अवकल संकारक: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Typically linear operator defined in terms of differentiation of functions}} | {{Short description|Typically linear operator defined in terms of differentiation of functions}} | ||
[[Image:Laplace's equation on an annulus.svg|right|thumb|300px|[[एनुलस (गणित)]] पर परिभाषित हार्मोनिक | [[Image:Laplace's equation on an annulus.svg|right|thumb|300px|[[एनुलस (गणित)]] पर परिभाषित हार्मोनिक फलन । हार्मोनिक फलन वास्तव में वे फलन हैं चूंकि [[लाप्लास ऑपरेटर]] के [[कर्नेल (रैखिक बीजगणित)]] में स्थित हैं, जो महत्वपूर्ण अंतर ऑपरेटर है।]]गणित में, '''डिफरेंशियल ऑपरेटर''' [[ऑपरेटर (गणित)]] है जिसे व्युत्पन्न ऑपरेटर के फलन के रूप में परिभाषित किया गया है। सर्व प्रथम अंकन के स्तिथियों में, विभेदीकरण को अमूर्त ऑपरेशन के रूप में मानना सहायक होता है चूंकि [[फ़ंक्शन (गणित)|फलन (गणित)]] को स्वीकार करता है और अन्य फलन ([[कंप्यूटर विज्ञान]] में उच्च-क्रम फलन की शैली में) लौटाता है। | ||
यह आलेख मुख्य रूप से रैखिक मानचित्र अंतर ऑपरेटरों पर विचार करता है, जो सबसे सामान्य प्रकार हैं। | इस प्रकार से यह आलेख मुख्य रूप से रैखिक मानचित्र अंतर ऑपरेटरों पर विचार करता है, जो सबसे सामान्य प्रकार हैं। चूंकि, गैर-रेखीय अंतर ऑपरेटर भी उपस्तिथ किये गये हैं, जैसे कि [[श्वार्ज़ियन व्युत्पन्न]] आदि । | ||
==परिभाषा== | ==परिभाषा== | ||
इसमें ऋणात्मक पूर्णांक m दिया गया है,यह क्रम-<math>m</math> लीनियर डिफरेंशियल ऑपरेटर मानचित्र <math>P</math> है इसमें [[कार्य स्थान]] <math>\mathcal{F}_1</math> से किसी अन्य फलन स्थान <math>\mathcal{F}_2</math> पर जिसे इस प्रकार लिखा जा सकता है | | |||
<math display="block">P = \sum_{|\alpha|\le m}a_\alpha(x) D^\alpha\ ,</math> | <math display="block">P = \sum_{|\alpha|\le m}a_\alpha(x) D^\alpha\ ,</math> जहाँ <math>\alpha = (\alpha_1,\alpha_2,\cdots,\alpha_n)</math> गैर-ऋणात्मक [[पूर्णांक|पूर्णांक <math>|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math>]] का बहु-सूचकांक है, और प्रत्येक के लिए <math>\alpha</math>, <math>a_\alpha(x)</math> एन-डायमेंशनल स्पेस में कुछ विवर्त डोमेन पर फलन है। इसमें परिचालक <math>D^\alpha</math> के रूप में व्याख्या की गई है | | ||
<math display="block">D^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}</math> इस प्रकार | <math display="block">D^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}</math> इस प्रकार फलन के लिए <math>f \in \mathcal{F}_1</math>: | ||
<math display="block">P f = \sum_{|\alpha|\le m}a_\alpha(x) \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}</math> | <math display="block">P f = \sum_{|\alpha|\le m}a_\alpha(x) \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}</math> [[दूसरे डेरिवेटिव की समरूपता|दूसरे व्युत्पन्न की समरूपता]] के कारण अंकन <math>D^{\alpha}</math> उपयुक्त है (अर्थात , विभेदीकरण के क्रम से स्वतंत्र) हैं। | ||
D को | ''P'' में ''D'' को वेरिएबल <math>\xi</math> से प्रतिस्थापित करने पर प्राप्त बहुपद ''p'' को ''P'' का कुल प्रतीक कहा जाता है; अर्थात, उपरोक्त ''P'' का कुल प्रतीक है | | ||
<math display="block">p(x, \xi) = \sum_{|\alpha|\le m}a_\alpha(x) \xi^\alpha</math> | <math display="block">p(x, \xi) = \sum_{|\alpha|\le m}a_\alpha(x) \xi^\alpha</math> | ||
जहाँ <math>\xi^\alpha = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}.</math> प्रतीक का उच्चतम सजातीय घटक, अर्थात्, | |||
:<math>\sigma(x, \xi) = \sum_{|\alpha|= m}a_\alpha(x) \xi^\alpha</math> | :<math>\sigma(x, \xi) = \sum_{|\alpha|= m}a_\alpha(x) \xi^\alpha</math> | ||
इसको P का मुख्य प्रतीक कहा जाता है। जबकि कुल प्रतीक को आंतरिक रूप से परिभाषित नहीं किया गया है, यहाँ मुख्य प्रतीक को आंतरिक रूप से परिभाषित किया गया है (अर्थात, यह कोटैंजेंट बंडल पर फलन होता है)। <ref>{{harvnb|Schapira|1985|loc=1.1.7}}</ref> | |||
अधिक | अधिक सामान्यतः मान लीजिए कि E और F मैनिफोल्ड X पर [[वेक्टर बंडल|सदिश बंडल]] हैं। फिर यह रैखिक ऑपरेटर होते हैं | ||
:<math> P: C^\infty(E) \to C^\infty(F) </math> | :<math> P: C^\infty(E) \to C^\infty(F) </math> | ||
क्रम का डिफरेंशियल ऑपरेटर <math> k </math> है यदि, X पर [[स्थानीय निर्देशांक]] में, यह हमारे समीप होता है | | |||
:<math> Pu(x) = \sum_{|\alpha| = k} P^\alpha(x) \frac {\partial^\alpha u} {\partial x^{\alpha}} + \text{lower-order terms}</math> | :<math> Pu(x) = \sum_{|\alpha| = k} P^\alpha(x) \frac {\partial^\alpha u} {\partial x^{\alpha}} + \text{lower-order terms}</math> | ||
जहां, प्रत्येक बहु-सूचकांक α के लिए, <math> P^\alpha(x):E \to F</math> [[बंडल मानचित्र]] है, जो सूचकांक α पर सममित है। | जहां, प्रत्येक बहु-सूचकांक α के लिए, <math> P^\alpha(x):E \to F</math> [[बंडल मानचित्र]] है, जो सूचकांक α पर सममित है। | ||
P के ''k''<sup>th</sup> क्रम के गुणांक [[सममित टेंसर]] के रूप में परिवर्तित होते हैं | | |||
:<math> \sigma_P: S^k (T^*X) \otimes E \to F </math> | :<math> \sigma_P: S^k (T^*X) \otimes E \to F </math> | ||
जिसका डोमेन | जिसका डोमेन ''E'' के साथ ''X'' के [[कोटैंजेंट बंडल]] की ''k''<sup>th</sup> [[सममित शक्ति]] का [[टेंसर उत्पाद]] है, और जिसका कोडोमेन ''F'' है। इस सममित टेंसर को ''P'' के प्रमुख प्रतीक (या सिर्फ प्रतीक) के रूप में जाना जाता है। | ||
