अर्धचालक सामग्रियों की सूची: Difference between revisions
(Created page with "{{Short description|none}} सेमीकंडक्टर सामग्री नाममात्र रूप से छोटे [[ऊर्जा अंतराल]...") |
No edit summary |
||
Line 1: | Line 1: | ||
सेमीकंडक्टर सामग्री नाममात्र रूप से छोटे [[ऊर्जा अंतराल]] इंसुलेटर (बिजली) हैं। [[अर्धचालक]] सामग्री की परिभाषित संपत्ति यह है कि इसे उन अशुद्धियों के साथ [[डोपिंग (अर्धचालक)]] द्वारा समझौता किया जा सकता है जो इसके इलेक्ट्रॉनिक गुणों को नियंत्रित तरीके से बदल देते हैं।<ref>{{cite book|chapter=Control of Semiconductor Conductivity by Doping|author=Jones, E.D.|title=इलेक्ट्रॉनिक सामग्री|editor=Miller, L. S. |editor2=Mullin, J. B.|publisher=Plenum Press|place=New York|year=1991|pages=155–171|isbn=978-1-4613-6703-1|doi=10.1007/978-1-4615-3818-9_12}}</ref> <!-- या क्या यही चीज़ इसे अर्धचालक उपकरणों के लिए उपयोगी बनाती है? --> | |||
सेमीकंडक्टर सामग्री नाममात्र रूप से छोटे [[ऊर्जा अंतराल]] इंसुलेटर (बिजली) हैं। [[अर्धचालक]] सामग्री की परिभाषित संपत्ति यह है कि इसे उन अशुद्धियों के साथ [[डोपिंग (अर्धचालक)]] द्वारा समझौता किया जा सकता है जो इसके इलेक्ट्रॉनिक गुणों को नियंत्रित तरीके से बदल देते हैं।<ref>{{cite book|chapter=Control of Semiconductor Conductivity by Doping|author=Jones, E.D.|title=इलेक्ट्रॉनिक सामग्री|editor=Miller, L. S. |editor2=Mullin, J. B.|publisher=Plenum Press|place=New York|year=1991|pages=155–171|isbn=978-1-4613-6703-1|doi=10.1007/978-1-4615-3818-9_12}}</ref> <!-- | |||
[[कंप्यूटर]] और [[फोटोवोल्टिक]] उद्योग में - [[ट्रांजिस्टर]], [[ लेज़र ]] और सौर कोशिकाओं जैसे उपकरणों में उनके अनुप्रयोग के कारण - नई अर्धचालक सामग्रियों की खोज और मौजूदा सामग्रियों में सुधार सामग्री विज्ञान में अध्ययन का एक महत्वपूर्ण क्षेत्र है। | [[कंप्यूटर]] और [[फोटोवोल्टिक]] उद्योग में - [[ट्रांजिस्टर]], [[ लेज़र | लेज़र]] और सौर कोशिकाओं जैसे उपकरणों में उनके अनुप्रयोग के कारण - नई अर्धचालक सामग्रियों की खोज और मौजूदा सामग्रियों में सुधार सामग्री विज्ञान में अध्ययन का एक महत्वपूर्ण क्षेत्र है। | ||
सबसे अधिक उपयोग की जाने वाली अर्धचालक सामग्री [[क्रिस्टलीय]] अकार्बनिक ठोस हैं। इन सामग्रियों को उनके घटक [[परमाणुओं]] के [[समूह (आवर्त सारणी)]] के अनुसार वर्गीकृत किया गया है। | सबसे अधिक उपयोग की जाने वाली अर्धचालक सामग्री [[क्रिस्टलीय]] अकार्बनिक ठोस हैं। इन सामग्रियों को उनके घटक [[परमाणुओं]] के [[समूह (आवर्त सारणी)]] के अनुसार वर्गीकृत किया गया है। | ||
विभिन्न अर्धचालक पदार्थ अपने गुणों में भिन्न होते हैं। इस प्रकार, [[सिलिकॉन]] की तुलना में, मिश्रित अर्धचालकों के फायदे और नुकसान दोनों हैं। <!-- | विभिन्न अर्धचालक पदार्थ अपने गुणों में भिन्न होते हैं। इस प्रकार, [[सिलिकॉन]] की तुलना में, मिश्रित अर्धचालकों के फायदे और नुकसान दोनों हैं। <!-- यह GaAs में काफी लंबा भ्रमण है --> उदाहरण के लिए, [[गैलियम आर्सेनाइड]] (GaAs) में सिलिकॉन की तुलना में छह गुना अधिक [[इलेक्ट्रॉन गतिशीलता]] होती है, जो तेजी से संचालन की अनुमति देती है; व्यापक बैंड गैप, जो उच्च तापमान पर बिजली उपकरणों के संचालन की अनुमति देता है, और कमरे के तापमान पर कम बिजली उपकरणों को कम [[थर्मल शोर]] देता है; इसका [[प्रत्यक्ष बैंड गैप]] इसे सिलिकॉन के अप्रत्यक्ष बैंड गैप की तुलना में अधिक अनुकूल [[ optoelectronic ]] गुण प्रदान करता है; इसे समायोज्य बैंड गैप चौड़ाई के साथ टर्नरी और चतुर्धातुक रचनाओं में मिश्रित किया जा सकता है, जो चयनित तरंग दैर्ध्य पर प्रकाश उत्सर्जन की अनुमति देता है, जो ऑप्टिकल फाइबर के माध्यम से सबसे कुशलता से प्रसारित तरंग दैर्ध्य से मेल खाना संभव बनाता है। GaAs को अर्ध-इन्सुलेट रूप में भी उगाया जा सकता है, जो GaAs उपकरणों के लिए जाली-मिलान इन्सुलेटिंग सब्सट्रेट के रूप में उपयुक्त है। इसके विपरीत, सिलिकॉन मजबूत, सस्ता और संसाधित करने में आसान है, जबकि GaAs भंगुर और महंगा है, और इन्सुलेशन परतें केवल ऑक्साइड परत बढ़ने से नहीं बनाई जा सकती हैं; इसलिए GaAs का उपयोग केवल वहीं किया जाता है जहां सिलिकॉन पर्याप्त नहीं है।<ref>Milton Ohring [https://books.google.com/books?id=gxSyMjosCwcC&dq=semiconductor+failure+microphotograph&pg=PA310 Reliability and failure of electronic materials and devices] Academic Press, 1998, {{ISBN|0-12-524985-3}}, p. 310.</ref> | ||
कई यौगिकों को मिश्रित करके, कुछ अर्धचालक सामग्री को ट्यून किया जा सकता है, उदाहरण के लिए, बैंड गैप या जाली स्थिरांक में। परिणाम त्रिक, चतुर्धातुक, या यहाँ तक कि पंचक रचनाएँ हैं। टर्नरी रचनाएँ शामिल बाइनरी यौगिकों की सीमा के भीतर बैंड गैप को समायोजित करने की अनुमति देती हैं; हालाँकि, प्रत्यक्ष और अप्रत्यक्ष बैंड गैप सामग्रियों के संयोजन के मामले में एक अनुपात होता है जहां अप्रत्यक्ष बैंड गैप प्रबल होता है, जो ऑप्टोइलेक्ट्रॉनिक्स के लिए उपयोग करने योग्य सीमा को सीमित करता है; जैसे AlGaAs [[प्रकाश उत्सर्जक डायोड]] इसके द्वारा 660 एनएम तक सीमित हैं। यौगिकों के जाली स्थिरांक भी अलग-अलग होते हैं, और मिश्रण अनुपात पर निर्भर सब्सट्रेट के खिलाफ जाली बेमेल, बेमेल परिमाण पर निर्भर मात्रा में दोष का कारण बनता है; यह प्राप्य विकिरणीय/गैर-विकिरणीय पुनर्संयोजन के अनुपात को प्रभावित करता है और डिवाइस की चमकदार दक्षता निर्धारित करता है। चतुर्धातुक और उच्च रचनाएँ बैंड गैप और जाली स्थिरांक को एक साथ समायोजित करने की अनुमति देती हैं, जिससे तरंग दैर्ध्य की व्यापक रेंज पर दीप्तिमान दक्षता बढ़ती है; उदाहरण के लिए AlGaInP का उपयोग LED के लिए किया जाता है। प्रकाश की उत्पन्न तरंग दैर्ध्य के लिए पारदर्शी सामग्री लाभप्रद होती है, क्योंकि इससे सामग्री के बड़े हिस्से से फोटॉन के अधिक कुशल निष्कर्षण की अनुमति मिलती है। अर्थात् ऐसे पारदर्शी पदार्थों में प्रकाश उत्पादन केवल सतह तक ही सीमित नहीं होता। अपवर्तन सूचकांक भी संरचना-निर्भर है और सामग्री से फोटॉन की निष्कर्षण दक्षता को प्रभावित करता है।<ref name="handopto">John Dakin, Robert G. W. Brown [https://books.google.com/books?id=3GmcgL7Z-6YC&dq=gas+discharge+properties+mercury+neon+hydrogen+deuterium&pg=PA57 Handbook of optoelectronics, Volume 1], CRC Press, 2006 {{ISBN|0-7503-0646-7}} p. 57</ref> | कई यौगिकों को मिश्रित करके, कुछ अर्धचालक सामग्री को ट्यून किया जा सकता है, उदाहरण के लिए, बैंड गैप या जाली स्थिरांक में। परिणाम त्रिक, चतुर्धातुक, या यहाँ तक कि पंचक रचनाएँ हैं। टर्नरी रचनाएँ शामिल बाइनरी यौगिकों की सीमा के भीतर बैंड गैप को समायोजित करने की अनुमति देती हैं; हालाँकि, प्रत्यक्ष और अप्रत्यक्ष बैंड गैप सामग्रियों के संयोजन के मामले में एक अनुपात होता है जहां अप्रत्यक्ष बैंड गैप प्रबल होता है, जो ऑप्टोइलेक्ट्रॉनिक्स के लिए उपयोग करने योग्य सीमा को सीमित करता है; जैसे AlGaAs [[प्रकाश उत्सर्जक डायोड]] इसके द्वारा 660 एनएम तक सीमित हैं। यौगिकों के जाली स्थिरांक भी अलग-अलग होते हैं, और मिश्रण अनुपात पर निर्भर सब्सट्रेट के खिलाफ जाली बेमेल, बेमेल परिमाण पर निर्भर मात्रा में दोष का कारण बनता है; यह प्राप्य विकिरणीय/गैर-विकिरणीय पुनर्संयोजन के अनुपात को प्रभावित करता है और डिवाइस की चमकदार दक्षता निर्धारित करता है। चतुर्धातुक और उच्च रचनाएँ बैंड गैप और जाली स्थिरांक को एक साथ समायोजित करने की अनुमति देती हैं, जिससे तरंग दैर्ध्य की व्यापक रेंज पर दीप्तिमान दक्षता बढ़ती है; उदाहरण के लिए AlGaInP का उपयोग LED के लिए किया जाता है। प्रकाश की उत्पन्न तरंग दैर्ध्य के लिए पारदर्शी सामग्री लाभप्रद होती है, क्योंकि इससे सामग्री के बड़े हिस्से से फोटॉन के अधिक कुशल निष्कर्षण की अनुमति मिलती है। अर्थात् ऐसे पारदर्शी पदार्थों में प्रकाश उत्पादन केवल सतह तक ही सीमित नहीं होता। अपवर्तन सूचकांक भी संरचना-निर्भर है और सामग्री से फोटॉन की निष्कर्षण दक्षता को प्रभावित करता है।<ref name="handopto">John Dakin, Robert G. W. Brown [https://books.google.com/books?id=3GmcgL7Z-6YC&dq=gas+discharge+properties+mercury+neon+hydrogen+deuterium&pg=PA57 Handbook of optoelectronics, Volume 1], CRC Press, 2006 {{ISBN|0-7503-0646-7}} p. 57</ref> | ||
Line 29: | Line 29: | ||
==यौगिक अर्धचालक== | ==यौगिक अर्धचालक== | ||
