संख्याओं के प्रकारों की सूची: Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{see also|अंक प्रणाली की सूची}}
{{see also|अंक प्रणाली की सूची}}
[[संख्या]]ओं को उनके प्रतिनिधित्व के तरीके या उनके गुणों के अनुसार वर्गीकृत किया जा सकता है।
[[संख्या]]ओं को उनके प्रतिनिधित्व के तरीके या उनके गुणों के अनुसार वर्गीकृत किया जा सकता है।
Line 91: Line 90:
{{Number systems}}
{{Number systems}}


{{DEFAULTSORT:Types of numbers}}[[Category: गणित से संबंधित सूचियाँ]] [[Category: नंबर| नंबर]] [[Category: संख्या-संबंधी सूचियाँ|प्रकार]]
{{DEFAULTSORT:Types of numbers}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Types of numbers]]
[[Category:Created On 01/07/2023]]
[[Category:Collapse templates|Types of numbers]]
[[Category:Created On 01/07/2023|Types of numbers]]
[[Category:Machine Translated Page|Types of numbers]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Types of numbers]]
[[Category:Pages with math errors|Types of numbers]]
[[Category:Pages with math render errors|Types of numbers]]
[[Category:Pages with script errors|Types of numbers]]
[[Category:Sidebars with styles needing conversion|Types of numbers]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Types of numbers]]
[[Category:Templates Vigyan Ready|Types of numbers]]
[[Category:Templates generating microformats|Types of numbers]]
[[Category:Templates that are not mobile friendly|Types of numbers]]
[[Category:Templates using TemplateData|Types of numbers]]
[[Category:Wikipedia metatemplates|Types of numbers]]
[[Category:गणित से संबंधित सूचियाँ|Types of numbers]]
[[Category:नंबर| नंबर]]
[[Category:संख्या-संबंधी सूचियाँ|प्रकार]]

Latest revision as of 16:54, 7 July 2023

संख्याओं को उनके प्रतिनिधित्व के तरीके या उनके गुणों के अनुसार वर्गीकृत किया जा सकता है।

मुख्य प्रकार

  • प्राकृतिक संख्या (): गिनती की संख्याएँ {1, 2, 3, ...} सामान्यतः प्राकृतिक संख्याएँ कहलाती हैं; हालाँकि, औपचारिक परिभाषाओं में 0 सम्मिलित है, इसलिए गैर-नकारात्मक पूर्णांक {0, 1, 2, 3, ...} को प्राकृतिक संख्या भी कहा जाता है। 0 सहित प्राकृतिक संख्याओं को कभी-कभी पूर्ण संख्याएँ भी कहा जाता है। [1][2]
  • पूर्णांक (): सकारात्मक और नकारात्मक संख्याओं की गिनती, साथ ही शून्य: {..., −3, −2, −1, 0, 1, 2, 3, ...}।
  • भिन्नात्मक संख्याएं (): संख्याएँ जिन्हें एक पूर्णांक से एक गैर-शून्य पूर्णांक के भिन्न (गणित) के रूप में व्यक्त किया जा सकता है। [3] सभी पूर्णांक परिमेय हैं, लेकिन कुछ परिमेय संख्याएँ भी हैं जो पूर्णांक नहीं हैं, जैसे −2/9
  • वास्तविक संख्या (): संख्याएँ जो एक रेखा के अनुदिश बिंदुओं के अनुरूप होती हैं। वे सकारात्मक, नकारात्मक या शून्य हो सकते हैं। सभी परिमेय संख्याएँ वास्तविक हैं, लेकिन इसका विपरीत सत्य नहीं है।
  • अपरिमेय संख्याएँ: वास्तविक संख्याएँ जो परिमेय नहीं हैं।
  • काल्पनिक संख्याएँ: वे संख्याएँ जो वास्तविक संख्या के गुणनफल और -1 के वर्गमूल के बराबर होती हैं। संख्या 0 वास्तविक और पूर्णतः काल्पनिक दोनों है।
  • जटिल आंकड़े (): इसमें वास्तविक संख्याएँ, काल्पनिक संख्याएँ, और वास्तविक और काल्पनिक संख्याओं का योग और अंतर सम्मिलित हैं।
  • अतिमिश्र संख्याओं में विभिन्न संख्या-प्रणाली विस्तारण सम्मिलित हैं: चतुर्भुज (), अष्टकोण (), और अन्य कम सामान्य परिवर्ती हैं। [4]
  • p-आदिक संख्याएँ: वास्तविक संख्याओं के निर्माण के लिए उपयोग की जाने वाली सीमा से भिन्न सीमा की धारणाओं के अनुसार, तर्कसंगत संख्याओं की सीमाओं का उपयोग करके निर्मित विभिन्न संख्या प्रणालियाँ हैं।