समन्वय प्रणाली x<sup>i</sup> | इस प्रकार से समन्वय प्रणाली x<sup>i</sup>, समन्वय अंतर d''x<sup>i</sup>'' द्वारा कोटैंजेंट बंडल के स्थानीय तुच्छीकरण की अनुमति देती है, जो फाइबर निर्देशांक ξ<sub>''i''</sub> निर्धारित करती है। क्रमशः ''E'' और ''F'' के फ्रेम ''e''<sub>μ</sub>, ''f''<sub>ν</sub> के आधार के संदर्भ में, अंतर ऑपरेटर P घटकों में विघटित हो जाता है | | ||
:<math>(Pu)_\nu = \sum_\mu P_{\nu\mu}u_\mu</math> | :<math>(Pu)_\nu = \sum_\mu P_{\nu\mu}u_\mu</math> | ||
यह ''E'' के प्रत्येक खंड ''u'' पर होता हैं। यहां ''P''<sub>νμ</sub> द्वारा परिभाषित अदिश अंतर संचालिका है | | |||
:<math>P_{\nu\mu} = \sum_{\alpha} P_{\nu\mu}^\alpha\frac{\partial}{\partial x^\alpha}.</math> | :<math>P_{\nu\mu} = \sum_{\alpha} P_{\nu\mu}^\alpha\frac{\partial}{\partial x^\alpha}.</math> | ||
इस तुच्छीकरण के साथ, मुख्य प्रतीक अब लिखा जा सकता है | इस तुच्छीकरण के साथ, मुख्य प्रतीक अब लिखा जा सकता है | ||
:<math>(\sigma_P(\xi)u)_\nu = \sum_{|\alpha|=k} \sum_{\mu}P_{\nu\mu}^\alpha(x)\xi_\alpha u_\mu.</math> | :<math>(\sigma_P(\xi)u)_\nu = \sum_{|\alpha|=k} \sum_{\mu}P_{\nu\mu}^\alpha(x)\xi_\alpha u_\mu.</math> | ||
X के निश्चित बिंदु x पर कोटैंजेंट स्थान में, प्रतीक <math> \sigma_P </math> डिग्री k के [[सजातीय बहुपद]] | ''X'' के निश्चित बिंदु ''x'' पर कोटैंजेंट स्थान में, प्रतीक <math> \sigma_P </math> डिग्री ''k'' के [[सजातीय बहुपद]] <math> T^*_x X </math> को परिभाषित करता है | यह मूल्यों के साथ <math> \operatorname{Hom}(E_x, F_x) </math>. तथा मूल्यों के साथ होता हैं | | ||
== फूरियर व्याख्या == | == फूरियर व्याख्या == | ||
इस प्रकार से डिफरेंशियल ऑपरेटर ''P'' और उसका प्रतीक फूरियर ट्रांसरूप के संबंध में स्वाभाविक रूप से निम्नानुसार दिखाई देते हैं। मान लीजिए कि यह [[श्वार्ट्ज फ़ंक्शन|श्वार्ट्ज फलन ƒ]] है। अथार्त फिर व्युत्क्रम [[फूरियर रूपांतरण]] द्वारा, | |||
:<math>Pf(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int\limits_{\mathbf{R}^d} e^{ ix\cdot\xi} p(x,i\xi)\hat{f}(\xi)\, d\xi.</math> | :<math>Pf(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int\limits_{\mathbf{R}^d} e^{ ix\cdot\xi} p(x,i\xi)\hat{f}(\xi)\, d\xi.</math> | ||
यह P को [[फूरियर गुणक]] के रूप में प्रदर्शित करता है। कार्यों का अधिक सामान्य वर्ग p(x,ξ) जो ξ में अधिकांश बहुपद वृद्धि स्थितियों को संतुष्ट करता है | यह ''P'' को [[फूरियर गुणक]] के रूप में प्रदर्शित करता है। यह कार्यों का अधिक सामान्य वर्ग ''p''(''x'',ξ) हैं जो ξ में अधिकांश बहुपद वृद्धि स्थितियों को संतुष्ट करता है जिस प्रकार यह अभिन्न अंग सही प्रकार से व्यवहार किया जाता है, इसमें छद्म-अंतर ऑपरेटर सम्मिलित होते हैं। | ||
==उदाहरण== | ==उदाहरण== | ||
* | *डिफरेंशियल संचालिका <math> P </math> यदि इसका प्रतीक विपरीत है तो यह वृत्ताकार डिफरेंशियल संचालिका है | यह प्रत्येक अशून्य <math> \theta \in T^*X </math> के लिए है बंडल मानचित्र <math> \sigma_P (\theta, \dots, \theta)</math> विपरीत होता है | [[कॉम्पैक्ट मैनिफोल्ड]] पर, यह वृत्ताकार सिद्धांत से निम्नानुसार है कि ''P'' [[ फ्रेडहोम संचालक |फ्रेडहोम संचालक]] है | इसमें परिमित-आयामी [[कर्नेल (बीजगणित)]] और कोकर्नेल है। | ||
*अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण और परवलयिक आंशिक अंतर समीकरणों के अध्ययन में, मुख्य प्रतीक के शून्य आंशिक अंतर समीकरण की [[विशेषताओं की विधि]] के अनुरूप होते हैं। | *अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण और परवलयिक आंशिक अंतर समीकरणों के अध्ययन में, मुख्य प्रतीक के शून्य आंशिक अंतर समीकरण की [[विशेषताओं की विधि]] के अनुरूप होते हैं। | ||
* भौतिक विज्ञान के अनुप्रयोगों में, लाप्लास ऑपरेटर जैसे ऑपरेटर आंशिक अंतर समीकरणों को स्थापित करने और | * भौतिक विज्ञान के अनुप्रयोगों में, लाप्लास ऑपरेटर जैसे ऑपरेटर आंशिक अंतर समीकरणों को स्थापित करने और समाधान करने में प्रमुख भूमिका निभाते हैं। | ||
* [[ विभेदक टोपोलॉजी | | * [[ विभेदक टोपोलॉजी | डिफरेंशियल टोपोलॉजी]] में, [[बाहरी व्युत्पन्न]] और लाई व्युत्पन्न ऑपरेटरों का आंतरिक अर्थ होता है। | ||
* [[अमूर्त बीजगणित]] में, [[व्युत्पत्ति (अमूर्त बीजगणित)]] की अवधारणा अंतर ऑपरेटरों के सामान्यीकरण की अनुमति देती है, जिसके लिए कैलकुलस के उपयोग की आवश्यकता नहीं होती है। | * [[अमूर्त बीजगणित]] में, [[व्युत्पत्ति (अमूर्त बीजगणित)]] की अवधारणा अंतर ऑपरेटरों के सामान्यीकरण की अनुमति देती है, जिसके लिए कैलकुलस के उपयोग की आवश्यकता नहीं होती है। सदैव ऐसे सामान्यीकरण [[बीजगणितीय ज्यामिति]] और [[क्रमविनिमेय बीजगणित]] में नियोजित होते हैं। [[जेट (गणित)]] भी देखें। | ||
* | * [[जटिल चर|सम्मिश्र वेरिएबल]] z = x + i y के [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] के विकास में, कभी-कभी सम्मिश्र फलन को दो वास्तविक वेरिएबल ''x'' और ''y'' का फलन माना जाता है। [[विर्टिंगर डेरिवेटिव|विर्टिंगर व्युत्पन्न]] का उपयोग किया जाता है, जो आंशिक अंतर ऑपरेटर हैं |<math display="block"> \frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \ ,\quad \frac{\partial}{\partial\bar{z}}= \frac{1}{2} \left( \frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \ .</math> इस दृष्टिकोण का उपयोग [[कई जटिल चर|अनेक सम्मिश्र वेरिएबल]] के कार्यों और [[मोटर चर|मोटर वेरिएबल]] के कार्यों का अध्ययन करने के लिए भी किया जाता है। | ||