एक यौगिक अर्धचालक एक अर्धचालक [[रासायनिक यौगिक]] है जो कम से कम दो अलग-अलग प्रजातियों के [[रासायनिक तत्व]]ों से बना होता है। ये अर्धचालक उदाहरण के लिए समूह (आवर्त सारणी) 13-15 (पुराने समूह III-V) में बनते हैं, उदाहरण के लिए बोरॉन समूह (पुराने समूह III, [[बोरान]], [[ अल्युमीनियम ]], [[गैलियम]], [[ ईण्डीयुम ]]) और [[नाइट्रोजन]] समूह (पुराने समूह V, नाइट्रोजन, [[फास्फोरस]], [[ हरताल ]], [[ सुरमा ]], [[विस्मुट]]) से तत्व। संभावित सूत्रों की सीमा काफी व्यापक है क्योंकि ये तत्व बाइनरी (दो तत्व, जैसे [[गैलियम (III) आर्सेनाइड]] (GaAs)), टर्नरी (तीन तत्व, जैसे [[इंडियम गैलियम आर्सेनाइड]] (InGaAs)) और चतुर्धातुक मिश्र धातु (चार तत्व) जैसे [[एल्यूमीनियम गैलियम इंडियम फॉस्फाइड]] (AlInGaP)) मिश्र धातु और [[इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड]] (InAsSbP) बना सकते हैं। III-V यौगिक अर्धचालकों के गुण उनके समूह IV समकक्षों के समान हैं। इन यौगिकों में और विशेष रूप से II-VI यौगिक में उच्च आयनिकता, कम आयनिक यौगिकों के संबंध में मौलिक बैंडगैप को बढ़ाती है।<ref>{{Cite book|title=अर्धचालकों के मूल सिद्धांत|last1=Yu|first1=Peter|publisher=Springer-Verlag Berlin Heidelberg|year=2010|isbn=978-3-642-00709-5|pages=2|last2=Cardona|first2=Manuel|edition=4|doi=10.1007/978-3-642-00710-1|bibcode=2010fuse.book.....Y }}</ref> | एक यौगिक अर्धचालक एक अर्धचालक [[रासायनिक यौगिक]] है जो कम से कम दो अलग-अलग प्रजातियों के [[रासायनिक तत्व]]ों से बना होता है। ये अर्धचालक उदाहरण के लिए समूह (आवर्त सारणी) 13-15 (पुराने समूह III-V) में बनते हैं, उदाहरण के लिए बोरॉन समूह (पुराने समूह III, [[बोरान]], [[ अल्युमीनियम ]], [[गैलियम]], [[ ईण्डीयुम ]]) और [[नाइट्रोजन]] समूह (पुराने समूह V, नाइट्रोजन, [[फास्फोरस]], [[ हरताल ]], [[ सुरमा ]], [[विस्मुट]]) से तत्व। संभावित सूत्रों की सीमा काफी व्यापक है क्योंकि ये तत्व बाइनरी (दो तत्व, जैसे [[गैलियम (III) आर्सेनाइड]] (GaAs)), टर्नरी (तीन तत्व, जैसे [[इंडियम गैलियम आर्सेनाइड]] (InGaAs)) और चतुर्धातुक मिश्र धातु (चार तत्व) जैसे [[एल्यूमीनियम गैलियम इंडियम फॉस्फाइड]] (AlInGaP)) मिश्र धातु और [[इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड]] (InAsSbP) बना सकते हैं। III-V यौगिक अर्धचालकों के गुण उनके समूह IV समकक्षों के समान हैं। इन यौगिकों में और विशेष रूप से II-VI यौगिक में उच्च आयनिकता, कम आयनिक यौगिकों के संबंध में मौलिक बैंडगैप को बढ़ाती है।<ref>{{Cite book|title=अर्धचालकों के मूल सिद्धांत|last1=Yu|first1=Peter|publisher=Springer-Verlag Berlin Heidelberg|year=2010|isbn=978-3-642-00709-5|pages=2|last2=Cardona|first2=Manuel|edition=4|doi=10.1007/978-3-642-00710-1|bibcode=2010fuse.book.....Y }}</ref> | ||
===निर्माण=== | ===निर्माण=== | ||
[[मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी]] | मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी (एमओवीपीई) उपकरणों के लिए यौगिक अर्धचालक पतली फिल्मों के निर्माण के लिए सबसे लोकप्रिय जमाव तकनीक है।{{Citation needed|date=September 2009}} यह [[हाइड्रोजन]] जैसी परिवेशी गैस में [[अग्रदूत (रसायन विज्ञान)]] स्रोत सामग्री के रूप में अल्ट्राप्योर [[मेटलऑर्गेनिक्स]] और/या [[हाइड्राइड]]्स का उपयोग करता है। | [[मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी]] | मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी (एमओवीपीई) उपकरणों के लिए यौगिक अर्धचालक पतली फिल्मों के निर्माण के लिए सबसे लोकप्रिय जमाव तकनीक है।{{Citation needed|date=September 2009}} यह [[हाइड्रोजन]] जैसी परिवेशी गैस में [[अग्रदूत (रसायन विज्ञान)]] स्रोत सामग्री के रूप में अल्ट्राप्योर [[मेटलऑर्गेनिक्स]] और/या [[हाइड्राइड]]्स का उपयोग करता है। | ||
Line 250: | Line 247: | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
! rowspan=2 | | ! rowspan=2 | समूह | ||
! rowspan=2 | Elem. | ! rowspan=2 | Elem. | ||
! rowspan=2 | | ! rowspan=2 | सामग्री वर्ग | ||
! rowspan=2 | Formula | ! rowspan=2 | Formula | ||
! colspan=2 | data-sort-type=number | [[Band gap]] ([[electronvolt|eV]]) | ! colspan=2 | data-sort-type=number | [[Band gap]] ([[electronvolt|eV]]) | ||
! rowspan=2 | Gap type | ! rowspan=2 | Gap type | ||
! rowspan=2 | | ! rowspan=2 | विवरण | ||
|- | |- | ||
! Lower !! Upper | ! Lower !! Upper | ||
|- | |- | ||
| IV-VI || 3 || [[Lead tin telluride]] || Pb<sub>1−x</sub>Sn<sub>x</sub>Te ||data-sort-value="0"| 0 ||data-sort-value="290"| 0.29 || || Used in infrared detectors and for thermal imaging | | IV-VI || 3 || [[Lead tin telluride|लेड टिन टेलुराइड]] || Pb<sub>1−x</sub>Sn<sub>x</sub>Te ||data-sort-value="0"| 0 ||data-sort-value="290"| 0.29 || || Used in infrared detectors and for thermal imaging | ||
|- | |- | ||
| IV || 2 || [[Silicon-germanium]] || Si<sub>1−''x''</sub>Ge<sub>''x''</sub> ||data-sort-value="670"| 0.67 ||data-sort-value="1110"| 1.11<ref name=ioffe/> || | | IV || 2 || [[Silicon-germanium|सिलिकॉन जर्मेनियम]] || Si<sub>1−''x''</sub>Ge<sub>''x''</sub> ||data-sort-value="670"| 0.67 ||data-sort-value="1110"| 1.11<ref name=ioffe/> || अप्रत्यक्ष || adjustable band gap, allows construction of [[heterojunction]] structures. Certain thicknesses of [[superlattice]]s have direct band gap.<ref>Rajakarunanayake, Yasantha Nirmal (1991) [https://thesis.library.caltech.edu/2857/ Optical properties of Si-Ge superlattices and wide band gap II-VI superlattices] Dissertation (Ph.D.), California Institute of Technology</ref> | ||
|- | |- | ||
| IV || 2 || [[Silicon-tin]] || Si<sub>1−''x''</sub>Sn<sub>''x''</sub> ||data-sort-value="1000"| 1.0 ||data-sort-value="1110"| 1.11 || | | IV || 2 || [[Silicon-tin|सिलिकॉन-टिन]] || Si<sub>1−''x''</sub>Sn<sub>''x''</sub> ||data-sort-value="1000"| 1.0 ||data-sort-value="1110"| 1.11 || अप्रत्यक्ष || Adjustable band gap.<ref>{{cite journal|last1=Hussain|first1=Aftab M.|last2=Fahad|first2=Hossain M.|last3=Singh|first3=Nirpendra|last4=Sevilla|first4=Galo A. Torres|last5=Schwingenschlögl|first5=Udo|last6=Hussain|first6=Muhammad M.|title=Tin – an unlikely ally for silicon field effect transistors?|journal=Physica Status Solidi RRL|volume=8|issue=4|pages=332–335|doi=10.1002/pssr.201308300|bibcode = 2014PSSRR...8..332H |year=2014|s2cid=93729786 |url=https://zenodo.org/record/3447519}}</ref> | ||
|- | |- | ||
| III-V || 3 || [[Aluminium gallium arsenide]] || Al<sub>''x''</sub>Ga<sub>1−''x''</sub>As ||data-sort-value="1420"| 1.42 ||data-sort-value="2160"| 2.16<ref name=ioffe/> || | | III-V || 3 || [[Aluminium gallium arsenide|एल्यूमिनियम गैलियम आर्सेनाइड]] || Al<sub>''x''</sub>Ga<sub>1−''x''</sub>As ||data-sort-value="1420"| 1.42 ||data-sort-value="2160"| 2.16<ref name=ioffe/> || प्रत्यक्ष/अप्रत्यक्ष || direct band gap for x<0.4 (corresponding to 1.42–1.95 eV); can be lattice-matched to GaAs substrate over entire composition range; tends to oxidize; n-doping with Si, Se, Te; p-doping with Zn, C, Be, Mg.<ref name="handopto"/> Can be used for infrared laser diodes. Used as a barrier layer in GaAs devices to confine electrons to GaAs (see e.g. [[QWIP]]). AlGaAs with composition close to AlAs is almost transparent to sunlight. Used in GaAs/AlGaAs solar cells. | ||
|- | |- | ||
| III-V || 3 || [[Indium gallium arsenide]] || In<sub>''x''</sub>Ga<sub>1−''x''</sub>As ||data-sort-value="360"| 0.36 ||data-sort-value="1430"| 1.43 || | | III-V || 3 || [[Indium gallium arsenide|इंडियम गैलियम आर्सेनाइड]] || In<sub>''x''</sub>Ga<sub>1−''x''</sub>As ||data-sort-value="360"| 0.36 ||data-sort-value="1430"| 1.43 || प्रत्यक्ष || Well-developed material. Can be lattice matched to InP substrates. Use in infrared technology and [[thermophotovoltaics]]. Indium content determines charge carrier density. For ''x''=0.015, InGaAs perfectly lattice-matches germanium; can be used in multijunction photovoltaic cells. Used in infrared sensors, avalanche photodiodes, laser diodes, optical fiber communication detectors, and short-wavelength infrared cameras. | ||
|- | |- | ||
| III-V || 3 || [[Indium gallium phosphide]] || In<sub>''x''</sub>Ga<sub>1−''x''</sub>P ||data-sort-value="1350"| 1.35 ||data-sort-value="2260"| 2.26 || | | III-V || 3 || [[Indium gallium phosphide|इंडियम गैलियम फॉस्फाइड]] || In<sub>''x''</sub>Ga<sub>1−''x''</sub>P ||data-sort-value="1350"| 1.35 ||data-sort-value="2260"| 2.26 || प्रत्यक्ष/अप्रत्यक्ष || used for [[HEMT]] and [[heterojunction bipolar transistor|HBT]] structures and high-efficiency multijunction [[solar cell]]s for e.g. satellites. Ga<sub>0.5</sub>In<sub>0.5</sub>P is almost lattice-matched to GaAs, with AlGaIn used for quantum wells for red lasers. | ||
|- | |- | ||
| III-V || 3 || [[Aluminium indium arsenide]] || Al<sub>''x''</sub>In<sub>1−''x''</sub>As ||data-sort-value="360"| 0.36 ||data-sort-value="2160"| 2.16 || | | III-V || 3 || [[Aluminium indium arsenide|एल्यूमिनियम इंडियम आर्सेनाइड]] || Al<sub>''x''</sub>In<sub>1−''x''</sub>As ||data-sort-value="360"| 0.36 ||data-sort-value="2160"| 2.16 || प्रत्यक्ष/अप्रत्यक्ष || Buffer layer in metamorphic [[HEMT]] transistors, adjusting lattice constant between GaAs substrate and GaInAs channel. Can form layered heterostructures acting as quantum wells, in e.g. [[quantum cascade laser]]s. | ||
|- | |- | ||