संख्या प्रतिनिधित्व

  • दशमलव: आधार दस का उपयोग करने वाली मानक हिंदू-अरबी अंक प्रणाली
  • युग्मक अंक प्रणाली: कंप्यूटर द्वारा उपयोग की जाने वाली आधार-दो अंक प्रणाली, अंक 0 और 1 के साथ है।
  • टर्नरी अंक प्रणाली: 0, 1 और 2 अंकों के साथ आधार-तीन अंक प्रणाली है।
  • चतुर्धातुक अंक प्रणाली: 0, 1, 2 और 3 अंकों के साथ आधार-चार अंक प्रणाली है।
  • षोडशाधारी: आधार 16, व्यापक रूप से कंप्यूटर सिस्टम अभिकल्पक और क्रमादेशक द्वारा उपयोग किया जाता है, क्योंकि यह युग्मक-कोडित मूल्यों का अधिक मानव-अनुकूल प्रतिनिधित्व प्रदान करता है।
  • अष्टभुजाकार: आधार 8, कभी-कभी कंप्यूटर सिस्टम अभिकल्पक और प्रोग्रामर द्वारा उपयोग किया जाता है।
  • डुओडेसिमल: आधार 12, एक अंक प्रणाली जो 12 के कई कारकों के कारण सुविधाजनक है।
  • साठवाँ: आधार 60, पहली बार तीसरी सहस्राब्दी ईसा पूर्व में प्राचीन सुमेरियों द्वारा उपयोग किया गया था, जो प्राचीन बेबीलोनियों को दिया गया था।
  • अन्य आधार (घातांक) पर जानकारी के लिए स्थितीय संकेतन देखें।
  • रोमन अंक: प्राचीन रोम की अंक प्रणाली, आज भी कभी-कभी उपयोग की जाती है, अधिकतर ऐसी स्थितियों में जहां अंकगणितीय संचालन की आवश्यकता नहीं होती है।
  • टैली चिह्न: सामान्यतः उन चीज़ों को गिनने के लिए उपयोग किया जाता है जो थोड़ी मात्रा में बढ़ती हैं और बहुत तीव्रता से नहीं बदलती हैं।
  • भिन्न (गणित): दो पूर्णांकों के अनुपात के रूप में एक गैर-पूर्णांक का प्रतिनिधित्व करता है। इनमें अनुचित भिन्नों के साथ-साथ मिश्रित संख्याएँ भी सम्मिलित हैं।
  • निरंतर भिन्न: किसी संख्या को उसके पूर्णांक भाग के योग और किसी अन्य संख्या के व्युत्क्रम के रूप में दर्शाने की पुनरावृत्तीय प्रक्रिया के माध्यम से प्राप्त एक अभिव्यक्ति, फिर इस अन्य संख्या को उसके पूर्णांक भाग के योग के रूप में लिखना और अन्य व्युत्क्रम, इत्यादि।
  • वैज्ञानिक संकेतन: 10 की शक्ति का उपयोग करके बहुत छोटी और बहुत बड़ी संख्याएँ लिखने की एक विधि है। जब विज्ञान में उपयोग किया जाता है, तो ऐसी संख्या महत्वपूर्ण अंकों का उपयोग करके माप की सटीकता और परिशुद्धता भी बताती है।
  • नथ का अप-एरो संकेत पद्धति और कॉनवे जंजीर तीर संकेतन: ऐसे संकेत पद्धति जो ग्राहम की संख्या जैसे कुछ अत्यंत बड़े पूर्णांकों के संक्षिप्त प्रतिनिधित्व की अनुमति देते हैं।