*डिफ़रेंशियल ऑपरेटर डेल, जिसे नाबला भी कहा जाता है, महत्वपूर्ण [[यूक्लिडियन वेक्टर]] डिफरेंशियल ऑपरेटर है। यह भौति[[की]] में मैक्सवेल के समीकरणों के | *डिफ़रेंशियल ऑपरेटर डेल, जिसे नाबला भी कहा जाता है, यह महत्वपूर्ण [[यूक्लिडियन वेक्टर|यूक्लिडियन सदिश]] डिफरेंशियल ऑपरेटर है। यह भौति[[की]] में मैक्सवेल के समीकरणों के डिफरेंशियल रूप जैसी जगहों पर सदैव दिखाई देता है। त्रि-आयामी कार्टेशियन निर्देशांक में, डेल को इस प्रकार परिभाषित किया गया है | ||
:<math display="block">\nabla = \mathbf{\hat{x}} {\partial \over \partial x} + \mathbf{\hat{y}} {\partial \over \partial y} + \mathbf{\hat{z}} {\partial \over \partial z}.</math> | :<math display="block">\nabla = \mathbf{\hat{x}} {\partial \over \partial x} + \mathbf{\hat{y}} {\partial \over \partial y} + \mathbf{\hat{z}} {\partial \over \partial z}.</math> | ||
:डेल [[ ग्रेडियेंट |ग्रेडियेंट]] को परिभाषित करता है, और विभिन्न वस्तुओं के [[कर्ल (गणित)]], [[विचलन]] और [[लाप्लासियन]] की गणना करने के लिए उपयोग किया जाता है। | :इस प्रकार से डेल [[ ग्रेडियेंट |ग्रेडियेंट]] को परिभाषित करता है, और विभिन्न वस्तुओं के [[कर्ल (गणित)]], [[विचलन]] और [[लाप्लासियन]] की गणना करने के लिए उपयोग किया जाता है। | ||
==इतिहास== | ==इतिहास== | ||
डिफरेंशियल ऑपरेटर को कुछ स्वतंत्र रूप से लिखने के वैचारिक कदम का श्रेय 1800 में लुई फ्रांकोइस एंटोनी अर्बोगैस्ट को दिया जाता है।<ref>James Gasser (editor), ''A Boole Anthology: Recent and classical studies in the logic of George Boole'' (2000), p. 169; [https://books.google.com/books?id=A2Q5Yghl000C&pg=PA169 Google Books].</ref> | |||
== | ==अंकन == | ||
सबसे | सबसे समान अंतर ऑपरेटर व्युत्पन्न लेने की क्रिया है। वेरिएबल ''x'' के संबंध में पसमाधाना व्युत्पन्न लेने के लिए [[विभेदन के लिए संकेतन|विभेदन के लिए अंकन]] में सम्मिलित हैं | | ||
: <math>{d \over dx}</math>, <math>D</math>, <math>D_x,</math> और <math>\partial_x</math>. | : <math>{d \over dx}</math>, <math>D</math>, <math>D_x,</math> और <math>\partial_x</math>. | ||
उच्चतर, | उच्चतर, ''n''th क्रम के व्युत्पन्न लेते समय, ऑपरेटर को लिखा जा सकता है: | ||
: <math>{d^n \over dx^n}</math>, <math>D^n</math>, <math>D^n_x</math>, या <math>\partial_x^n</math>. | : <math>{d^n \over dx^n}</math>, <math>D^n</math>, <math>D^n_x</math>, या <math>\partial_x^n</math>. | ||
किसी | किसी फलन x के तर्क के फलन f का व्युत्पन्न कभी-कभी निम्नलिखित में से किसी के रूप में दिया जाता है: | ||
: <math>[f(x)]'</math> | : <math>[f(x)]'</math> | ||
: <math>f'(x).</math> | : <math>f'(x).</math> | ||
''D'' अंकन के उपयोग और निर्माण का श्रेय [[ओलिवर हेविसाइड]] को दिया जाता है, जिन्होंने रूप के डिफरेंशियल ऑपरेटरों पर विचार किया था | |||
: <math>\sum_{k=0}^n c_k D^k</math> | : <math>\sum_{k=0}^n c_k D^k</math> | ||
डिफरेंशियल समीकरणों के अपने अध्ययन में। | |||
सबसे अधिक बार देखे जाने वाले अंतर ऑपरेटरों में से लाप्लास ऑपरेटर है, जिसे परिभाषित किया गया है | सबसे अधिक बार देखे जाने वाले अंतर ऑपरेटरों में से लाप्लास ऑपरेटर है, जिसे परिभाषित किया गया है | ||
:<math>\Delta = \nabla^2 = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}.</math> | :<math>\Delta = \nabla^2 = \sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}.</math> | ||
अन्य डिफरेंशियल ऑपरेटर Θ ऑपरेटर, या [[थीटा ऑपरेटर]] है, जिसे परिभाषित किया गया है <ref>{{cite web| url=http://mathworld.wolfram.com/ThetaOperator.html|title=थीटा ऑपरेटर| author=E. W. Weisstein|access-date=2009-06-12}}</ref> | |||
:<math>\Theta = z {d \over dz}.</math> | :<math>\Theta = z {d \over dz}.</math> | ||
इसे कभी-कभी समरूपता संचालिका भी कहा जाता है, क्योंकि इसके | इसे कभी-कभी समरूपता संचालिका भी कहा जाता है, क्योंकि इसके एजेंन फलन ''z'' में [[एकपद|पद]] हैं | | ||
<math display="block">\Theta (z^k) = k z^k,\quad k=0,1,2,\dots </math> | <math display="block">\Theta (z^k) = k z^k,\quad k=0,1,2,\dots </math> | ||
n वेरिएबल्स में समरूपता ऑपरेटर दिया जाता है | n वेरिएबल्स में समरूपता ऑपरेटर दिया जाता है | ||
<math display="block">\Theta = \sum_{k=1}^n x_k \frac{\partial}{\partial x_k}.</math> | <math display="block">\Theta = \sum_{k=1}^n x_k \frac{\partial}{\partial x_k}.</math> | ||
जैसा कि | जैसा कि वेरिएबल में होता है, Θ के [[eigenspace|एजेंनस्पेसेस]] [[सजातीय कार्य]] के स्थान हैं। (यूलर का सजातीय कार्य प्रमेय) | ||
लिखित रूप में, सामान्य गणितीय परंपरा का पालन करते हुए, अंतर ऑपरेटर का तर्क | लिखित रूप में, सामान्य गणितीय परंपरा का पालन करते हुए, अंतर ऑपरेटर का तर्क सामान्यतः ऑपरेटर के दाईं ओर रखा जाता है। कभी-कभी वैकल्पिक अंकन का उपयोग किया जाता है: ऑपरेटर के बाईं ओर और ऑपरेटर के दाईं ओर फलन पर ऑपरेटर को प्रयुक्त करने का परिणाम, और दोनों तरफ के फलन पर अंतर ऑपरेटर को प्रयुक्त करने पर प्राप्त अंतर को दर्शाया जाता है। तीरों द्वारा इस प्रकार: | ||
:<math>f \overleftarrow{\partial_x} g = g \cdot \partial_x f</math> | :<math>f \overleftarrow{\partial_x} g = g \cdot \partial_x f</math> | ||
:<math>f \overrightarrow{\partial_x} g = f \cdot \partial_x g</math> | :<math>f \overrightarrow{\partial_x} g = f \cdot \partial_x g</math> | ||