| III-V || 3 || [[Aluminium indium antimonide]] || Al<sub>''x''</sub>In<sub>1−''x''</sub>Sb ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 3 || [[Aluminium indium antimonide|एल्यूमिनियम इंडियम एंटीमोनाइड]] || Al<sub>''x''</sub>In<sub>1−''x''</sub>Sb ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 3 || [[Gallium arsenide nitride]] || GaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 3 || [[Gallium arsenide nitride|गैलियम आर्सेनाइड नाइट्राइड]] || GaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 3 || [[Gallium arsenide phosphide]] || GaAsP ||data-sort-value="1430"| 1.43 ||data-sort-value="2260"| 2.26 || | | III-V || 3 || [[Gallium arsenide phosphide|गैलियम आर्सेनाइड फॉस्फाइड]] || GaAsP ||data-sort-value="1430"| 1.43 ||data-sort-value="2260"| 2.26 || प्रत्यक्ष/अप्रत्यक्ष || लाल, नारंगी और पीले एलईडी में उपयोग किया जाता है। अक्सर GaP पर उगाया जाता है। नाइट्रोजन के साथ डोप किया जा सकता है। | ||
|- | |- | ||
| III-V || 3 || [[Gallium arsenide antimonide]] || GaAsSb ||data-sort-value="700"| 0.7 ||data-sort-value="1420"| 1.42<ref name=ioffe/> || | | III-V || 3 || [[Gallium arsenide antimonide|गैलियम आर्सेनाइड एंटीमोनाइड]] || GaAsSb ||data-sort-value="700"| 0.7 ||data-sort-value="1420"| 1.42<ref name=ioffe/> || प्रत्यक्ष || | ||
|- | |- | ||
| III-V || 3 || [[Aluminium gallium nitride]] || AlGaN ||data-sort-value="3440"| 3.44 ||data-sort-value="6280"| 6.28 || | | III-V || 3 || [[Aluminium gallium nitride|एल्यूमिनियम गैलियम नाइट्राइड]] || AlGaN ||data-sort-value="3440"| 3.44 ||data-sort-value="6280"| 6.28 || प्रत्यक्ष || Used in [[blue laser]] [[laser diode|diodes]], ultraviolet LEDs (down to 250 nm), and AlGaN/GaN [[HEMT]]s. Can be grown on sapphire. Used in [[heterojunction]]s with AlN and GaN. | ||
|- | |- | ||
| III-V || 3 || [[Aluminium gallium phosphide]] || AlGaP ||data-sort-value="2260"| 2.26 ||data-sort-value="2450"| 2.45 || | | III-V || 3 || [[Aluminium gallium phosphide|एल्यूमिनियम गैलियम फॉस्फाइड]] || AlGaP ||data-sort-value="2260"| 2.26 ||data-sort-value="2450"| 2.45 || अप्रत्यक्ष || कुछ हरे एलईडी में उपयोग किया जाता है। | ||
|- | |- | ||
| III-V || 3 || [[Indium gallium nitride]] || InGaN ||data-sort-value="2000"| 2 ||data-sort-value="3400"| 3.4 || | | III-V || 3 || [[Indium gallium nitride|इंडियम गैलियम नाइट्राइड]] || InGaN ||data-sort-value="2000"| 2 ||data-sort-value="3400"| 3.4 || प्रत्यक्ष || InxGa1–xN, x आमतौर पर 0.02–0.3 के बीच (निकट-यूवी के लिए 0.02, 390 एनएम के लिए 0.1, 420 एनएम के लिए 0.2, 440 एनएम के लिए 0.3)। नीलमणि, SiC वेफर्स या सिलिकॉन पर एपिटैक्सियल रूप से उगाया जा सकता है। आधुनिक नीले और हरे एलईडी में उपयोग किए जाने वाले InGaN क्वांटम कुएं हरे से पराबैंगनी तक प्रभावी उत्सर्जक हैं। विकिरण क्षति के प्रति असंवेदनशील, उपग्रह सौर कोशिकाओं में संभावित उपयोग। दोषों के प्रति असंवेदनशील, जाली बेमेल क्षति के प्रति सहनशील। उच्च ताप क्षमता. | ||
|- | |- | ||
| III-V || 3 || [[Indium arsenide antimonide]] || InAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 3 || [[Indium arsenide antimonide|इंडियम आर्सेनाइड एंटीमोनाइड]] || InAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 3 || [[Indium gallium antimonide]] || InGaSb ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 3 || [[Indium gallium antimonide|इंडियम गैलियम एंटीमोनाइड]] || InGaSb ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Aluminium gallium indium phosphide]] || AlGaInP ||data-sort-value="0"| ||data-sort-value="0"| || | | III-V || 4 || [[Aluminium gallium indium phosphide|एल्यूमिनियम गैलियम इंडियम फॉस्फाइड]] || AlGaInP ||data-sort-value="0"| ||data-sort-value="0"| || प्रत्यक्ष/अप्रत्यक्ष || InAlGaP, InGaAlP, AlInGaP भी; GaAs सबस्ट्रेट्स से मेल खाने वाले जाली के लिए इन मोल अंश लगभग 0.48 पर तय किया गया है, Al/Ga अनुपात को लगभग 1.9 और 2.35 eV के बीच बैंड अंतराल प्राप्त करने के लिए समायोजित किया गया है; Al/Ga/In अनुपात के आधार पर प्रत्यक्ष या अप्रत्यक्ष बैंड अंतराल; 560-650 एनएम के बीच तरंग दैर्ध्य के लिए उपयोग किया जाता है; जमाव के दौरान क्रमबद्ध चरणों का निर्माण होता है, जिसे रोका जाना चाहिए<ref name="handopto"/> | ||
|- | |- | ||
| III-V || 4 || [[Aluminium gallium arsenide phosphide]] || AlGaAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Aluminium gallium arsenide phosphide|एल्यूमिनियम गैलियम आर्सेनाइड फॉस्फाइड]] || AlGaAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Indium gallium arsenide phosphide]] || InGaAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Indium gallium arsenide phosphide|इंडियम गैलियम आर्सेनाइड फॉस्फाइड]] || InGaAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Indium gallium arsenide antimonide]] || InGaAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Indium gallium arsenide antimonide|इंडियम गैलियम आर्सेनाइड एंटीमोनाइड]] || InGaAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || [[thermophotovoltaics|थर्मोफोटोवोल्टिक्स]] में उपयोग करें। | ||
|- | |- | ||
| III-V || 4 || [[Indium arsenide antimonide phosphide]] || InAsSbP ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Indium arsenide antimonide phosphide|इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड]] || InAsSbP ||data-sort-value="0"| ||data-sort-value="0"| || || [[thermophotovoltaics|थर्मोफोटोवोल्टिक्स]] में उपयोग करें। | ||
|- | |- | ||
| III-V || 4 || [[Aluminium indium arsenide phosphide]] || AlInAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Aluminium indium arsenide phosphide|एल्यूमिनियम इंडियम आर्सेनाइड फॉस्फाइड]] || AlInAsP ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Aluminium gallium arsenide nitride]] || AlGaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Aluminium gallium arsenide nitride|एल्यूमिनियम गैलियम आर्सेनाइड नाइट्राइड]] || AlGaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Indium gallium arsenide nitride]] || InGaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Indium gallium arsenide nitride|इंडियम गैलियम आर्सेनाइड नाइट्राइड]] || InGaAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Indium aluminium arsenide nitride]] || InAlAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Indium aluminium arsenide nitride|इंडियम एल्यूमीनियम आर्सेनाइड नाइट्राइड]] || InAlAsN ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 4 || [[Gallium arsenide antimonide nitride]] || GaAsSbN ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 4 || [[Gallium arsenide antimonide nitride|गैलियम आर्सेनाइड एंटीमोनाइड नाइट्राइड]] || GaAsSbN ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 5 || [[Gallium indium nitride arsenide antimonide]] || GaInNAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 5 || [[Gallium indium nitride arsenide antimonide|गैलियम इंडियम नाइट्राइड आर्सेनाइड एंटीमोनाइड]] || GaInNAsSb ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| III-V || 5 || [[Gallium indium arsenide antimonide phosphide]] || GaInAsSbP ||data-sort-value="0"| ||data-sort-value="0"| || || | | III-V || 5 || [[Gallium indium arsenide antimonide phosphide|गैलियम इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड]] || GaInAsSbP ||data-sort-value="0"| ||data-sort-value="0"| || || InAs, GaSb और अन्य सबस्ट्रेट्स पर उगाया जा सकता है। अलग-अलग संरचना से जाली का मिलान किया जा सकता है। संभवतः मध्य-अवरक्त एल ई डी के लिए प्रयोग करने योग्य। | ||
|- | |- | ||
| II-VI || 3 || [[Cadmium zinc telluride]], CZT || CdZnTe ||data-sort-value="1400"| 1.4 ||data-sort-value="2200"| 2.2 || direct || Efficient solid-state x-ray and gamma-ray detector, can operate at room temperature. High [[electro-optic coefficient]]. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe. | | II-VI || 3 || [[Cadmium zinc telluride]], CZT || CdZnTe ||data-sort-value="1400"| 1.4 ||data-sort-value="2200"| 2.2 || direct || Efficient solid-state x-ray and gamma-ray detector, can operate at room temperature. High [[electro-optic coefficient]]. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe. | ||
|- | |- | ||
