैं।उनका लाभ ऊर्ध्वाधर मोसफेट्स की तुलना में संतृप्त क्षेत्र (द्विध्रुवी ट्रांजिस्टर के रैखिक क्षेत्र के अनुरूप) में एक बेहतर व्यवहार है।वर्टिकल MOSFETS को स्विच करने के लिए डिज़ाइन किया गया है।[55]
डबल-डिफ्यूज्ड मेटल-ऑक्साइड-सेमिकंडक्टर (DMOS)
LDMOS (पार्श्व डबल-डिफ्यूज्ड मेटल ऑक्साइड सेमीकंडक्टर) और VDMOS (वर्टिकल डबल-डिफ्यूज्ड मेटल ऑक्साइड सेमीकंडक्टर) हैं।इस तकनीक का उपयोग करके अधिकांश पावर MOSFET बनाए जाते हैं।
विकिरण -कठोर-बाय-डिज़ाइन (RHBD)
अर्धचालक उप-माइक्रोमीटर और नैनोमीटर इलेक्ट्रॉनिक सर्किट बाहरी अंतरिक्ष जैसे कठोर विकिरण वातावरण में सामान्य सहिष्णुता के भीतर संचालन के लिए प्राथमिक चिंता है। एक विकिरण सख्त बनाने के लिए डिजाइन दृष्टिकोणों में से एक है। विकिरण-कठोर-दर-डिज़ाइन (RHBD) डिवाइस संलग्न-लेआउट-ट्रांसिस्टर (ELT) है। आम तौर पर, MOSFET का गेट नाली को घेरता है, जिसे ELT के केंद्र में रखा जाता है। MOSFET का स्रोत गेट को घेरता है। एक और RHBD MOSFET को H-Gate कहा जाता है। इन दोनों ट्रांजिस्टर में विकिरण के संबंध में बहुत कम रिसाव वर्तमान है। हालांकि, वे आकार में बड़े हैं और एक मानक MOSFET की तुलना में सिलिकॉन पर अधिक जगह लेते हैं। पुराने एसटीआई (उथले ट्रेंच अलगाव) डिजाइनों में, सिलिकॉन ऑक्साइड क्षेत्र के पास विकिरण स्ट्राइक विकिरण प्रेरित आरोपों के संचय के कारण मानक MOSFET के कोनों पर चैनल उलटा होने का कारण बनता है। यदि शुल्क काफी बड़े हैं, तो संचित शुल्क मानक MOSFET के चैनल इंटरफ़ेस (गेट) के पास चैनल के साथ एसटीआई सतह के किनारों को प्रभावित करते हैं। इस प्रकार डिवाइस चैनल उलटा चैनल किनारों के साथ होता है और डिवाइस ऑफ-स्टेट रिसाव पथ बनाता है, जिससे डिवाइस चालू हो जाता है। इसलिए सर्किट की विश्वसनीयता गंभीर रूप से कम हो जाती है। ईएलटी कई फायदे प्रदान करता है। इन लाभों में मानक MOSFET में होने वाले गेट किनारों पर अवांछित सतह उलटा को कम करके विश्वसनीयता (सेमीकंडक्टर) में सुधार शामिल है। चूंकि गेट किनारों को ईएलटी में संलग्न किया गया है, इसलिए कोई गेट ऑक्साइड एज (गेट इंटरफ़ेस पर एसटीआई) नहीं है, और इस तरह ट्रांजिस्टर ऑफ-स्टेट रिसाव बहुत कम हो जाता है। कम-शक्ति वाले माइक्रोइलेक्ट्रॉनिक सर्किट, जिसमें कंप्यूटर, संचार उपकरण और अंतरिक्ष शटल और उपग्रहों में निगरानी प्रणाली शामिल हैं, जो पृथ्वी पर उपयोग किए जाने वाले से बहुत अलग हैं। वे विकिरण (प्रोटॉन और न्यूट्रॉन जैसे उच्च गति वाले परमाणु कण, पृथ्वी के स्थान में सौर भड़कना चुंबकीय ऊर्जा अपव्यय, एक्स-रे , गामा किरण आदि जैसे ऊर्जावान कॉस्मिक किरणों) सहिष्णु सर्किट हैं। इन विशेष इलेक्ट्रॉनिक्स को सुरक्षित अंतरिक्ष यात्रा और अंतरिक्ष यात्रियों के सुरक्षित अंतरिक्ष-तरीकों को सुनिश्चित करने के लिए RHBD MOSFET का उपयोग करके विभिन्न तकनीकों को लागू करके डिज़ाइन किया गया है।
यह भी देखें
- फ्लोटिंग-गेट MOSFET
- बीएसआईएम
- ggnmos
- उच्च इलेक्ट्रॉन गतिशीलता ट्रांजिस्टर
- पॉलीसिलिकॉन की कमी प्रभाव
- ट्रांजिस्टर मॉडल
- पावर मोसफेट#बॉडी डायोड
संदर्भ
- ↑ 1.0 1.1 Lilienfeld, Julius Edgar (1926-10-08) "Method and apparatus for controlling electric currents" U.S. Patent 1745175A
- ↑ Bakshi, U. A.; Godse, A. P. (2007). "§8.2 The depletion mode MOSFET". Electronic Circuits. Technical Publications. pp. 8–2. ISBN 978-81-8431-284-3.