:<math>f \overleftrightarrow{\partial_x} g = f \cdot \partial_x g - g \cdot \partial_x f.</math> | :<math>f \overleftrightarrow{\partial_x} g = f \cdot \partial_x g - g \cdot \partial_x f.</math> | ||
क्वांटम यांत्रिकी की संभाव्यता धारा का वर्णन करने के लिए इस तरह के द्विदिश-तीर | क्वांटम यांत्रिकी की संभाव्यता धारा का वर्णन करने के लिए इस तरह के द्विदिश-तीर अंकन का सदैव उपयोग किया जाता है। | ||
== | ==ऑपरेटर का जोड़== | ||
{{See also| | {{See also|हर्मिटियन सहायक}} | ||
रैखिक अंतर ऑपरेटर <math>T</math> दिया गया है | |||
<math display="block">Tu = \sum_{k=0}^n a_k(x) D^k u</math> | <math display="block">Tu = \sum_{k=0}^n a_k(x) D^k u</math> | ||
इस ऑपरेटर के [[हर्मिटियन सहायक]] को ऑपरेटर | इस ऑपरेटर के [[हर्मिटियन सहायक]] को ऑपरेटर <math>T^*</math> के रूप में परिभाषित किया गया है ऐसा है कि | ||
<math display="block">\langle Tu,v \rangle = \langle u, T^*v \rangle</math> | <math display="block">\langle Tu,v \rangle = \langle u, T^*v \rangle</math> | ||
जहां अंकन <math>\langle\cdot,\cdot\rangle</math> [[अदिश उत्पाद]] या आंतरिक उत्पाद के लिए उपयोग किया जाता है। इसलिए यह परिभाषा अदिश उत्पाद (या आंतरिक उत्पाद) की परिभाषा पर निर्भर करती है। | जहां अंकन <math>\langle\cdot,\cdot\rangle</math> [[अदिश उत्पाद]] या आंतरिक उत्पाद के लिए उपयोग किया जाता है। इसलिए यह परिभाषा अदिश उत्पाद (या आंतरिक उत्पाद) की परिभाषा पर निर्भर करती है। | ||
=== | === वेरिएबल में औपचारिक जोड़ === | ||
[[वास्तविक संख्या]] अंतराल पर वर्ग-अभिन्न कार्यों के कार्यात्मक स्थान में (गणित) {{open-open|''a'', ''b''}}, अदिश गुणनफल द्वारा परिभाषित किया गया है | [[वास्तविक संख्या]] अंतराल पर वर्ग-अभिन्न कार्यों के कार्यात्मक स्थान में (गणित) {{open-open|''a'', ''b''}}, अदिश गुणनफल द्वारा परिभाषित किया गया है | ||
<math display="block">\langle f, g \rangle = \int_a^b \overline{f(x)} \,g(x) \,dx , </math> | <math display="block">\langle f, g \rangle = \int_a^b \overline{f(x)} \,g(x) \,dx , </math> | ||
जहां f(x) के ऊपर की रेखा f(x) के | जहां ''f(x)'' के ऊपर की रेखा ''f(x)'' के सम्मिश्र संयुग्म को दर्शाती है। यदि कोई इसके अतिरिक्त यह नियम जोड़ता है कि ''f'' या ''g'' विलुप्त हो जाता है <math>x \to a</math> और <math>x \to b</math>, कोई ''T'' के संलग्नक को इसके द्वारा भी परिभाषित कर सकता है | ||
<math display="block">T^*u = \sum_{k=0}^n (-1)^k D^k \left[ \overline{a_k(x)} u \right].</math> | <math display="block">T^*u = \sum_{k=0}^n (-1)^k D^k \left[ \overline{a_k(x)} u \right].</math> | ||
यह सूत्र स्पष्ट रूप से अदिश उत्पाद की परिभाषा पर निर्भर नहीं करता है। इसलिए इसे कभी-कभी सहायक ऑपरेटर की परिभाषा के रूप में चुना जाता है। | यह सूत्र स्पष्ट रूप से अदिश उत्पाद की परिभाषा पर निर्भर नहीं करता है। इसलिए इसे कभी-कभी सहायक ऑपरेटर की परिभाषा के रूप में चुना जाता है। जब <math>T^*</math> इस सूत्र के अनुसार परिभाषित किया गया है, इसे ''T'' का औपचारिक जोड़ कहा जाता है। | ||
A (औपचारिक रूप से) [[ स्व-सहायक संचालिका |स्व-सहायक संचालिका]] सेल्फ-एडजॉइंट ऑपरेटर अपने स्वयं के (औपचारिक) एडजॉइंट के समान ऑपरेटर है। | |||
=== अनेक | === अनेक वेरिएबल === | ||
यदि Ω R | यदि Ω'''R'''<sup>''n''</sup> में डोमेन है, और ''P Ω'' पर विभेदक संचालिका है, तो ''P'' का जोड़ ''L''<sup>2</sup>(Ω) में समान विधि से द्वैत द्वारा परिभाषित किया गया है: | ||
:<math>\langle f, P^* g\rangle_{L^2(\Omega)} = \langle P f, g\rangle_{L^2(\Omega)}</math> | :<math>\langle f, P^* g\rangle_{L^2(\Omega)} = \langle P f, g\rangle_{L^2(\Omega)}</math> | ||
सभी | सभी सुचारू ''L''<sup>2</sup> फलन ''f'', ''g'' के लिए। चूँकि ''L''<sup>2</sup> में सुचारु कार्य सघन होते हैं, यह ''L''<sup>2</sup> के सघन उपसमुच्चय पर जोड़ को परिभाषित करता है: P<sup>*</sup> [[सघन रूप से परिभाषित ऑपरेटर]] है। | ||
=== उदाहरण === | === उदाहरण === | ||
स्टर्म-लिउविल सिद्धांत | स्टर्म-लिउविल सिद्धांत स्टर्म-लिउविल ऑपरेटर औपचारिक स्व-सहायक ऑपरेटर का प्रसिद्ध उदाहरण है। इस दूसरे क्रम के रैखिक अंतर ऑपरेटर ''L'' को रूप में लिखा जा सकता है | ||
: <math>Lu = -(pu')'+qu=-(pu''+p'u')+qu=-pu''-p'u'+qu=(-p) D^2 u +(-p') D u + (q)u.</math> | : <math>Lu = -(pu')'+qu=-(pu''+p'u')+qu=-pu''-p'u'+qu=(-p) D^2 u +(-p') D u + (q)u.</math> | ||
Line 139: | Line 139: | ||
\end{align}</math></ref> | \end{align}</math></ref> | ||
यह ऑपरेटर स्टर्म-लिउविले सिद्धांत का केंद्र है जहां इस ऑपरेटर के | यह ऑपरेटर स्टर्म-लिउविले सिद्धांत का केंद्र है जहां इस ऑपरेटर के एजेंनफंक्शन ([[eigenvectors|आइजन्वेक्टर]] के अनुरूप) पर विचार किया जाता है। | ||
== | ==डिफरेंशियल ऑपरेटरों के गुण== | ||
विभेदन रैखिक मानचित्र है, अर्थात। | विभेदन रैखिक मानचित्र है, अर्थात। | ||
Line 147: | Line 147: | ||
:<math>D(f+g) = (Df)+(Dg),</math> | :<math>D(f+g) = (Df)+(Dg),</math> | ||
:<math>D(af) = a(Df),</math> | :<math>D(af) = a(Df),</math> | ||
''f'' और ''g'' फलन हैं, और ''a'' स्थिरांक है। | |||
फलन गुणांक के साथ ''D'' में कोई भी [[बहुपद]] भी अंतर ऑपरेटर है। हम नियम के अनुसार कंपोजीशन डिफरेंशियल ऑपरेटर्स भी कार्य कर सकते हैं | |||
:<math>(D_1 \circ D_2)(f) = D_1(D_2(f)).</math> | :<math>(D_1 \circ D_2)(f) = D_1(D_2(f)).</math> | ||