| II-VI || 3 || [[Mercury cadmium telluride]] || HgCdTe ||data-sort-value="0"| 0 ||data-sort-value="1500"| 1.5 || || Known as "MerCad". Extensive use in sensitive cooled [[infrared imaging]] sensors, [[infrared astronomy]], and infrared detectors. Alloy of [[mercury telluride]] (a [[semimetal]], zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 µm and 12–15 µm [[Infrared window|atmospheric window]]s. Can be grown on CdZnTe. | | II-VI || 3 || [[Mercury cadmium telluride|मरकरी कैडमियम टेलुराइड]] || HgCdTe ||data-sort-value="0"| 0 ||data-sort-value="1500"| 1.5 || || Known as "MerCad". Extensive use in sensitive cooled [[infrared imaging]] sensors, [[infrared astronomy]], and infrared detectors. Alloy of [[mercury telluride]] (a [[semimetal]], zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 µm and 12–15 µm [[Infrared window|atmospheric window]]s. Can be grown on CdZnTe. | ||
|- | |- | ||
| II-VI || 3 || [[Mercury zinc telluride]] || HgZnTe ||data-sort-value="0"| 0 ||data-sort-value="2250"| 2.25 || || | | II-VI || 3 || [[Mercury zinc telluride|मरकरी जिंक टेलुराइड]] || HgZnTe ||data-sort-value="0"| 0 ||data-sort-value="2250"| 2.25 || || इन्फ्रारेड डिटेक्टरों, इन्फ्रारेड इमेजिंग सेंसर और इन्फ्रारेड खगोल विज्ञान में उपयोग किया जाता है। HgCdTe की तुलना में बेहतर यांत्रिक और थर्मल गुण लेकिन संरचना को नियंत्रित करना अधिक कठिन है। जटिल हेटरोस्ट्रक्चर बनाना अधिक कठिन है। | ||
|- | |- | ||
| II-VI || 3 || [[Mercury zinc selenide]] || HgZnSe ||data-sort-value="0"| ||data-sort-value="0"| || || | | II-VI || 3 || [[Mercury zinc selenide|मरकरी जिंक सेलेनाइड]] || HgZnSe ||data-sort-value="0"| ||data-sort-value="0"| || || | ||
|- | |- | ||
| II-V || 4 || [[Zinc cadmium phosphide arsenide]] || (Zn<sub>1−x</sub>Cd<sub>x</sub>)<sub>3</sub>(P<sub>1−y</sub>As<sub>y</sub>)<sub>2</sub><ref>{{Cite journal|title=Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics|journal=Inorganic Materials|last1=Trukhan|first1=V. M.|volume=50|pages=868–873|last2=Izotov|first2=A. D.|issue=9|doi=10.1134/S0020168514090143|year=2014|last3=Shoukavaya|first3=T. V.|s2cid=94409384 }}</ref> ||data-sort-value="0"| 0<ref name="Cd3As2"/> ||data-sort-value="1500"| 1.5<ref>{{Cite journal|title=Level Ordering in II<sub>3</sub>-V<sub>2</sub> Semiconducting Compounds|journal=Physica Status Solidi B|last=Cisowski|first=J.|volume=111|pages=289–293|year=1982|issue=1|doi=10.1002/pssb.2221110132|bibcode=1982PSSBR.111..289C}}</ref> || || | | II-V || 4 || [[Zinc cadmium phosphide arsenide|जिंक कैडमियम फॉस्फाइड आर्सेनाइड]] || (Zn<sub>1−x</sub>Cd<sub>x</sub>)<sub>3</sub>(P<sub>1−y</sub>As<sub>y</sub>)<sub>2</sub><ref>{{Cite journal|title=Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics|journal=Inorganic Materials|last1=Trukhan|first1=V. M.|volume=50|pages=868–873|last2=Izotov|first2=A. D.|issue=9|doi=10.1134/S0020168514090143|year=2014|last3=Shoukavaya|first3=T. V.|s2cid=94409384 }}</ref> ||data-sort-value="0"| 0<ref name="Cd3As2"/> ||data-sort-value="1500"| 1.5<ref>{{Cite journal|title=Level Ordering in II<sub>3</sub>-V<sub>2</sub> Semiconducting Compounds|journal=Physica Status Solidi B|last=Cisowski|first=J.|volume=111|pages=289–293|year=1982|issue=1|doi=10.1002/pssb.2221110132|bibcode=1982PSSBR.111..289C}}</ref> || || ऑप्टोइलेक्ट्रॉनिक्स (फोटोवोल्टिक्स सहित), इलेक्ट्रॉनिक्स और [[Thermoelectric effect|थर्मोइलेक्ट्रिक्स]] में विभिन्न अनुप्रयोग।<ref>{{Cite journal|title=II<sub>3</sub>V<sub>2</sub> compounds and alloys|journal=Progress in Crystal Growth and Characterization of Materials|last=Arushanov|first=E. K.|volume=25|pages=131–201|issue=3|doi=10.1016/0960-8974(92)90030-T|year=1992}}</ref> | ||
|- | |- | ||
| other || 4 || [[Copper indium gallium selenide]], | | other || 4 || [[Copper indium gallium selenide|कॉपर इंडियम गैलियम सेलेनाइड]], सीआईजीएस || Cu(In,Ga)Se<sub>2</sub> ||data-sort-value="1000"| 1 ||data-sort-value="1700"| 1.7 || प्रत्यक्ष || CuIn<sub>x</sub>Ga<sub>1–x</sub>Se<sub>2</sub>. Polycrystalline. Used in [[thin film solar cells]]. | ||
|} | |} | ||
==यह भी देखें== | ==यह भी देखें== | ||
*[[heterojunction]] | *[[heterojunction]] |
Revision as of 18:20, 1 August 2023
सेमीकंडक्टर सामग्री नाममात्र रूप से छोटे ऊर्जा अंतराल इंसुलेटर (बिजली) हैं। अर्धचालक सामग्री की परिभाषित संपत्ति यह है कि इसे उन अशुद्धियों के साथ डोपिंग (अर्धचालक) द्वारा समझौता किया जा सकता है जो इसके इलेक्ट्रॉनिक गुणों को नियंत्रित तरीके से बदल देते हैं।[1]
कंप्यूटर और फोटोवोल्टिक उद्योग में - ट्रांजिस्टर, लेज़र और सौर कोशिकाओं जैसे उपकरणों में उनके अनुप्रयोग के कारण - नई अर्धचालक सामग्रियों की खोज और मौजूदा सामग्रियों में सुधार सामग्री विज्ञान में अध्ययन का एक महत्वपूर्ण क्षेत्र है।
सबसे अधिक उपयोग की जाने वाली अर्धचालक सामग्री क्रिस्टलीय अकार्बनिक ठोस हैं। इन सामग्रियों को उनके घटक परमाणुओं के समूह (आवर्त सारणी) के अनुसार वर्गीकृत किया गया है।
विभिन्न अर्धचालक पदार्थ अपने गुणों में भिन्न होते हैं। इस प्रकार, सिलिकॉन की तुलना में, मिश्रित अर्धचालकों के फायदे और नुकसान दोनों हैं। उदाहरण के लिए, गैलियम आर्सेनाइड (GaAs) में सिलिकॉन की तुलना में छह गुना अधिक इलेक्ट्रॉन गतिशीलता होती है, जो तेजी से संचालन की अनुमति देती है; व्यापक बैंड गैप, जो उच्च तापमान पर बिजली उपकरणों के संचालन की अनुमति देता है, और कमरे के तापमान पर कम बिजली उपकरणों को कम थर्मल शोर देता है; इसका प्रत्यक्ष बैंड गैप इसे सिलिकॉन के अप्रत्यक्ष बैंड गैप की तुलना में अधिक अनुकूल optoelectronic गुण प्रदान करता है; इसे समायोज्य बैंड गैप चौड़ाई के साथ टर्नरी और चतुर्धातुक रचनाओं में मिश्रित किया जा सकता है, जो चयनित तरंग दैर्ध्य पर प्रकाश उत्सर्जन की अनुमति देता है, जो ऑप्टिकल फाइबर के माध्यम से सबसे कुशलता से प्रसारित तरंग दैर्ध्य से मेल खाना संभव बनाता है। GaAs को अर्ध-इन्सुलेट रूप में भी उगाया जा सकता है, जो GaAs उपकरणों के लिए जाली-मिलान इन्सुलेटिंग सब्सट्रेट के रूप में उपयुक्त है। इसके विपरीत, सिलिकॉन मजबूत, सस्ता और संसाधित करने में आसान है, जबकि GaAs भंगुर और महंगा है, और इन्सुलेशन परतें केवल ऑक्साइड परत बढ़ने से नहीं बनाई जा सकती हैं; इसलिए GaAs का उपयोग केवल वहीं किया जाता है जहां सिलिकॉन पर्याप्त नहीं है।[2] कई यौगिकों को मिश्रित करके, कुछ अर्धचालक सामग्री को ट्यून किया जा सकता है, उदाहरण के लिए, बैंड गैप या जाली स्थिरांक में। परिणाम त्रिक, चतुर्धातुक, या यहाँ तक कि पंचक रचनाएँ हैं। टर्नरी रचनाएँ शामिल बाइनरी यौगिकों की सीमा के भीतर बैंड गैप को समायोजित करने की अनुमति देती हैं; हालाँकि, प्रत्यक्ष और अप्रत्यक्ष बैंड गैप सामग्रियों के संयोजन के मामले में एक अनुपात होता है जहां अप्रत्यक्ष बैंड गैप प्रबल होता है, जो ऑप्टोइलेक्ट्रॉनिक्स के लिए उपयोग करने योग्य सीमा को सीमित करता है; जैसे AlGaAs प्रकाश उत्सर्जक डायोड इसके द्वारा 660 एनएम तक सीमित हैं। यौगिकों के जाली स्थिरांक भी अलग-अलग होते हैं, और मिश्रण अनुपात पर निर्भर सब्सट्रेट के खिलाफ जाली बेमेल, बेमेल परिमाण पर निर्भर मात्रा में दोष का कारण बनता है; यह प्राप्य विकिरणीय/गैर-विकिरणीय पुनर्संयोजन के अनुपात को प्रभावित करता है और डिवाइस की चमकदार दक्षता निर्धारित करता है। चतुर्धातुक और उच्च रचनाएँ बैंड गैप और जाली स्थिरांक को एक साथ समायोजित करने की अनुमति देती हैं, जिससे तरंग दैर्ध्य की व्यापक रेंज पर दीप्तिमान दक्षता बढ़ती है; उदाहरण के लिए AlGaInP का उपयोग LED के लिए किया जाता है। प्रकाश की उत्पन्न तरंग दैर्ध्य के लिए पारदर्शी सामग्री लाभप्रद होती है, क्योंकि इससे सामग्री के बड़े हिस्से से फोटॉन के अधिक कुशल निष्कर्षण की अनुमति मिलती है। अर्थात् ऐसे पारदर्शी पदार्थों में प्रकाश उत्पादन केवल सतह तक ही सीमित नहीं होता। अपवर्तन सूचकांक भी संरचना-निर्भर है और सामग्री से फोटॉन की निष्कर्षण दक्षता को प्रभावित करता है।[3]
सिलिकॉन, गैलियम आर्सेनाइड और सिलिकन कार्बाइड जैसे पारंपरिक अर्धचालकों के विपरीत, जहां इलेक्ट्रॉनों और छिद्रों को आमतौर पर सापेक्ष कण के रूप में वर्णित किया जाता है | गैर-सापेक्ष कण जो परवलयिक ऊर्जा-संवेग संबंध | ऊर्जा-संवेग फैलाव प्रदर्शित करते हैं,[4][5] नए अर्धचालकों में हाल की खोजों, जैसे कि मैसाचुसेट्स की तकनीकी संस्था में शुआंग तांग और मिल्ड्रेड ड्रेसेलहॉस द्वारा डिराक शंकु | तांग-ड्रेसेलहॉस सिद्धांत में प्रस्तावित अर्ध-डिराक और अर्ध-डिराक सामग्रियों ने सापेक्ष कण के साथ इलेक्ट्रॉनों और छिद्रों के अस्तित्व का खुलासा किया है।[6][7][8] ये नई सामग्रियां दिलचस्प गुणों का प्रदर्शन करती हैं जो अगली पीढ़ी के कंप्यूटर चिप्स और ऊर्जा कनवर्टर विकसित करने के लिए पारंपरिक अर्धचालकों के व्यवहार से भिन्न हैं।
अर्धचालक सामग्री के प्रकार
- कार्बन समूह मौलिक अर्धचालक, (सी, सी, जीई, एसएन)
- कार्बन समूह यौगिक अर्धचालक
- ऑक्सीजन समूह मौलिक अर्धचालक, (एस, से, ते)
- बोरान समूह-नाइट्रोजन समूह अर्धचालक: स्टोइकोमेट्री की उच्च डिग्री के साथ क्रिस्टलीकरण, अधिकांश को एन-प्रकार अर्धचालक|एन-प्रकार और पी-प्रकार अर्धचालक|पी-प्रकार दोनों के रूप में प्राप्त किया जा सकता है। कई में उच्च वाहक गतिशीलता और प्रत्यक्ष ऊर्जा अंतराल होते हैं, जो उन्हें ऑप्टोइलेक्ट्रॉनिक्स के लिए उपयोगी बनाते हैं। (यह भी देखें: साँचा:III-V यौगिक।)