- ↑ Ross, Bassett (2002). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. JHU Press. pp. 12–28.
- ↑ "Intel 45nm Hi-k Silicon Technology". Archived from the original on 2009-10-06.
- ↑ "memory components data book" (PDF). memory components data book. Intel. pp. 2–1. Archived from the original (PDF) on 4 March 2016. Retrieved 30 August 2015.
- ↑ Shichman, H. & Hodges, D. A. (1968). "Modeling and simulation of insulated-gate field-effect transistor switching circuits". IEEE Journal of Solid-State Circuits. SC-3 (3): 285–289. doi:10.1109/JSSC.1968.1049902. Archived from the original on June 10, 2013.
- ↑ For example, see Cheng, Yuhua; Hu, Chenming (1999). MOSFET modeling & BSIM3 user's guide. Springer. ISBN 978-0-7923-8575-2.. The most recent version of the BSIM model is described in V., Sriramkumar; Paydavosi, Navid; Lu, Darsen; Lin, Chung-Hsun; Dunga, Mohan; Yao, Shijing; Morshed, Tanvir; Niknejad, Ali & Hu, Chenming (2012). "BSIM-CMG 106.1.0beta Multi-Gate MOSFET Compact Model" (PDF). Department of EE and CS, UC Berkeley. Archived from the original (PDF) on 2014-07-28. Retrieved 2012-04-01.
{{cite web}}
:|archive-date=
/|archive-url=
timestamp mismatch (help) - ↑ Gray, P. R.; Hurst, P. J.; Lewis, S. H. & Meyer, R. G. (2001). Analysis and Design of Analog Integrated Circuits (Fourth ed.). New York: Wiley. pp. 66–67. ISBN 978-0-471-32168-2.
- ↑ van der Meer, P. R.; van Staveren, A.; van Roermund, A. H. M. (2004). Low-Power Deep Sub-Micron CMOS Logic: Subthreshold Current Reduction. Dordrecht: Springer. p. 78. ISBN 978-1-4020-2848-9.
- ↑ Degnan, Brian. "Wikipedia fails subvt".
- ↑ Mead, Carver (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley. p. 370. ISBN 9780201059922.
- ↑ Smith, Leslie S.; Hamilton, Alister (1998). Neuromorphic Systems: Engineering Silicon from Neurobiology. World Scientific. pp. 52–56. ISBN 978-981-02-3377-8.
- ↑ Kumar, Satish (2004). Neural Networks: A Classroom Approach. Tata McGraw-Hill. p. 688. ISBN 978-0-07-048292-0.
- ↑ Glesner, Manfred; Zipf, Peter; Renovell, Michel (2002). Field-programmable Logic and Applications: 12th International Conference. Dordrecht: Springer. p. 425. ISBN 978-3-540-44108-3.
- ↑ Vittoz, Eric A. (1996). "The Fundamentals of Analog Micropower Design". In Toumazou, Chris; Battersby, Nicholas C.; Porta, Sonia (eds.). Circuits and systems tutorials. John Wiley and Sons. pp. 365–372. ISBN 978-0-7803-1170-1.
- ↑ Shukla, Sandeep K.; Bahar, R. Iris (2004). Nano, Quantum and Molecular Computing. Springer. p. 10 and Fig. 1.4, p. 11. ISBN 978-1-4020-8067-8.
- ↑ Srivastava, Ashish; Sylvester, Dennis; Blaauw, David (2005). Statistical Analysis and Optimization For VLSI: Timing and Power. Springer. p. 135. ISBN 978-0-387-25738-9.