तब कुछ | तब कुछ देख-रेख की आवश्यकता होती है: सर्व प्रथम ऑपरेटर D<sub>2</sub> में कोई फलन गुणांक ''D<sub>1</sub>''के अनुप्रयोग जितनी बार हो उतनी बार अवकलनीय फलन होना चाहिए आवश्यकता है. ऐसे ऑपरेटरों की रिंग (गणित) प्राप्त करने के लिए हमें उपयोग किए गए गुणांक के सभी आदेशों के व्युत्पन्न को मानना होगा। दूसरे, यह रिंग क्रमविनिमेय रिंग नहीं होगी: ऑपरेटर ''gD'' सामान्य तौर पर ''Dg'' के समान नहीं है। उदाहरण के लिए हमारे समीप [[क्वांटम यांत्रिकी]] में मूलभूत संबंध है: | ||
:<math>Dx - xD = 1.</math> | :<math>Dx - xD = 1.</math> | ||
इसके विपरीत, निरंतर गुणांक वाले | इसके विपरीत, निरंतर गुणांक वाले D में बहुपद वाले ऑपरेटरों का उप-रिंग क्रमविनिमेय है। इसे दूसरे विधि से चित्रित किया जा सकता है: इसमें अनुवाद-अपरिवर्तनीय ऑपरेटर सम्मिलित हैं। | ||
डिफरेंशियल संचालक भी [[शिफ्ट प्रमेय]] का पालन करते हैं। | |||
==बहुपद अवकल संकारकों का वलय== | ==बहुपद अवकल संकारकों का वलय == | ||
=== | ===विभिन्न बहुपद अंतर ऑपरेटरों की वलय === | ||
{{Main| | {{Main|वेइल बीजगणित}} | ||
यदि R वलय है, तो मान लीजिए <math>R\langle D,X \rangle</math> | यदि ''R'' वलय है, तो मान लीजिए <math>R\langle D,X \rangle</math> वेरिएबल ''D'' और <math>R\langle D,X\rangle/I</math>. यह है गैर क्रमविनिमेय [[साधारण अंगूठी|साधारण वलय]] . प्रत्येक अवयव को रूप के मोनोमियल के ''R''-रैखिक संयोजन के रूप में अनोखे विधि से लिखा जा सकता है <math>X^a D^b \text{ mod } I</math>. यह बहुपदों के यूक्लिडियन विभाजन के एनालॉग का समर्थन करता है। | ||
डिफरेंशियल मॉड्यूल ऊपर <math>R[X]</math> (मानक व्युत्पत्ति के लिए) को [[मॉड्यूल (गणित)]] <math>R\langle D,X\rangle/I</math> से पहचाना जा सकता है . | |||
===बहुभिन्नरूपी बहुपद अवकल संचालकों का वलय=== | ===बहुभिन्नरूपी बहुपद अवकल संचालकों का वलय === | ||
यदि R वलय है, तो मान लीजिए <math>R\langle D_1,\ldots,D_n,X_1,\ldots,X_n\rangle</math> | यदि ''R'' वलय है, तो मान लीजिए <math>R\langle D_1,\ldots,D_n,X_1,\ldots,X_n\rangle</math> वेरिएबल में ''R'' के ऊपर गैर-क्रमविनिमेय बहुपद वलय बनें <math>D_1,\ldots,D_n,X_1,\ldots,X_n</math>, और मैं तत्वों द्वारा उत्पन्न दो-तरफा आदर्श | ||
:<math>(D_i X_j-X_j D_i)-\delta_{i,j},\ \ \ D_i D_j -D_j D_i,\ \ \ X_i X_j - X_j X_i</math> | :<math>(D_i X_j-X_j D_i)-\delta_{i,j},\ \ \ D_i D_j -D_j D_i,\ \ \ X_i X_j - X_j X_i</math> | ||
सभी के लिए <math>1 \le i,j \le n,</math> | सभी के लिए <math>1 \le i,j \le n,</math> जहाँ <math>\delta</math> [[क्रोनकर डेल्टा]] है. फिर ''R'' के ऊपर बहुभिन्नरूपी बहुपद अवकल संचालकों का वलय भागफल वलय है {{nowrap|<math>R\langle D_1,\ldots,D_n,X_1,\ldots,X_n\rangle/I</math>.}} | ||
यह है | यह है गैर-क्रमविनिमेय साधारण वलय . | ||
प्रत्येक | |||
प्रत्येक अवयव को रूप के मोनोमियल के ''R'' -रैखिक संयोजन के रूप में अनोखे विधि से लिखा जा सकता है {{nowrap|<math>X_1^{a_1} \ldots X_n^{a_n} D_1^{b_1} \ldots D_n^{b_n}</math>.}} | |||
==समन्वय-स्वतंत्र वर्णन== | ==समन्वय-स्वतंत्र वर्णन== | ||
अंतर ज्यामिति और बीजगणितीय ज्यामिति में दो | अंतर ज्यामिति और बीजगणितीय ज्यामिति में दो सदिश बंडलों के मध्य अंतर ऑपरेटरों का समन्वय-स्वतंत्र विवरण रखना सदैव सुविधाजनक होता है। मान लीजिए ''E'' और ''F'' भिन्न मैनिफोल्ड ''M'' पर दो सदिश बंडल हैं। सदिश बंडल का 'R'-रैखिक मानचित्रण {{nowrap|''P'' : Γ(''E'') → Γ(''F'')}} को '''''k''th'''-क्रम रैखिक अंतर ऑपरेटर कहा जाता है यदि यह [[जेट बंडल]] ''J<sup>k</sup>(E)'' के माध्यम से कारक होता है. | ||
दूसरे शब्दों में, | दूसरे शब्दों में, सदिश बंडलों का रैखिक मानचित्रण उपस्तिथ है | ||
:<math>i_P: J^k(E) \to F</math> | :<math>i_P: J^k(E) \to F</math> | ||
Line 185: | Line 186: | ||
:<math>P = i_P\circ j^k</math> | :<math>P = i_P\circ j^k</math> | ||
जहाँ {{nowrap|''j''<sup>''k''</sup>: Γ(''E'') → Γ(''J''<sup>''k''</sup>(''E''))}} वह लम्बाई है जो ''E'' के किसी भी भाग से उसके जेट (गणित) k-जेट से जुड़ती है। | |||
इसका मतलब यह है कि E के दिए गए | इसका मतलब यह है कि E के दिए गए सदिश बंडल s के लिए, बिंदु ''x'' ∈ ''M'' पर P(s) का मान पूरी तरह से x में s के kth-क्रम इनफिनिटसिमल व्यवहार द्वारा निर्धारित होता है। विशेष रूप से इसका तात्पर्य यह है कि ''P''(''s'')(''x'') ''x'' में s के शीफ (गणित) द्वारा निर्धारित किया जाता है, जिसे यह कहकर व्यक्त किया जाता है कि अंतर ऑपरेटर स्थानीय हैं। मूलभूत परिणाम [[पीटर प्रमेय]] है जो दर्शाता है कि इसका विपरीत भी सत्य है: कोई भी (रैखिक) स्थानीय ऑपरेटर अंतर है। | ||
===क्रमविनिमेय बीजगणित से संबंध=== | ===क्रमविनिमेय बीजगणित से संबंध=== | ||
रैखिक अंतर ऑपरेटरों का समतुल्य, | रैखिक अंतर ऑपरेटरों का समतुल्य, किन्तु विशुद्ध रूप से बीजगणितीय विवरण इस प्रकार है: '''R'''-रेखीय मानचित्र ''P'' ''k''th-क्रम रैखिक अंतर ऑपरेटर है, यदि किसी भी ''k'' + 1 के लिए चिकनी कार्य <math>f_0,\ldots,f_k \in C^\infty(M)</math> अपने समीप | ||
:<math>[f_k,[f_{k-1},[\cdots[f_0,P]\cdots]]=0.</math> | :<math>[f_k,[f_{k-1},[\cdots[f_0,P]\cdots]]=0.</math> | ||
Line 196: | Line 197: | ||
:<math>[f,P](s)=P(f\cdot s)-f\cdot P(s).</math> | :<math>[f,P](s)=P(f\cdot s)-f\cdot P(s).</math> | ||
रैखिक अंतर ऑपरेटरों के इस लक्षण वर्णन से पता चलता है कि वे [[क्रमविनिमेय बीजगणित (संरचना)]] पर मॉड्यूल (गणित) के | रैखिक अंतर ऑपरेटरों के इस लक्षण वर्णन से पता चलता है कि वे [[क्रमविनिमेय बीजगणित (संरचना)]] पर मॉड्यूल (गणित) के मध्य विशेष मैपिंग हैं, जिससे अवधारणा को क्रमविनिमेय बीजगणित के भाग के रूप में देखा जा सकता है। | ||