- समूह 12 तत्व-काल्कोजन अर्धचालक: आमतौर पर पी-प्रकार, जेएनटीई और जेएनओ को छोड़कर जो एन-प्रकार हैं
- समूह 11 तत्व-हलोजन अर्धचालक
- कार्बन समूह-चाल्कोजेन अर्धचालक
- नाइट्रोजन समूह-चाल्कोजेन अर्धचालक
- समूह 12 तत्व-नाइट्रोजन समूह अर्धचालक
- I-III-VI अर्धचालक|I-III-VI2 अर्धचालक
- ऑक्साइड
- स्तरित अर्धचालक
- चुंबकीय अर्धचालक
- कार्बनिक अर्धचालक
- चार्ज-ट्रांसफर कॉम्प्लेक्स
- अन्य
यौगिक अर्धचालक
एक यौगिक अर्धचालक एक अर्धचालक रासायनिक यौगिक है जो कम से कम दो अलग-अलग प्रजातियों के रासायनिक तत्वों से बना होता है। ये अर्धचालक उदाहरण के लिए समूह (आवर्त सारणी) 13-15 (पुराने समूह III-V) में बनते हैं, उदाहरण के लिए बोरॉन समूह (पुराने समूह III, बोरान, अल्युमीनियम , गैलियम, ईण्डीयुम ) और नाइट्रोजन समूह (पुराने समूह V, नाइट्रोजन, फास्फोरस, हरताल , सुरमा , विस्मुट) से तत्व। संभावित सूत्रों की सीमा काफी व्यापक है क्योंकि ये तत्व बाइनरी (दो तत्व, जैसे गैलियम (III) आर्सेनाइड (GaAs)), टर्नरी (तीन तत्व, जैसे इंडियम गैलियम आर्सेनाइड (InGaAs)) और चतुर्धातुक मिश्र धातु (चार तत्व) जैसे एल्यूमीनियम गैलियम इंडियम फॉस्फाइड (AlInGaP)) मिश्र धातु और इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड (InAsSbP) बना सकते हैं। III-V यौगिक अर्धचालकों के गुण उनके समूह IV समकक्षों के समान हैं। इन यौगिकों में और विशेष रूप से II-VI यौगिक में उच्च आयनिकता, कम आयनिक यौगिकों के संबंध में मौलिक बैंडगैप को बढ़ाती है।[9]
निर्माण
मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी | मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी (एमओवीपीई) उपकरणों के लिए यौगिक अर्धचालक पतली फिल्मों के निर्माण के लिए सबसे लोकप्रिय जमाव तकनीक है।[citation needed] यह हाइड्रोजन जैसी परिवेशी गैस में अग्रदूत (रसायन विज्ञान) स्रोत सामग्री के रूप में अल्ट्राप्योर मेटलऑर्गेनिक्स और/या हाइड्राइड्स का उपयोग करता है।
पसंद की अन्य तकनीकों में शामिल हैं:
- आणविक-किरण एपिटेक्सी (एमबीई)
- हाइड्राइड वाष्प चरण एपिटैक्सी| हाइड्राइड वाष्प-चरण एपिटैक्सी (HVPE)
- तरल चरण एपिटैक्सी (एलपीई)
- धातु-कार्बनिक आणविक बीम एपिटैक्सी|धातु-कार्बनिक आणविक-बीम एपिटैक्सी (एमओएमबीई)
- परमाणु परत जमाव (एएलडी)
अर्धचालक सामग्री की तालिका
Group | Elem. | Material | Formula | Band gap (eV) | Gap type | Description | |||
---|---|---|---|---|---|---|---|---|---|
IV | 1 | Silicon | Si | 1.12[10][11] | indirect | Used in conventional crystalline silicon (c-Si) solar cells, and in its amorphous form as amorphous silicon (a-Si) in thin-film solar cells. Most common semiconductor material in photovoltaics; dominates worldwide PV market; easy to fabricate; good electrical and mechanical properties. Forms high quality thermal oxide for insulation purposes. Most common material used in the fabrication of Integrated Circuits. | |||
IV | 1 | Germanium | Ge | 0.67[10][11] | indirect | Used in early radar detection diodes and first transistors; requires lower purity than silicon. A substrate for high-efficiency multijunction photovoltaic cells. Very similar lattice constant to gallium arsenide. High-purity crystals used for gamma spectroscopy. May grow whiskers, which impair reliability of some devices. | |||
IV | 1 | Diamond | C | 5.47[10][11] | indirect | Excellent thermal conductivity. Superior mechanical and optical properties.
High carrier mobilities[12] and high electric breakdown field[13] at room temperature as excellent electronics characteristics. Extremely high nanomechanical resonator quality factor.[14] | |||
IV | 1 | Gray tin, α-Sn | Sn | 0.08[15] | indirect | Low temperature allotrope (diamond cubic lattice). | |||
IV | 2 | Silicon carbide, 3C-SiC | SiC | 2.3[10] | indirect | used for early yellow LEDs | |||
IV | 2 | Silicon carbide, 4H-SiC | SiC | 3.3[10] | indirect | Used for high-voltage and high-temperature applications | |||
IV | 2 | Silicon carbide, 6H-SiC | SiC | 3.0[10] | indirect | used for early blue LEDs | |||
VI | 1 | Sulfur, α-S | S8 | 2.6[16] | |||||
VI | 1 | Gray (trigonal) selenium | Se | 1.83 - 2.0[17] | indirect | Used in selenium rectifiers. Band gap depends on fabrication conditions. | |||
VI | 1 | Red selenium | Se | 2.05 | indirect | [18] | |||
VI | 1 | Tellurium | Te | 0.33[19] | |||||
III-V | 2 | Boron nitride, cubic | BN | 6.36[20] | indirect | potentially useful for ultraviolet LEDs | |||
III-V | 2 | Boron nitride, hexagonal | BN | 5.96[20] | quasi-direct | potentially useful for ultraviolet LEDs | |||
III-V | 2 | Boron nitride nanotube | BN | 5.5[21] | |||||
III-V | 2 | Boron phosphide | BP | 2.1[22] | indirect | ||||
III-V | 2 | Boron arsenide | BAs | 1.82 | direct | Ultrahigh thermal conductivity for thermal management; Resistant to radiation damage, possible applications in betavoltaics. | |||
III-V | 2 | Boron arsenide | B12As2 | 3.47 | indirect | Resistant to radiation damage, possible applications in betavoltaics. | |||
III-V | 2 | Aluminium nitride | AlN | 6.28[10] | direct | Piezoelectric. Not used on its own as a semiconductor; AlN-close GaAlN possibly usable for ultraviolet LEDs. Inefficient emission at 210 nm was achieved on AlN. | |||
III-V | 2 | Aluminium phosphide | AlP | 2.45[11] | indirect | ||||
III-V | 2 | Aluminium arsenide | AlAs | 2.16[11] | indirect | ||||
III-V | 2 | Aluminium antimonide | AlSb | 1.6/2.2[11] | indirect/direct | ||||
III-V | 2 | Gallium nitride | GaN | 3.44[10][11] | direct | problematic to be doped to p-type, p-doping with Mg and annealing allowed first high-efficiency blue LEDs[3] and blue lasers. Very sensitive to ESD. Insensitive to ionizing radiation. GaN transistors can operate at higher voltages and higher temperatures than GaAs, used in microwave power amplifiers. When doped with e.g. manganese, becomes a magnetic semiconductor. | |||
III-V | 2 | Gallium phosphide | GaP | 2.26[10][11] | indirect | Used in early low to medium brightness cheap red/orange/green LEDs. Used standalone or with GaAsP. Transparent for yellow and red light, used as substrate for GaAsP red/yellow LEDs. Doped with S or Te for n-type, with Zn for p-type. Pure GaP emits green, nitrogen-doped GaP emits yellow-green, ZnO-doped GaP emits red. | |||
III-V | 2 | Gallium arsenide | GaAs | 1.42[10][11] | direct | second most common in use after silicon, commonly used as substrate for other III-V semiconductors, e.g. InGaAs and GaInNAs. Brittle. Lower hole mobility than Si, P-type CMOS transistors unfeasible. High impurity density, difficult to fabricate small structures. Used for near-IR LEDs, fast electronics, and high-efficiency solar cells. Very similar lattice constant to germanium, can be grown on germanium substrates. | |||
III-V | 2 | Gallium antimonide | GaSb | 0.73[10][11] | direct | Used for infrared detectors and LEDs and thermophotovoltaics. Doped n with Te, p with Zn. | |||
III-V | 2 | Indium nitride | InN | 0.7[10] | direct | Possible use in solar cells, but p-type doping difficult. Used frequently as alloys. | |||
III-V | 2 | Indium phosphide | InP | 1.35[10] | direct | Commonly used as substrate for epitaxial InGaAs. Superior electron velocity, used in high-power and high-frequency applications. Used in optoelectronics. | |||
III-V | 2 | Indium arsenide | InAs | 0.36[10] | direct | Used for infrared detectors for 1–3.8 µm, cooled or uncooled. High electron mobility. InAs dots in InGaAs matrix can serve as quantum dots. Quantum dots may be formed from a monolayer of InAs on InP or GaAs. Strong photo-Dember emitter, used as a terahertz radiation source. | |||
III-V | 2 | Indium antimonide | InSb | 0.17[10] | direct | Used in infrared detectors and thermal imaging sensors, high quantum efficiency, low stability, require cooling, used in military long-range thermal imager systems. AlInSb-InSb-AlInSb structure used as quantum well. Very high electron mobility, electron velocity and ballistic length. Transistors can operate below 0.5V and above 200 GHz. Terahertz frequencies maybe achievable. | |||
II-VI | 2 | Cadmium selenide | CdSe | 1.74[11] | direct | Nanoparticles used as quantum dots. Intrinsic n-type, difficult to dope p-type, but can be p-type doped with nitrogen. Possible use in optoelectronics. Tested for high-efficiency solar cells. | |||