- ↑ Galup-Montoro, C. & M.C., Schneider (2007). MOSFET modeling for circuit analysis and design. London/Singapore: World Scientific. p. 83. ISBN 978-981-256-810-6.
- ↑ Malik, Norbert R. (1995). Electronic circuits: analysis, simulation, and design. Englewood Cliffs, NJ: Prentice Hall. pp. 315–316. ISBN 978-0-02-374910-0.
- ↑ Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. (2001). §1.5.2 p. 45. ISBN 978-0-471-32168-2.
- ↑ Sedra, A. S. & Smith, K. C. (2004). Microelectronic circuits (Fifth ed.). New York: Oxford. p. 552. ISBN 978-0-19-514251-8.
- ↑ Sedra, A. S. & Smith, K.C. (2004). p. 250, Eq. 4.14. ISBN 978-0-19-514251-8.
- ↑
For a uniformly doped p-type substrate with bulk acceptor doping of NA per unit volume,
- ↑ "Body effect". Equars.com. Archived from the original on 2014-11-10. Retrieved 2012-06-02.
- ↑ "Electronic Circuit Symbols". circuitstoday.com. 9 November 2011. Archived from the original on 13 October 2014.
- ↑ IEEE Std 315-1975 — Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Letters)
- ↑ Jaeger, Richard C.; Blalock, Travis N. "Figure 4.15 IEEE Standard MOS transistor circuit symbols". Microelectronic Circuit Design (PDF).
- ↑ "Computer History Museum – The Silicon Engine | 1955 – Photolithography Techniques Are Used to Make Silicon Devices". Computerhistory.org. Retrieved 2012-06-02.
- ↑ "1964 – First Commercial MOS IC Introduced".[permanent dead link]
- ↑ Cushman, Robert H. (20 September 1975). "2-1/2-generation μP's-$10 parts that perform like low-end mini's" (PDF). EDN.
- ↑ "Computer History Museum – The Silicon Engine | 1963 – Complementary MOS Circuit Configuration is Invented". Computerhistory.org. Retrieved 2012-06-02.
- ↑ "Computer History Museum – Exhibits – Microprocessors". Computerhistory.org. Retrieved 2012-06-02.
- ↑ "ReVera's FinFET Control". revera.com. Archived from the original on 19 September 2010.
- ↑ Colinge, Jean-Pierre; Colinge, Cynthia A. (2002). Physics of Semiconductor Devices. Dordrecht: Springer. p. 233, Figure 7.46. ISBN 978-1-4020-7018-1.
- ↑ Weber, Eicke R.; Dabrowski, Jarek, eds. (2004). Predictive Simulation of Semiconductor Processing: Status and Challenges. Dordrecht: Springer. p. 5, Figure 1.2. ISBN 978-3-540-20481-7.
- ↑ "International Technology Roadmap for Semiconductors". Archived from the original on 2015-12-28.
- ↑ "1965 – "Moore's Law" Predicts the Future of Integrated Circuits". Computer History Museum.
- ↑ Roy, Kaushik; Yeo, Kiat Seng (2004). Low Voltage, Low Power VLSI Subsystems. McGraw-Hill Professional. Fig. 2.1, p. 44, Fig. 1.1, p. 4. ISBN 978-0-07-143786-8.
- ↑ Vasileska, Dragica; Goodnick, Stephen (2006). Computational Electronics. Morgan & Claypool. p. 103. ISBN 978-1-59829-056-1.
- ↑ "Frontier Semiconductor Paper" (PDF). Archived from the original (PDF) on February 27, 2012. Retrieved 2012-06-02.
- ↑ Chen, Wai-Kai (2006). The VLSI Handbook. CRC Press. Fig. 2.28, p. 2–22. ISBN 978-0-8493-4199-1.
- ↑ Lindsay, R.; Pawlak; Kittl; Henson; Torregiani; Giangrandi; Surdeanu; Vandervorst; Mayur; Ross; McCoy; Gelpey; Elliott; Pages; Satta; Lauwers; Stolk; Maex (2011). "A Comparison of Spike, Flash, SPER and Laser Annealing for 45nm CMOS". MRS Proceedings. 765. doi:10.1557/PROC-765-D7.4.
- ↑ "VLSI wiring capacitance" (PDF). IBM Journal of Research and Development. 9 February 2021.[dead link]
- ↑ Soudris, D.; Pirsch, P.; Barke, E., eds. (2000). Integrated Circuit Design: Power and Timing Modeling, Optimization, and Simulation (10th Int. Workshop). Springer. p. 38. ISBN 978-3-540-41068-3.