== वेरिएंट == | == वेरिएंट == | ||
===अनंत क्रम का | ===अनंत क्रम का डिफरेंशियल संचालिका === | ||
अनंत क्रम का | अनंत क्रम का डिफरेंशियल संचालिका (सामान्यतः ) डिफरेंशियल संचालिका है जिसका कुल प्रतीक बहुपद के अतिरिक्त घात श्रृंखला है। | ||
=== द्विविभेदक संचालिका === | === द्विविभेदक संचालिका === | ||
डिफरेंशियल ऑपरेटर दो <math>D(g,f)</math> फलनो पर कार्य करता है द्विविभेदक संचालिका कहलाती है। उदाहरण के लिए, यह धारणा पॉइसन बीजगणित के विरूपण परिमाणीकरण पर साहचर्य बीजगणित संरचना में प्रकट होती है।<ref>{{cite journal |last1=Omori |first1=Hideki |last2=Maeda |first2=Y. |last3=Yoshioka |first3=A. |title=पॉइसन बीजगणित का विरूपण परिमाणीकरण|journal=www.semanticscholar.org |date=1992 |url=https://www.semanticscholar.org/paper/Deformation-quantization-of-Poisson-algebras-Omori-Maeda/ee9bf8a5a87e64ae20c28df86b8746a1b07f6e1f |language=en}}</ref> | |||
=== [[माइक्रोडिफरेंशियल ऑपरेटर]] === | === [[माइक्रोडिफरेंशियल ऑपरेटर]] === | ||
माइक्रोडिफरेंशियल ऑपरेटर कोटैंजेंट बंडल के विवर्तउपसमुच्चय पर प्रकार का ऑपरेटर होता है, जो मैनिफोल्ड के विवर्त उपसमुच्चय के विपरीत होता है। यह डिफरेंशियल ऑपरेटर की धारणा को कोटैंजेंट बंडल तक विस्तारित करके प्राप्त किया जाता है।<ref>{{harvnb|Schapira|1985|loc=§ 1.2. § 1.3.}}</ref> | |||
==यह भी देखें== | ==यह भी देखें== | ||
{{div col|colwidth=22em}} | {{div col|colwidth=22em}} | ||
Line 219: | Line 220: | ||
* [[वर्णक्रमीय सिद्धांत]] | * [[वर्णक्रमीय सिद्धांत]] | ||
* [[ऊर्जा संचालक]] | * [[ऊर्जा संचालक]] | ||
* [[ | * [[ वेग संचालिका ]] | ||
* [[डीबीएआर ऑपरेटर]] | * [[डीबीएआर ऑपरेटर]] | ||
* छद्म-विभेदक संचालिका | * छद्म-विभेदक संचालिका | ||
Line 241: | Line 242: | ||
{{Functional analysis}} | {{Functional analysis}} | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:डिफरेंशियल ऑपरेटर्स| डिफरेंशियल ऑपरेटर्स]] | |||
[[Category:बहुचरीय कलन]] | |||
[[Category:संचालिका सिद्धांत]] |
Latest revision as of 13:42, 3 August 2023
गणित में, डिफरेंशियल ऑपरेटर ऑपरेटर (गणित) है जिसे व्युत्पन्न ऑपरेटर के फलन के रूप में परिभाषित किया गया है। सर्व प्रथम अंकन के स्तिथियों में, विभेदीकरण को अमूर्त ऑपरेशन के रूप में मानना सहायक होता है चूंकि फलन (गणित) को स्वीकार करता है और अन्य फलन (कंप्यूटर विज्ञान में उच्च-क्रम फलन की शैली में) लौटाता है।
इस प्रकार से यह आलेख मुख्य रूप से रैखिक मानचित्र अंतर ऑपरेटरों पर विचार करता है, जो सबसे सामान्य प्रकार हैं। चूंकि, गैर-रेखीय अंतर ऑपरेटर भी उपस्तिथ किये गये हैं, जैसे कि श्वार्ज़ियन व्युत्पन्न आदि ।
परिभाषा
इसमें ऋणात्मक पूर्णांक m दिया गया है,यह क्रम- लीनियर डिफरेंशियल ऑपरेटर मानचित्र है इसमें कार्य स्थान से किसी अन्य फलन स्थान पर जिसे इस प्रकार लिखा जा सकता है |
P में D को वेरिएबल से प्रतिस्थापित करने पर प्राप्त बहुपद p को P का कुल प्रतीक कहा जाता है; अर्थात, उपरोक्त P का कुल प्रतीक है |
इसको P का मुख्य प्रतीक कहा जाता है। जबकि कुल प्रतीक को आंतरिक रूप से परिभाषित नहीं किया गया है, यहाँ मुख्य प्रतीक को आंतरिक रूप से परिभाषित किया गया है (अर्थात, यह कोटैंजेंट बंडल पर फलन होता है)। [1]
अधिक सामान्यतः मान लीजिए कि E और F मैनिफोल्ड X पर सदिश बंडल हैं। फिर यह रैखिक ऑपरेटर होते हैं
क्रम का डिफरेंशियल ऑपरेटर है यदि, X पर स्थानीय निर्देशांक में, यह हमारे समीप होता है |
जहां, प्रत्येक बहु-सूचकांक α के लिए, बंडल मानचित्र है, जो सूचकांक α पर सममित है।
P के kth क्रम के गुणांक सममित टेंसर के रूप में परिवर्तित होते हैं |
जिसका डोमेन E के साथ X के कोटैंजेंट बंडल की kth सममित शक्ति का टेंसर उत्पाद है, और जिसका कोडोमेन F है। इस सममित टेंसर को P के प्रमुख प्रतीक (या सिर्फ प्रतीक) के रूप में जाना जाता है।
इस प्रकार से समन्वय प्रणाली xi, समन्वय अंतर dxi द्वारा कोटैंजेंट बंडल के स्थानीय तुच्छीकरण की अनुमति देती है, जो फाइबर निर्देशांक ξi निर्धारित करती है। क्रमशः E और F के फ्रेम eμ, fν के आधार के संदर्भ में, अंतर ऑपरेटर P घटकों में विघटित हो जाता है |
यह E के प्रत्येक खंड u पर होता हैं। यहां Pνμ द्वारा परिभाषित अदिश अंतर संचालिका है |
इस तुच्छीकरण के साथ, मुख्य प्रतीक अब लिखा जा सकता है
X के निश्चित बिंदु x पर कोटैंजेंट स्थान में, प्रतीक डिग्री k के सजातीय बहुपद को परिभाषित करता है | यह मूल्यों के साथ . तथा मूल्यों के साथ होता हैं |
फूरियर व्याख्या
इस प्रकार से डिफरेंशियल ऑपरेटर P और उसका प्रतीक फूरियर ट्रांसरूप के संबंध में स्वाभाविक रूप से निम्नानुसार दिखाई देते हैं। मान लीजिए कि यह श्वार्ट्ज फलन ƒ है। अथार्त फिर व्युत्क्रम फूरियर रूपांतरण द्वारा,
यह P को फूरियर गुणक के रूप में प्रदर्शित करता है। यह कार्यों का अधिक सामान्य वर्ग p(x,ξ) हैं जो ξ में अधिकांश बहुपद वृद्धि स्थितियों को संतुष्ट करता है जिस प्रकार यह अभिन्न अंग सही प्रकार से व्यवहार किया जाता है, इसमें छद्म-अंतर ऑपरेटर सम्मिलित होते हैं।
उदाहरण
- डिफरेंशियल संचालिका यदि इसका प्रतीक विपरीत है तो यह वृत्ताकार डिफरेंशियल संचालिका है | यह प्रत्येक अशून्य के लिए है बंडल मानचित्र विपरीत होता है | कॉम्पैक्ट मैनिफोल्ड पर, यह वृत्ताकार सिद्धांत से निम्नानुसार है कि P फ्रेडहोम संचालक है | इसमें परिमित-आयामी कर्नेल (बीजगणित) और कोकर्नेल है।
- अतिशयोक्तिपूर्ण आंशिक अंतर समीकरण और परवलयिक आंशिक अंतर समीकरणों के अध्ययन में, मुख्य प्रतीक के शून्य आंशिक अंतर समीकरण की विशेषताओं की विधि के अनुरूप होते हैं।