II-VI | 2 | Cadmium sulfide | CdS | 2.42[11] | direct | Used in photoresistors and solar cells; CdS/Cu2S was the first efficient solar cell. Used in solar cells with CdTe. Common as quantum dots. Crystals can act as solid-state lasers. Electroluminescent. When doped, can act as a phosphor. | |||
II-VI | 2 | Cadmium telluride | CdTe | 1.49[11] | direct | Used in solar cells with CdS. Used in thin film solar cells and other cadmium telluride photovoltaics; less efficient than crystalline silicon but cheaper. High electro-optic effect, used in electro-optic modulators. Fluorescent at 790 nm. Nanoparticles usable as quantum dots. | |||
II-VI, oxide | 2 | Zinc oxide | ZnO | 3.37[11] | direct | Photocatalytic. Band gap is tunable from 3 to 4 eV by alloying with magnesium oxide and cadmium oxide. Intrinsic n-type, p-type doping is difficult. Heavy aluminium, indium, or gallium doping yields transparent conductive coatings; ZnO:Al is used as window coatings transparent in visible and reflective in infrared region and as conductive films in LCD displays and solar panels as a replacement of indium tin oxide. Resistant to radiation damage. Possible use in LEDs and laser diodes. Possible use in random lasers. | |||
II-VI | 2 | Zinc selenide | ZnSe | 2.7[11] | direct | Used for blue lasers and LEDs. Easy to n-type doping, p-type doping is difficult but can be done with e.g. nitrogen. Common optical material in infrared optics. | |||
II-VI | 2 | Zinc sulfide | ZnS | 3.54/3.91[11] | direct | Band gap 3.54 eV (cubic), 3.91 (hexagonal). Can be doped both n-type and p-type. Common scintillator/phosphor when suitably doped. | |||
II-VI | 2 | Zinc telluride | ZnTe | 2.3[11] | direct | Can be grown on AlSb, GaSb, InAs, and PbSe. Used in solar cells, components of microwave generators, blue LEDs and lasers. Used in electrooptics. Together with lithium niobate used to generate terahertz radiation. | |||
I-VII | 2 | Cuprous chloride | CuCl | 3.4[23] | direct | ||||
I-VI | 2 | Copper sulfide | Cu2S | 1.2[22] | indirect | p-type, Cu2S/CdS was the first efficient thin film solar cell | |||
IV-VI | 2 | Lead selenide | PbSe | 0.26[19] | direct | Used in infrared detectors for thermal imaging. Nanocrystals usable as quantum dots. Good high temperature thermoelectric material. | |||
IV-VI | 2 | Lead(II) sulfide | PbS | 0.37[24] | Mineral galena, first semiconductor in practical use, used in cat's whisker detectors; the detectors are slow due to high dielectric constant of PbS. Oldest material used in infrared detectors. At room temperature can detect SWIR, longer wavelengths require cooling. | ||||
IV-VI | 2 | Lead telluride | PbTe | 0.32[10] | Low thermal conductivity, good thermoelectric material at elevated temperature for thermoelectric generators. | ||||
IV-VI | 2 | Tin(II) sulfide | SnS | 1.3/1.0[25] | direct/indirect | Tin sulfide (SnS) is a semiconductor with direct optical band gap of 1.3 eV and absorption coefficient above 104 cm−1 for photon energies above 1.3 eV. It is a p-type semiconductor whose electrical properties can be tailored by doping and structural modification and has emerged as one of the simple, non-toxic and affordable material for thin films solar cells since a decade. | |||
IV-VI | 2 | Tin(IV) sulfide | SnS2 | 2.2[26] | SnS2 is widely used in gas sensing applications. | ||||
IV-VI | 2 | Tin telluride | SnTe | 0.18 | Complex band structure. | ||||
IV-VI | 3 | Lead tin telluride | Pb1−xSnxTe | 0-0.29 | Used in infrared detectors and for thermal imaging | ||||
V-VI, layered | 2 | Bismuth telluride | Bi2Te3 | 0.13[10] | Efficient thermoelectric material near room temperature when alloyed with selenium or antimony. Narrow-gap layered semiconductor. High electrical conductivity, low thermal conductivity. Topological insulator. | ||||
II-V | 2 | Cadmium phosphide | Cd3P2 | 0.5[27] | |||||
II-V | 2 | Cadmium arsenide | Cd3As2 | 0 | N-type intrinsic semiconductor. Very high electron mobility. Used in infrared detectors, photodetectors, dynamic thin-film pressure sensors, and magnetoresistors. Recent measurements suggest that 3D Cd3As2 is actually a zero band-gap Dirac semimetal in which electrons behave relativistically as in graphene.[28] | ||||
II-V | 2 | Zinc phosphide | Zn3P2 | 1.5[29] | direct | Usually p-type. | |||
II-V | 2 | Zinc diphosphide | ZnP2 | 2.1[30] | |||||
II-V | 2 | Zinc arsenide | Zn3As2 | 1.0[31] | The lowest direct and indirect bandgaps are within 30 meV or each other.[31] | ||||
II-V | 2 | Zinc antimonide | Zn3Sb2 | Used in infrared detectors and thermal imagers, transistors, and magnetoresistors. | |||||
Oxide | 2 | Titanium dioxide, anatase | TiO2 | 3.20[32] | indirect | photocatalytic, n-type | |||
Oxide | 2 | Titanium dioxide, rutile | TiO2 | 3.0[32] | direct | photocatalytic, n-type | |||
Oxide | 2 | Titanium dioxide, brookite | TiO2 | 3.26[32] | [33] | ||||
Oxide | 2 | Copper(I) oxide | Cu2O | 2.17[34] | One of the most studied semiconductors. Many applications and effects first demonstrated with it. Formerly used in rectifier diodes, before silicon. | ||||
Oxide | 2 | Copper(II) oxide | CuO | 1.2 | N-type semiconductor.[35] | ||||
Oxide | 2 | Uranium dioxide | UO2 | 1.3 | High Seebeck coefficient, resistant to high temperatures, promising thermoelectric and thermophotovoltaic applications. Formerly used in URDOX resistors, conducting at high temperature. Resistant to radiation damage. | ||||
Oxide | 2 | Tin dioxide | SnO2 | 3.7 | Oxygen-deficient n-type semiconductor. Used in gas sensors. | ||||
Oxide | 3 | Barium titanate | BaTiO3 | 3 | Ferroelectric, piezoelectric. Used in some uncooled thermal imagers. Used in nonlinear optics. | ||||
Oxide | 3 | Strontium titanate | SrTiO3 | 3.3 | Ferroelectric, piezoelectric. Used in varistors. Conductive when niobium-doped. | ||||
Oxide | 3 | Lithium niobate | LiNbO3 | 4 | Ferroelectric, piezoelectric, shows Pockels effect. Wide uses in electrooptics and photonics. | ||||
V-VI | 2 | monoclinic Vanadium(IV) oxide | VO2 | 0.7[36] | optical | stable below 67 °C | |||
Layered | 2 | Lead(II) iodide | PbI2 | 2.4[37] | PbI2 is a layered direct bandgap semiconductor with bandgap of 2.4 eV in its bulk form, whereas its 2D monolayer has an indirect bandgap of ~2.5 eV, with possibilities to tune the bandgap between 1–3 eV | ||||
Layered | 2 | Molybdenum disulfide | MoS2 | 1.23 eV (2H)[38] | indirect | ||||
Layered | 2 | Gallium selenide | GaSe | 2.1 | indirect | Photoconductor. Uses in nonlinear optics. Used as 2D-material. Air sensitive.[39][40][41] | |||
Layered | 2 | Indium selenide | InSe | 1.26-2.35 eV[41] | direct (indirect in 2D) | Air sensitive. High electrical mobility in few- and mono-layer form.[39][40][41] | |||
Layered | 2 | Tin sulfide | SnS | >1.5 eV | direct | ||||
Layered | 2 | Bismuth sulfide | Bi2S3 | 1.3[10] | |||||
Magnetic, diluted (DMS)[42] | 3 | Gallium manganese arsenide | GaMnAs | ||||||
Magnetic, diluted (DMS) | 3 | Lead manganese telluride | PbMnTe | ||||||
Magnetic | 4 | Lanthanum calcium manganate | La0.7Ca0.3MnO3 | colossal magnetoresistance | |||||
Magnetic | 2 | Iron(II) oxide | FeO | 2.2 [43] | antiferromagnetic Band gap for iron oxide nanoparticles was found to be 2.2 eV and on doping the band gap found to be increased up to 2.5 eV | ||||
Magnetic | 2 | Nickel(II) oxide | NiO | 3.6–4.0 | direct[44][45] | antiferromagnetic | |||
Magnetic | 2 | Europium(II) oxide | EuO | ferromagnetic | |||||
Magnetic | 2 | Europium(II) sulfide | EuS | ferromagnetic | |||||
Magnetic | 2 | Chromium(III) bromide | CrBr3 | ||||||
other | 3 | Copper indium selenide, CIS | CuInSe2 | 1 | direct | ||||
other | 3 | Silver gallium sulfide | AgGaS2 | nonlinear optical properties | |||||
other | 3 | Zinc silicon phosphide | ZnSiP2 | 2.0[22] | |||||
other | 2 | Arsenic trisulfide Orpiment | As2S3 | 2.7[46] | direct | semiconductive in both crystalline and glassy state | |||
other | 2 | Arsenic sulfide Realgar | As4S4 | semiconductive in both crystalline and glassy state | |||||