- ↑ Orshansky, Michael; Nassif, Sani; Boning, Duane (2007). Design for Manufacturability And Statistical Design: A Constructive Approach. New York 309284: Springer. ISBN 9780387309286.
{{cite book}}
: CS1 maint: location (link) - ↑ Zeitzoff, P. M.; Hutchby, J. A.; Huff, H. R. (2002). "Figure 12: Simplified cross section of FinFET double-gate MOSFET.". In Park, Yoon-Soo; Shur, Michael; Tang, William (eds.). Frontiers in electronics: future chips : proceedings of the 2002 Workshop on Frontiers in Electronics (WOFE-02), St Croix, Virgin Islands, USA, 6–11 January 2002. World Scientific. p. 82. ISBN 978-981-238-222-1.
- ↑ Lee, J.-H.; Lee, J.-W.; Jung, H.-A.-R.; Choi, B.-K. (2009). "Comparison of SOI FinFETs and bulk FinFETs: Figure 2". Silicon-on-Insulator Technology and Devices. The Electrochemical Society. p. 102. ISBN 978-1-56677-712-4.
- ↑ "Depletion Mode". Techweb. Techweb. 29 January 2010. Retrieved 27 November 2010.
- ↑ "MIS". Semiconductor Glossary.
- ↑ Hadziioannou, Georges; Malliaras, George G. (2007). Semiconducting polymers: chemistry, physics and engineering. Wiley-VCH. ISBN 978-3-527-31271-9.
- ↑ 51.0 51.1 Jones, William (1997). Organic Molecular Solids: Properties and Applications. CRC Press. ISBN 978-0-8493-9428-7.
- ↑ Xu, Wentao; Guo, Chang; Rhee, Shi-Woo (2013). "High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures". Journal of Materials Chemistry C. 1 (25): 3955. doi:10.1039/C3TC30134F.
- ↑ Baliga, B. Jayant (1996). Power Semiconductor Devices. Boston: PWS publishing Company. ISBN 978-0-534-94098-0.
- ↑ "Power MOSFET Basics: Understanding MOSFET Characteristics Associated With The Figure of Merit". element14. Archived from the original on 5 April 2015. Retrieved 27 November 2010.
- ↑ "Power MOSFET Basics: Understanding Gate Charge and Using It To Assess Switching Performance". element14. Archived from the original on 30 June 2014. Retrieved 27 November 2010.
बाहरी संबंध
This article's use of external links may not follow Wikipedia's policies or guidelines. (September 2016) (Learn how and when to remove this template message) |
- How Semiconductors and Transistors Work (MOSFETs) WeCanFigureThisOut.org
- "Understanding power MOSFET data sheet parameters – Nexperia PDF Application Note AN11158" (PDF).
- "An introduction to depletion-mode MOSFETs". Archived from the original on 28 September 2008.
- "Power MOSFETs".
- "Criteria for Successful Selection of IGBT and MOSFET Modules". Archived from the original on 2012-11-12. Retrieved 2018-12-16.
- "MOSFET Process Step by Step". Archived from the original on 2009-08-22. Retrieved 2016-02-06. A Flash slide showing the fabricating process of a MOSFET in detail
- "MOSFET Calculator". Archived from the original on 2008-05-27. Retrieved 2008-06-03.
- "Advanced MOSFET issues". ecee.colorado.edu. 27 November 2010.
- "MOSFET applet".
- Nicolai, Ulrich; Reimann, Tobias; Petzoldt, Jürgen; Lutz, Josef (1998). Application Manual IGBT and MOSFET Power Modules (1st ed.). ISLE Verlag. ISBN 978-3-932633-24-9. Archived from the original on 2 March 2012.
- Wintrich, Arendt; Nicolai, Ulrich; Tursky, Werner; Reimann, Tobias (2011). PDF-Version (PDF) (2nd ed.). Nuremberg: Semikron. ISBN 978-3-938843-66-6. Archived from the original (PDF) on 3 September 2013.
- "MIT Open Courseware 6.002 – Spring 2007".
- "MIT Open Courseware 6.012 – Fall 2009".
- "Georgia Tech BJT and FET Slides".
- "CircuitDesign: MOS Diffusion Parasitics".
- Mark Lundstrom, Mark Lundstrom (2008). "Course on Physics of Nanoscale Transistors".
{{cite journal}}
: Cite journal requires|journal=
(help) - Dr. Lundstrom (2005). "Notes on Ballistic MOSFETs".
{{cite journal}}
: Cite journal requires|journal=
(help)