- भौतिक विज्ञान के अनुप्रयोगों में, लाप्लास ऑपरेटर जैसे ऑपरेटर आंशिक अंतर समीकरणों को स्थापित करने और समाधान करने में प्रमुख भूमिका निभाते हैं।
- डिफरेंशियल टोपोलॉजी में, बाहरी व्युत्पन्न और लाई व्युत्पन्न ऑपरेटरों का आंतरिक अर्थ होता है।
- अमूर्त बीजगणित में, व्युत्पत्ति (अमूर्त बीजगणित) की अवधारणा अंतर ऑपरेटरों के सामान्यीकरण की अनुमति देती है, जिसके लिए कैलकुलस के उपयोग की आवश्यकता नहीं होती है। सदैव ऐसे सामान्यीकरण बीजगणितीय ज्यामिति और क्रमविनिमेय बीजगणित में नियोजित होते हैं। जेट (गणित) भी देखें।
- सम्मिश्र वेरिएबल z = x + i y के होलोमोर्फिक फलन के विकास में, कभी-कभी सम्मिश्र फलन को दो वास्तविक वेरिएबल x और y का फलन माना जाता है। विर्टिंगर व्युत्पन्न का उपयोग किया जाता है, जो आंशिक अंतर ऑपरेटर हैं |इस दृष्टिकोण का उपयोग अनेक सम्मिश्र वेरिएबल के कार्यों और मोटर वेरिएबल के कार्यों का अध्ययन करने के लिए भी किया जाता है।
- डिफ़रेंशियल ऑपरेटर डेल, जिसे नाबला भी कहा जाता है, यह महत्वपूर्ण यूक्लिडियन सदिश डिफरेंशियल ऑपरेटर है। यह भौतिकी में मैक्सवेल के समीकरणों के डिफरेंशियल रूप जैसी जगहों पर सदैव दिखाई देता है। त्रि-आयामी कार्टेशियन निर्देशांक में, डेल को इस प्रकार परिभाषित किया गया है
- इस प्रकार से डेल ग्रेडियेंट को परिभाषित करता है, और विभिन्न वस्तुओं के कर्ल (गणित), विचलन और लाप्लासियन की गणना करने के लिए उपयोग किया जाता है।
इतिहास
डिफरेंशियल ऑपरेटर को कुछ स्वतंत्र रूप से लिखने के वैचारिक कदम का श्रेय 1800 में लुई फ्रांकोइस एंटोनी अर्बोगैस्ट को दिया जाता है।[2]
अंकन
सबसे समान अंतर ऑपरेटर व्युत्पन्न लेने की क्रिया है। वेरिएबल x के संबंध में पसमाधाना व्युत्पन्न लेने के लिए विभेदन के लिए अंकन में सम्मिलित हैं |
- , , और .
उच्चतर, nth क्रम के व्युत्पन्न लेते समय, ऑपरेटर को लिखा जा सकता है:
- , , , या .
किसी फलन x के तर्क के फलन f का व्युत्पन्न कभी-कभी निम्नलिखित में से किसी के रूप में दिया जाता है:
D अंकन के उपयोग और निर्माण का श्रेय ओलिवर हेविसाइड को दिया जाता है, जिन्होंने रूप के डिफरेंशियल ऑपरेटरों पर विचार किया था
डिफरेंशियल समीकरणों के अपने अध्ययन में।
सबसे अधिक बार देखे जाने वाले अंतर ऑपरेटरों में से लाप्लास ऑपरेटर है, जिसे परिभाषित किया गया है
अन्य डिफरेंशियल ऑपरेटर Θ ऑपरेटर, या थीटा ऑपरेटर है, जिसे परिभाषित किया गया है [3]
इसे कभी-कभी समरूपता संचालिका भी कहा जाता है, क्योंकि इसके एजेंन फलन z में पद हैं |
लिखित रूप में, सामान्य गणितीय परंपरा का पालन करते हुए, अंतर ऑपरेटर का तर्क सामान्यतः ऑपरेटर के दाईं ओर रखा जाता है। कभी-कभी वैकल्पिक अंकन का उपयोग किया जाता है: ऑपरेटर के बाईं ओर और ऑपरेटर के दाईं ओर फलन पर ऑपरेटर को प्रयुक्त करने का परिणाम, और दोनों तरफ के फलन पर अंतर ऑपरेटर को प्रयुक्त करने पर प्राप्त अंतर को दर्शाया जाता है। तीरों द्वारा इस प्रकार:
क्वांटम यांत्रिकी की संभाव्यता धारा का वर्णन करने के लिए इस तरह के द्विदिश-तीर अंकन का सदैव उपयोग किया जाता है।
ऑपरेटर का जोड़
रैखिक अंतर ऑपरेटर दिया गया है
वेरिएबल में औपचारिक जोड़
वास्तविक संख्या अंतराल पर वर्ग-अभिन्न कार्यों के कार्यात्मक स्थान में (गणित) (a, b), अदिश गुणनफल द्वारा परिभाषित किया गया है
A (औपचारिक रूप से) स्व-सहायक संचालिका सेल्फ-एडजॉइंट ऑपरेटर अपने स्वयं के (औपचारिक) एडजॉइंट के समान ऑपरेटर है।
अनेक वेरिएबल
यदि ΩRn में डोमेन है, और P Ω पर विभेदक संचालिका है, तो P का जोड़ L2(Ω) में समान विधि से द्वैत द्वारा परिभाषित किया गया है:
सभी सुचारू L2 फलन f, g के लिए। चूँकि L2 में सुचारु कार्य सघन होते हैं, यह L2 के सघन उपसमुच्चय पर जोड़ को परिभाषित करता है: P* सघन रूप से परिभाषित ऑपरेटर है।
उदाहरण
स्टर्म-लिउविल सिद्धांत स्टर्म-लिउविल ऑपरेटर औपचारिक स्व-सहायक ऑपरेटर का प्रसिद्ध उदाहरण है। इस दूसरे क्रम के रैखिक अंतर ऑपरेटर L को रूप में लिखा जा सकता है
इस संपत्ति को उपरोक्त औपचारिक सहायक परिभाषा का उपयोग करके सिद्ध किया जा सकता है।[4]
यह ऑपरेटर स्टर्म-लिउविले सिद्धांत का केंद्र है जहां इस ऑपरेटर के एजेंनफंक्शन (आइजन्वेक्टर के अनुरूप) पर विचार किया जाता है।
डिफरेंशियल ऑपरेटरों के गुण
विभेदन रैखिक मानचित्र है, अर्थात।
f और g फलन हैं, और a स्थिरांक है।
फलन गुणांक के साथ D में कोई भी बहुपद भी अंतर ऑपरेटर है। हम नियम के अनुसार कंपोजीशन डिफरेंशियल ऑपरेटर्स भी कार्य कर सकते हैं
तब कुछ देख-रेख की आवश्यकता होती है: सर्व प्रथम ऑपरेटर D2 में कोई फलन गुणांक D1के अनुप्रयोग जितनी बार हो उतनी बार अवकलनीय फलन होना चाहिए आवश्यकता है. ऐसे ऑपरेटरों की रिंग (गणित) प्राप्त करने के लिए हमें उपयोग किए गए गुणांक के सभी आदेशों के व्युत्पन्न को मानना होगा। दूसरे, यह रिंग क्रमविनिमेय रिंग नहीं होगी: ऑपरेटर gD सामान्य तौर पर Dg के समान नहीं है। उदाहरण के लिए हमारे समीप क्वांटम यांत्रिकी में मूलभूत संबंध है:
इसके विपरीत, निरंतर गुणांक वाले D में बहुपद वाले ऑपरेटरों का उप-रिंग क्रमविनिमेय है। इसे दूसरे विधि से चित्रित किया जा सकता है: इसमें अनुवाद-अपरिवर्तनीय ऑपरेटर सम्मिलित हैं।
डिफरेंशियल संचालक भी शिफ्ट प्रमेय का पालन करते हैं।
बहुपद अवकल संकारकों का वलय
विभिन्न बहुपद अंतर ऑपरेटरों की वलय
यदि R वलय है, तो मान लीजिए वेरिएबल D और . यह है गैर क्रमविनिमेय साधारण वलय . प्रत्येक अवयव को रूप के मोनोमियल के R-रैखिक संयोजन के रूप में अनोखे विधि से लिखा जा सकता है . यह बहुपदों के यूक्लिडियन विभाजन के एनालॉग का समर्थन करता है।
डिफरेंशियल मॉड्यूल ऊपर (मानक व्युत्पत्ति के लिए) को मॉड्यूल (गणित) से पहचाना जा सकता है .