other | 2 | Platinum silicide | PtSi | Used in infrared detectors for 1–5 µm. Used in infrared astronomy. High stability, low drift, used for measurements. Low quantum efficiency. | |||||
other | 2 | Bismuth(III) iodide | BiI3 | ||||||
other | 2 | Mercury(II) iodide | HgI2 | Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature. | |||||
other | 2 | Thallium(I) bromide | TlBr | 2.68[47] | Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature. Used as a real-time x-ray image sensor. | ||||
other | 2 | Silver sulfide | Ag2S | 0.9[48] | |||||
other | 2 | Iron disulfide | FeS2 | 0.95[49] | Mineral pyrite. Used in later cat's whisker detectors, investigated for solar cells. | ||||
other | 4 | Copper zinc tin sulfide, CZTS | Cu2ZnSnS4 | 1.49 | direct | Cu2ZnSnS4 is derived from CIGS, replacing the Indium/Gallium with earth abundant Zinc/Tin. | |||
other | 4 | Copper zinc antimony sulfide, CZAS | Cu1.18Zn0.40Sb1.90S7.2 | 2.2[50] | direct | Copper zinc antimony sulfide is derived from copper antimony sulfide (CAS), a famatinite class of compound. | |||
other | 3 | Copper tin sulfide, CTS | Cu2SnS3 | 0.91[22] | direct | Cu2SnS3 is p-type semiconductor and it can be used in thin film solar cell application. |
अर्धचालक मिश्रधातु प्रणालियों की तालिका
निम्नलिखित अर्धचालक प्रणालियों को कुछ हद तक समायोजित किया जा सकता है, और ये किसी एक सामग्री का नहीं बल्कि सामग्रियों के एक वर्ग का प्रतिनिधित्व करते हैं।
समूह | Elem. | सामग्री वर्ग | Formula | data-sort-type=number | Band gap (eV) | Gap type | विवरण | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
IV-VI | 3 | लेड टिन टेलुराइड | Pb1−xSnxTe | 0 | 0.29 | Used in infrared detectors and for thermal imaging | |
IV | 2 | सिलिकॉन जर्मेनियम | Si1−xGex | 0.67 | 1.11[10] | अप्रत्यक्ष | adjustable band gap, allows construction of heterojunction structures. Certain thicknesses of superlattices have direct band gap.[51] |
IV | 2 | सिलिकॉन-टिन | Si1−xSnx | 1.0 | 1.11 | अप्रत्यक्ष | Adjustable band gap.[52] |
III-V | 3 | एल्यूमिनियम गैलियम आर्सेनाइड | AlxGa1−xAs | 1.42 | 2.16[10] | प्रत्यक्ष/अप्रत्यक्ष | direct band gap for x<0.4 (corresponding to 1.42–1.95 eV); can be lattice-matched to GaAs substrate over entire composition range; tends to oxidize; n-doping with Si, Se, Te; p-doping with Zn, C, Be, Mg.[3] Can be used for infrared laser diodes. Used as a barrier layer in GaAs devices to confine electrons to GaAs (see e.g. QWIP). AlGaAs with composition close to AlAs is almost transparent to sunlight. Used in GaAs/AlGaAs solar cells. |
III-V | 3 | इंडियम गैलियम आर्सेनाइड | InxGa1−xAs | 0.36 | 1.43 | प्रत्यक्ष | Well-developed material. Can be lattice matched to InP substrates. Use in infrared technology and thermophotovoltaics. Indium content determines charge carrier density. For x=0.015, InGaAs perfectly lattice-matches germanium; can be used in multijunction photovoltaic cells. Used in infrared sensors, avalanche photodiodes, laser diodes, optical fiber communication detectors, and short-wavelength infrared cameras. |
III-V | 3 | इंडियम गैलियम फॉस्फाइड | InxGa1−xP | 1.35 | 2.26 | प्रत्यक्ष/अप्रत्यक्ष | used for HEMT and HBT structures and high-efficiency multijunction solar cells for e.g. satellites. Ga0.5In0.5P is almost lattice-matched to GaAs, with AlGaIn used for quantum wells for red lasers. |
III-V | 3 | एल्यूमिनियम इंडियम आर्सेनाइड | AlxIn1−xAs | 0.36 | 2.16 | प्रत्यक्ष/अप्रत्यक्ष | Buffer layer in metamorphic HEMT transistors, adjusting lattice constant between GaAs substrate and GaInAs channel. Can form layered heterostructures acting as quantum wells, in e.g. quantum cascade lasers. |
III-V | 3 | एल्यूमिनियम इंडियम एंटीमोनाइड | AlxIn1−xSb | ||||
III-V | 3 | गैलियम आर्सेनाइड नाइट्राइड | GaAsN | ||||
III-V | 3 | गैलियम आर्सेनाइड फॉस्फाइड | GaAsP | 1.43 | 2.26 | प्रत्यक्ष/अप्रत्यक्ष | लाल, नारंगी और पीले एलईडी में उपयोग किया जाता है। अक्सर GaP पर उगाया जाता है। नाइट्रोजन के साथ डोप किया जा सकता है। |
III-V | 3 | गैलियम आर्सेनाइड एंटीमोनाइड | GaAsSb | 0.7 | 1.42[10] | प्रत्यक्ष | |
III-V | 3 | एल्यूमिनियम गैलियम नाइट्राइड | AlGaN | 3.44 | 6.28 | प्रत्यक्ष | Used in blue laser diodes, ultraviolet LEDs (down to 250 nm), and AlGaN/GaN HEMTs. Can be grown on sapphire. Used in heterojunctions with AlN and GaN. |
III-V | 3 | एल्यूमिनियम गैलियम फॉस्फाइड | AlGaP | 2.26 | 2.45 | अप्रत्यक्ष | कुछ हरे एलईडी में उपयोग किया जाता है। |
III-V | 3 | इंडियम गैलियम नाइट्राइड | InGaN | 2 | 3.4 | प्रत्यक्ष | InxGa1–xN, x आमतौर पर 0.02–0.3 के बीच (निकट-यूवी के लिए 0.02, 390 एनएम के लिए 0.1, 420 एनएम के लिए 0.2, 440 एनएम के लिए 0.3)। नीलमणि, SiC वेफर्स या सिलिकॉन पर एपिटैक्सियल रूप से उगाया जा सकता है। आधुनिक नीले और हरे एलईडी में उपयोग किए जाने वाले InGaN क्वांटम कुएं हरे से पराबैंगनी तक प्रभावी उत्सर्जक हैं। विकिरण क्षति के प्रति असंवेदनशील, उपग्रह सौर कोशिकाओं में संभावित उपयोग। दोषों के प्रति असंवेदनशील, जाली बेमेल क्षति के प्रति सहनशील। उच्च ताप क्षमता. |
III-V | 3 | इंडियम आर्सेनाइड एंटीमोनाइड | InAsSb | ||||
III-V | 3 | इंडियम गैलियम एंटीमोनाइड | InGaSb | ||||
III-V | 4 | एल्यूमिनियम गैलियम इंडियम फॉस्फाइड | AlGaInP | प्रत्यक्ष/अप्रत्यक्ष | InAlGaP, InGaAlP, AlInGaP भी; GaAs सबस्ट्रेट्स से मेल खाने वाले जाली के लिए इन मोल अंश लगभग 0.48 पर तय किया गया है, Al/Ga अनुपात को लगभग 1.9 और 2.35 eV के बीच बैंड अंतराल प्राप्त करने के लिए समायोजित किया गया है; Al/Ga/In अनुपात के आधार पर प्रत्यक्ष या अप्रत्यक्ष बैंड अंतराल; 560-650 एनएम के बीच तरंग दैर्ध्य के लिए उपयोग किया जाता है; जमाव के दौरान क्रमबद्ध चरणों का निर्माण होता है, जिसे रोका जाना चाहिए[3] | ||
III-V | 4 | एल्यूमिनियम गैलियम आर्सेनाइड फॉस्फाइड | AlGaAsP | ||||
III-V | 4 | इंडियम गैलियम आर्सेनाइड फॉस्फाइड | InGaAsP | ||||
III-V | 4 | इंडियम गैलियम आर्सेनाइड एंटीमोनाइड | InGaAsSb | थर्मोफोटोवोल्टिक्स में उपयोग करें। | |||
III-V | 4 | इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड | InAsSbP | थर्मोफोटोवोल्टिक्स में उपयोग करें। | |||
III-V | 4 | एल्यूमिनियम इंडियम आर्सेनाइड फॉस्फाइड | AlInAsP | ||||
III-V | 4 | एल्यूमिनियम गैलियम आर्सेनाइड नाइट्राइड | AlGaAsN | ||||
III-V | 4 | इंडियम गैलियम आर्सेनाइड नाइट्राइड | InGaAsN | ||||
III-V | 4 | इंडियम एल्यूमीनियम आर्सेनाइड नाइट्राइड | InAlAsN | ||||
III-V | 4 | गैलियम आर्सेनाइड एंटीमोनाइड नाइट्राइड | GaAsSbN | ||||
III-V | 5 | गैलियम इंडियम नाइट्राइड आर्सेनाइड एंटीमोनाइड | GaInNAsSb | ||||
III-V | 5 | गैलियम इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड | GaInAsSbP | InAs, GaSb और अन्य सबस्ट्रेट्स पर उगाया जा सकता है। अलग-अलग संरचना से जाली का मिलान किया जा सकता है। संभवतः मध्य-अवरक्त एल ई डी के लिए प्रयोग करने योग्य। | |||
II-VI | 3 | Cadmium zinc telluride, CZT | CdZnTe | 1.4 | 2.2 | direct | Efficient solid-state x-ray and gamma-ray detector, can operate at room temperature. High electro-optic coefficient. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe. |
II-VI | 3 | मरकरी कैडमियम टेलुराइड | HgCdTe | 0 | 1.5 | Known as "MerCad". Extensive use in sensitive cooled infrared imaging sensors, infrared astronomy, and infrared detectors. Alloy of mercury telluride (a semimetal, zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 µm and 12–15 µm atmospheric windows. Can be grown on CdZnTe. | |
II-VI | 3 | मरकरी जिंक टेलुराइड | HgZnTe | 0 | 2.25 | इन्फ्रारेड डिटेक्टरों, इन्फ्रारेड इमेजिंग सेंसर और इन्फ्रारेड खगोल विज्ञान में उपयोग किया जाता है। HgCdTe की तुलना में बेहतर यांत्रिक और थर्मल गुण लेकिन संरचना को नियंत्रित करना अधिक कठिन है। जटिल हेटरोस्ट्रक्चर बनाना अधिक कठिन है। | |
II-VI | 3 | मरकरी जिंक सेलेनाइड | HgZnSe | ||||
II-V | 4 | जिंक कैडमियम फॉस्फाइड आर्सेनाइड | (Zn1−xCdx)3(P1−yAsy)2[53] | 0[28] | 1.5[54] | ऑप्टोइलेक्ट्रॉनिक्स (फोटोवोल्टिक्स सहित), इलेक्ट्रॉनिक्स और थर्मोइलेक्ट्रिक्स में विभिन्न अनुप्रयोग।[55] | |
other | 4 | कॉपर इंडियम गैलियम सेलेनाइड, सीआईजीएस | Cu(In,Ga)Se2 | 1 | 1.7 | प्रत्यक्ष | CuInxGa1–xSe2. Polycrystalline. Used in thin film solar cells. |
यह भी देखें
- heterojunction
- कार्बनिक अर्धचालक
- सेमीकंडक्टर लक्षण वर्णन तकनीक
संदर्भ
- ↑ Jones, E.D. (1991). "Control of Semiconductor Conductivity by Doping". In Miller, L. S.; Mullin, J. B. (eds.). इलेक्ट्रॉनिक सामग्री. New York: Plenum Press. pp. 155–171. doi:10.1007/978-1-4615-3818-9_12. ISBN 978-1-4613-6703-1.