हस्ताक्षरित संख्या

  • सकारात्मक वास्तविक संख्याएँ: वास्तविक संख्याएँ जो असमानता (गणित) शून्य हैं।
  • ऋणात्मक संख्याएँ: वास्तविक संख्याएँ जो शून्य से कम हैं। क्योंकि शून्य का स्वयं कोई चिह्न नहीं है (गणित), न तो सकारात्मक संख्याओं और न ही नकारात्मक संख्याओं में शून्य सम्मिलित है। जब शून्य एक संभावना होती है, तो निम्नलिखित शब्दों का प्रायः उपयोग किया जाता है:
  • गैर-नकारात्मक संख्याएँ: वास्तविक संख्याएँ जो शून्य से बड़ी या उसके बराबर होती हैं। इस प्रकार एक गैर-ऋणात्मक संख्या या तो शून्य या धनात्मक होती है।
  • गैर-धनात्मक संख्याएँ: वास्तविक संख्याएँ जो शून्य से कम या उसके बराबर हैं। इस प्रकार एक गैर-धनात्मक संख्या या तो शून्य या ऋणात्मक होती है।

पूर्णांक के प्रकार

बीजगणितीय संख्याएँ

  • बीजगणितीय संख्या: कोई भी संख्या जो तर्कसंगत गुणांक वाले गैर-शून्य बहुपद के फलन का मूल है।
  • अनुभवातीत संख्या: कोई भी वास्तविक या सम्मिश्र संख्या जो बीजगणितीय नहीं है। उदाहरणों में e और π सम्मिलित है।
  • त्रिकोणमितीय संख्या: कोई भी संख्या जो परिमेय गुणज की ज्या या कोटिज्या π है।
  • द्विघात समीकरण: तर्कसंगत गुणांक वाले द्विघात समीकरण का मूल है। ऐसी संख्या बीजगणितीय होती है और इसे एक परिमेय संख्या के योग और एक परिमेय संख्या के वर्गमूल के रूप में व्यक्त किया जा सकता है।
  • निर्माण योग्य संख्या: लंबाई का प्रतिनिधित्व करने वाली एक संख्या जिसे दिक्सूचक और स्ट्रेटएज निर्माण का उपयोग करके बनाया जा सकता है। रचनात्मक संख्याएँ बीजगणितीय संख्याओं के क्षेत्र (गणित) का एक क्षेत्र विस्तारण बनाती हैं, और इसमें द्विघात अघोष सम्मिलित होते हैं।
  • बीजगणितीय पूर्णांक: पूर्णांक गुणांक वाले एक बहुपद का मूल है।

गैर-मानक संख्याएँ

  • अनंत संख्याएँ: वे संख्याएँ जो किसी भी प्राकृतिक संख्या से बड़ी होती हैं।
  • क्रमसूचक संख्याएँ: सुव्यवस्थित सम्मुच्चय के क्रम प्रकार का वर्णन करने के लिए परिमित और अनंत संख्याओं का उपयोग किया जाता है।
  • प्रमुख संख्याएँ: सम्मुच्चय (गणित) की प्रमुखता का वर्णन करने के लिए परिमित और अनंत संख्याओं का उपयोग किया जाता है।
  • अतिसूक्ष्म: ये किसी भी सकारात्मक वास्तविक संख्या से छोटे होते हैं, लेकिन फिर भी शून्य से बड़े होते हैं। इनका उपयोग गणना के प्रारंभिक विकास में किया गया था, और कृत्रिम विभेदक ज्यामिति में उपयोग किया जाता है।
  • अतिवास्तविक संख्याएँ: गैर-मानक विश्लेषण में उपयोग की जाने वाली संख्याएँ। इनमें अनंत और अतिसूक्ष्म संख्याएँ सम्मिलित हैं जिनमें वास्तविक संख्याओं के कुछ गुण होते हैं।
  • अवास्तविक संख्याएँ: एक संख्या प्रणाली जिसमें अतियथार्थवादी संख्याओं के साथ-साथ क्रमसूचक संख्याएँ भी सम्मिलित होती हैं।

कम्प्यूटेबिलिटी और निश्चितता

यह भी देखें

संदर्भ

  1. Weisstein, Eric W. "Natural Number". MathWorld.
  2. "natural number", Merriam-Webster.com, Merriam-Webster, retrieved 4 October 2014
  3. W., Weisstein, Eric. "तर्कसंगत संख्या". mathworld.wolfram.com.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. Sedenions (), trigintaduonions (), tessarines, coquaternions, and biquaternions.