बहुभिन्नरूपी बहुपद अवकल संचालकों का वलय
यदि R वलय है, तो मान लीजिए वेरिएबल में R के ऊपर गैर-क्रमविनिमेय बहुपद वलय बनें , और मैं तत्वों द्वारा उत्पन्न दो-तरफा आदर्श
सभी के लिए जहाँ क्रोनकर डेल्टा है. फिर R के ऊपर बहुभिन्नरूपी बहुपद अवकल संचालकों का वलय भागफल वलय है .
यह है गैर-क्रमविनिमेय साधारण वलय .
प्रत्येक अवयव को रूप के मोनोमियल के R -रैखिक संयोजन के रूप में अनोखे विधि से लिखा जा सकता है .
समन्वय-स्वतंत्र वर्णन
अंतर ज्यामिति और बीजगणितीय ज्यामिति में दो सदिश बंडलों के मध्य अंतर ऑपरेटरों का समन्वय-स्वतंत्र विवरण रखना सदैव सुविधाजनक होता है। मान लीजिए E और F भिन्न मैनिफोल्ड M पर दो सदिश बंडल हैं। सदिश बंडल का 'R'-रैखिक मानचित्रण P : Γ(E) → Γ(F) को kth-क्रम रैखिक अंतर ऑपरेटर कहा जाता है यदि यह जेट बंडल Jk(E) के माध्यम से कारक होता है.
दूसरे शब्दों में, सदिश बंडलों का रैखिक मानचित्रण उपस्तिथ है
ऐसा है कि
जहाँ jk: Γ(E) → Γ(Jk(E)) वह लम्बाई है जो E के किसी भी भाग से उसके जेट (गणित) k-जेट से जुड़ती है।
इसका मतलब यह है कि E के दिए गए सदिश बंडल s के लिए, बिंदु x ∈ M पर P(s) का मान पूरी तरह से x में s के kth-क्रम इनफिनिटसिमल व्यवहार द्वारा निर्धारित होता है। विशेष रूप से इसका तात्पर्य यह है कि P(s)(x) x में s के शीफ (गणित) द्वारा निर्धारित किया जाता है, जिसे यह कहकर व्यक्त किया जाता है कि अंतर ऑपरेटर स्थानीय हैं। मूलभूत परिणाम पीटर प्रमेय है जो दर्शाता है कि इसका विपरीत भी सत्य है: कोई भी (रैखिक) स्थानीय ऑपरेटर अंतर है।
क्रमविनिमेय बीजगणित से संबंध
रैखिक अंतर ऑपरेटरों का समतुल्य, किन्तु विशुद्ध रूप से बीजगणितीय विवरण इस प्रकार है: R-रेखीय मानचित्र P kth-क्रम रैखिक अंतर ऑपरेटर है, यदि किसी भी k + 1 के लिए चिकनी कार्य अपने समीप
यहाँ ब्रैकेट कम्यूटेटर के रूप में परिभाषित किया गया है
रैखिक अंतर ऑपरेटरों के इस लक्षण वर्णन से पता चलता है कि वे क्रमविनिमेय बीजगणित (संरचना) पर मॉड्यूल (गणित) के मध्य विशेष मैपिंग हैं, जिससे अवधारणा को क्रमविनिमेय बीजगणित के भाग के रूप में देखा जा सकता है।
वेरिएंट
अनंत क्रम का डिफरेंशियल संचालिका
अनंत क्रम का डिफरेंशियल संचालिका (सामान्यतः ) डिफरेंशियल संचालिका है जिसका कुल प्रतीक बहुपद के अतिरिक्त घात श्रृंखला है।
द्विविभेदक संचालिका
डिफरेंशियल ऑपरेटर दो फलनो पर कार्य करता है द्विविभेदक संचालिका कहलाती है। उदाहरण के लिए, यह धारणा पॉइसन बीजगणित के विरूपण परिमाणीकरण पर साहचर्य बीजगणित संरचना में प्रकट होती है।[5]
माइक्रोडिफरेंशियल ऑपरेटर
माइक्रोडिफरेंशियल ऑपरेटर कोटैंजेंट बंडल के विवर्तउपसमुच्चय पर प्रकार का ऑपरेटर होता है, जो मैनिफोल्ड के विवर्त उपसमुच्चय के विपरीत होता है। यह डिफरेंशियल ऑपरेटर की धारणा को कोटैंजेंट बंडल तक विस्तारित करके प्राप्त किया जाता है।[6]
यह भी देखें
- अंतर ऑपरेटर
- डेल्टा ऑपरेटर
- अण्डाकार ऑपरेटर
- कर्ल (गणित)
- भिन्नात्मक कलन
- अपरिवर्तनीय अंतर ऑपरेटर
- क्रमविनिमेय बीजगणित पर विभेदक कलन
- लैग्रेंजियन प्रणाली
- वर्णक्रमीय सिद्धांत
- ऊर्जा संचालक
- वेग संचालिका
- डीबीएआर ऑपरेटर
- छद्म-विभेदक संचालिका
- मौलिक समाधान
- अतियाह-सिंगर इंडेक्स प्रमेय (ऑपरेटर के प्रतीक पर अनुभाग)
संदर्भ
- ↑ Schapira 1985, 1.1.7
- ↑ James Gasser (editor), A Boole Anthology: Recent and classical studies in the logic of George Boole (2000), p. 169; Google Books.
- ↑ E. W. Weisstein. "थीटा ऑपरेटर". Retrieved 2009-06-12.
- ↑
- ↑ Omori, Hideki; Maeda, Y.; Yoshioka, A. (1992). "पॉइसन बीजगणित का विरूपण परिमाणीकरण". www.semanticscholar.org (in English).
- ↑ Schapira 1985, § 1.2. § 1.3.
- Freed, Daniel S. (1987), Geometry of Dirac operators, p. 8, CiteSeerX 10.1.1.186.8445
- Hörmander, L. (1983), The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., vol. 256, Springer, doi:10.1007/978-3-642-96750-4, ISBN 3-540-12104-8, MR 0717035.
- Schapira, Pierre (1985). Microdifferential Systems in the Complex Domain. Springer.
- Wells, R.O. (1973), Differential analysis on complex manifolds, Springer-Verlag, ISBN 0-387-90419-0.
अग्रिम पठन
- Fedosov, Boris; Schulze, Bert-Wolfgang; Tarkhanov, Nikolai (2002). "Analytic index formulas for elliptic corner operators". Annales de l'Institut Fourier (in English). 52 (3): 899–982. doi:10.5802/aif.1906. ISSN 1777-5310.
बाहरी संबंध
- Media related to Differential operators at Wikimedia Commons
- "Differential operator", Encyclopedia of Mathematics, EMS Press, 2001 [1994]