- ↑ Milton Ohring Reliability and failure of electronic materials and devices Academic Press, 1998, ISBN 0-12-524985-3, p. 310.
- ↑ 3.0 3.1 3.2 3.3 John Dakin, Robert G. W. Brown Handbook of optoelectronics, Volume 1, CRC Press, 2006 ISBN 0-7503-0646-7 p. 57
- ↑ Charles Kittel (1996). पर। सीआईटी. p. 202. ISBN 978-0-471-11181-8.
- ↑ Green, M. A. (1990). "सिलिकॉन में आंतरिक सांद्रता, राज्यों का प्रभावी घनत्व और प्रभावी द्रव्यमान". Journal of Applied Physics. 67 (6): 2944–2954. Bibcode:1990JAP....67.2944G. doi:10.1063/1.345414.
- ↑ New material shares many of graphene’s unusual properties. Thin films of bismuth-antimony have potential for new semiconductor chips, thermoelectric devices. MIT News Office (24 April 2012).
- ↑ Tang, Shuang; Dresselhaus, Mildred (2012). "BiSb थिन फिल्म्स में अनिसोट्रोपिक सिंगल-डिराक-कोन्स का निर्माण". Nano Letters. 12 (4): 2021–2026. doi:10.1021/nl300064d.
- ↑ Tang, Shuang; Dresselhaus, Mildred (2012). "BiSb पतली फिल्म प्रणाली में डायराक-कोन सामग्री की एक बड़ी विविधता का निर्माण". Nanoscale. 4 (24): 7786–7790. doi:10.1039/C2NR32436A.
- ↑ Yu, Peter; Cardona, Manuel (2010). अर्धचालकों के मूल सिद्धांत (4 ed.). Springer-Verlag Berlin Heidelberg. p. 2. Bibcode:2010fuse.book.....Y. doi:10.1007/978-3-642-00710-1. ISBN 978-3-642-00709-5.
- ↑ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 "NSM Archive - Physical Properties of Semiconductors". www.ioffe.ru. Archived from the original on 2015-09-28. Retrieved 2010-07-10.
- ↑ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 11.16 Safa O. Kasap; Peter Capper (2006). Springer handbook of electronic and photonic materials. Springer. pp. 54, 327. ISBN 978-0-387-26059-4.
- ↑ Isberg, Jan; Hammersberg, Johan; Johansson, Erik; Wikström, Tobias; Twitchen, Daniel J.; Whitehead, Andrew J.; Coe, Steven E.; Scarsbrook, Geoffrey A. (2002-09-06). "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond". Science (in English). 297 (5587): 1670–1672. Bibcode:2002Sci...297.1670I. doi:10.1126/science.1074374. ISSN 0036-8075. PMID 12215638. S2CID 27736134.
- ↑ Pierre, Volpe (2010). "High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer". Physica Status Solidi. 207 (9): 2088–2092. Bibcode:2010PSSAR.207.2088V. doi:10.1002/pssa.201000055. S2CID 122210971.
- ↑ Y. Tao, J. M. Boss, B. A. Moores, C. L. Degen (2012). Single-Crystal Diamond Nanomechanical Resonators with Quality Factors exceeding one Million. arXiv:1212.1347
- ↑ "Tin, Sn". www.matweb.com.
- ↑ Abass, A. K.; Ahmad, N. H. (1986). "Indirect band gap investigation of orthorhombic single crystals of sulfur". Journal of Physics and Chemistry of Solids. 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X.
- ↑ Todorov, T. (2017). "Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material". Nature Communications. 8 (1): 682. Bibcode:2017NatCo...8..682T. doi:10.1038/s41467-017-00582-9. PMC 5613033. PMID 28947765. S2CID 256640449.
- ↑ Rajalakshmi, M.; Arora, Akhilesh (2001). "Stability of Monoclinic Selenium Nanoparticles". Solid State Physics. 44: 109.
- ↑ 19.0 19.1 Dorf, Richard (1993). The Electrical Engineering Handbook. CRC Press. pp. 2235–2236. ISBN 0-8493-0185-8.
- ↑ 20.0 20.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J (2008). "Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy" (PDF). Journal of Physics: Condensed Matter. 20 (7): 075233. Bibcode:2008JPCM...20g5233E. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612. S2CID 52027854.
- ↑ "Boron nitride nanotube". www.matweb.com.
- ↑ 22.0 22.1 22.2 22.3 Madelung, O. (2004). Semiconductors: Data Handbook. Birkhäuser. p. 1. ISBN 978-3-540-40488-0.
- ↑ Claus F. Klingshirn (1997). Semiconductor optics. Springer. p. 127. ISBN 978-3-540-61687-0.
- ↑ "Lead(II) sulfide". www.matweb.com.
- ↑ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray (26 May 2013). "Annealing influence over structural and optical properties of sprayed SnS thin films". Optical Materials. 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034.
- ↑ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron (2016). "Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst". Journal of Materials Chemistry A. 4 (4): 1312–1318. doi:10.1039/C5TA08214E.
- ↑ Haacke, G.; Castellion, G. A. (1964). "Preparation and Semiconducting Properties of Cd3P2". Journal of Applied Physics. 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886.
- ↑ 28.0 28.1 Borisenko, Sergey; et al. (2014). "Experimental Realization of a Three-Dimensional Dirac Semimetal". Physical Review Letters. 113 (27603): 027603. arXiv:1309.7978. Bibcode:2014PhRvL.113b7603B. doi:10.1103/PhysRevLett.113.027603. PMID 25062235. S2CID 19882802.
- ↑ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. (2009). "Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2" (PDF). Applied Physics Letters. 95 (11): 112103. Bibcode:2009ApPhL..95k2103K. doi:10.1063/1.3225151. ISSN 0003-6951.
- ↑ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. (1980). "Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation". Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds: 237–242.
- ↑ 31.0 31.1 Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. (1999). "Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2". Journal of Applied Physics. 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569.
- ↑ 32.0 32.1 32.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. (2016). "Review of functional titanium oxides. I: TiO2 and its modifications". Progress in Solid State Chemistry. 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002.
- ↑ S. Banerjee; et al. (2006). "Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy" (PDF). Current Science. 90 (10): 1378.
- ↑ O. Madelung; U. Rössler; M. Schulz, eds. (1998). "Cuprous oxide (Cu2O) band structure, band energies". Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. Vol. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. pp. 1–4. doi:10.1007/10681727_62. ISBN 978-3-540-64583-2.
- ↑ Lee, Thomas H. (2004). Planar Microwave Engineering: A practical guide to theory, measurement, and circuits. UK: Cambridge Univ. Press. p. 300. ISBN 978-0-521-83526-8.
- ↑ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993. PMID 9994356.
- ↑ Sinha, Sapna (2020). "Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene". Nature Communications. 11 (1): 823. Bibcode:2020NatCo..11..823S. doi:10.1038/s41467-020-14481-z. PMC 7010709. PMID 32041958. S2CID 256633781.
- ↑ Kobayashi, K.; Yamauchi, J. (1995). "Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces". Physical Review B. 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. doi:10.1103/PhysRevB.51.17085. PMID 9978722.
- ↑ 39.0 39.1 Arora, Himani; Erbe, Artur (2021). "Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe". InfoMat (in English). 3 (6): 662–693. doi:10.1002/inf2.12160. ISSN 2567-3165.
- ↑ 40.0 40.1 Arora, Himani; Jung, Younghun; Venanzi, Tommaso; Watanabe, Kenji; Taniguchi, Takashi; Hübner, René; Schneider, Harald; Helm, Manfred; Hone, James C.; Erbe, Artur (2019-11-20). "Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties". ACS Applied Materials & Interfaces. 11 (46): 43480–43487. doi:10.1021/acsami.9b13442. hdl:11573/1555190. ISSN 1944-8244. PMID 31651146. S2CID 204884014.
- ↑ 41.0 41.1 41.2 Arora, Himani (2020). "Charge transport in two-dimensional materials and their electronic applications" (PDF). Doctoral Dissertation. Retrieved July 1, 2021.
- ↑ B. G. Yacobi Semiconductor materials: an introduction to basic principles Springer, 2003, ISBN 0-306-47361-5
- ↑ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil (2019). "Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities". Journal of Taibah University for Science. 13: 280–285. doi:10.1080/16583655.2019.1565437. S2CID 139826266.
- ↑ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
- ↑ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
- ↑ Arsenic sulfide (As2S3)
- ↑ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors
- ↑ HODES; Ebooks Corporation (8 October 2002). Chemical Solution Deposition of Semiconductor Films. CRC Press. pp. 319–. ISBN 978-0-8247-4345-1. Retrieved 28 June 2011.
- ↑ Arumona Edward Arumona; Amah A N (2018). "Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium". Advanced Journal of Graduate Research. 3: 41–46. doi:10.21467/ajgr.3.1.41-46.
- ↑ Prashant K Sarswat; Michael L Free (2013). "Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode". International Journal of Photoenergy. 2013: 1–7. doi:10.1155/2013/154694.
- ↑ Rajakarunanayake, Yasantha Nirmal (1991) Optical properties of Si-Ge superlattices and wide band gap II-VI superlattices Dissertation (Ph.D.), California Institute of Technology
- ↑ Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo A. Torres; Schwingenschlögl, Udo; Hussain, Muhammad M. (2014). "Tin – an unlikely ally for silicon field effect transistors?". Physica Status Solidi RRL. 8 (4): 332–335. Bibcode:2014PSSRR...8..332H. doi:10.1002/pssr.201308300. S2CID 93729786.
- ↑ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. (2014). "Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics". Inorganic Materials. 50 (9): 868–873. doi:10.1134/S0020168514090143. S2CID 94409384.
- ↑ Cisowski, J. (1982). "Level Ordering in II3-V2 Semiconducting Compounds". Physica Status Solidi B. 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.
- ↑ Arushanov, E. K. (1992). "II3V2 compounds and alloys". Progress in Crystal Growth and Characterization of Materials. 25 (3): 131–201. doi:10.1016/0960-8974(92)90030-T.