सदिश कलन: Difference between revisions
mNo edit summary |
No edit summary |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Calculus of vector-valued functions}} | {{short description|Calculus of vector-valued functions}} | ||
{{distinguish| | {{distinguish|ज्यामितीय गणना|मैट्रिक्स गणना}} | ||
{{More footnotes|date=February 2016}} | {{More footnotes|date=February 2016}} | ||
{{Calculus}} | {{Calculus}} | ||
सदिश कलन, या सदिश विश्लेषण, मुख्य रूप से 3-आयामी यूक्लिडियन अंतरिक्ष <math>\mathbb{R}^3.</math> में [[ वेक्टर क्षेत्र | सदिश क्षेत्र]] के व्युत्पन्न और अभिन्न अंग से संबंधित है सदिश कलन शब्द को कभी-कभी बहुविकल्पीय कलन के व्यापक विषय के समानार्थी के रूप में प्रयोग किया जाता है, जो सदिश कलन के साथ-साथ आंशिक व्युत्पन्न और एक से अधिक अभिन्न अंग भी | सदिश कलन, या सदिश विश्लेषण, मुख्य रूप से 3-आयामी यूक्लिडियन अंतरिक्ष <math>\mathbb{R}^3.</math> में [[ वेक्टर क्षेत्र | सदिश क्षेत्र]] के व्युत्पन्न और अभिन्न अंग से संबंधित है सदिश कलन शब्द को कभी-कभी बहुविकल्पीय कलन के व्यापक विषय के समानार्थी के रूप में प्रयोग किया जाता है, जो सदिश कलन के साथ-साथ आंशिक व्युत्पन्न और एक से अधिक अभिन्न अंग भी विस्तृत करता है। सदिश कलन अवकलन ज्यामितीय में और आंशिक अवकलन समीकरण अध्ययन में महत्वपूर्ण भूमिका निभाता है। यह भौतिकी और इंजीनियरिंग में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से विद्युत चुम्बकीय क्षेत्र, गुरुत्वाकर्षण क्षेत्र और द्रव प्रवाह के विवरण में। | ||
सदिश कलन को 19वीं सदी के अंत में जे. विलार्ड गिब्स और [[ ओलिवर हीविसाइड | ओलिवर हीविसाइड]] द्वारा [[ चार का समुदाय | चार का समुदाय]] विश्लेषण से विकसित किया गया था, और अधिकांश संकेतन और शब्दावली गिब्स और [[ एडविन बिडवेल विल्सन | एडविन बिडवेल विल्सन]] ने अपनी 1901 की पुस्तक, सदिश एनालिसिस में स्थापित की थी। संकर उत्पादों का उपयोग करने वाले पारंपरिक रूप में, सदिश कलन उच्च आयामों को सामान्यीकृत नहीं करता है, जबकि ज्यामितीय बीजगणित का वैकल्पिक दृष्टिकोण जो बाहरी उत्पादों का उपयोग करता है ({{Section link|| | |||
सामान्यीकरण}} के लिए नीचे देखें)। | |||
सदिश कलन को 19वीं सदी के अंत में जे. विलार्ड गिब्स और [[ ओलिवर हीविसाइड | ओलिवर हीविसाइड]] द्वारा [[ चार का समुदाय | चार का समुदाय]] विश्लेषण से विकसित किया गया था, और अधिकांश संकेतन और शब्दावली गिब्स और [[ एडविन बिडवेल विल्सन | एडविन बिडवेल विल्सन]] ने अपनी 1901 की पुस्तक, सदिश एनालिसिस में स्थापित की थी। | |||
== मूल वस्तुएं == | == मूल वस्तुएं == | ||
=== अदिश क्षेत्र === | === अदिश क्षेत्र === | ||
{{Main| | {{Main|अदिश क्षेत्र}} | ||
एक अदिश क्षेत्र एक [[ अदिश (गणित) ]] मान को अंतरिक्ष के प्रत्येक बिंदु से जोड़ता है। अदिश एक गणितीय संख्या है है जो एक भौतिकी मात्रा का प्रतिनिधित्व करता है। अनुप्रयोगों में अदिश क्षेत्रों के उदाहरणों में पूरे अंतरिक्ष में तापमान वितरण, द्रव में दबाव वितरण, और स्पिन-शून्य क्वांटम क्षेत्र (स्केलर बोसॉन के रूप में जाना जाता है), जैसे हिग्स क्षेत्र शामिल हैं। ये क्षेत्र अदिश क्षेत्र सिद्धांत के विषय हैं। | एक अदिश क्षेत्र एक [[ अदिश (गणित) ]] मान को अंतरिक्ष के प्रत्येक बिंदु से जोड़ता है। अदिश एक गणितीय संख्या है है जो एक भौतिकी मात्रा का प्रतिनिधित्व करता है। अनुप्रयोगों में अदिश क्षेत्रों के उदाहरणों में पूरे अंतरिक्ष में तापमान वितरण, द्रव में दबाव वितरण, और स्पिन-शून्य क्वांटम क्षेत्र (स्केलर बोसॉन के रूप में जाना जाता है), जैसे हिग्स क्षेत्र शामिल हैं। ये क्षेत्र अदिश क्षेत्र सिद्धांत के विषय हैं। | ||
===सदिश क्षेत्र=== | ===सदिश क्षेत्र=== | ||
{{Main| | {{Main|सदिश क्षेत्र}} | ||
एक सदिश क्षेत्र एक अंतरिक्ष (गणित) में प्रत्येक बिंदु के लिए एक सदिश (ज्यामिति) का एक | एक सदिश क्षेत्र एक अंतरिक्ष (गणित) में प्रत्येक बिंदु के लिए एक सदिश (ज्यामिति) का एक | ||
कार्यभार है।<ref name="Galbis-2012-p12">{{cite book|authors=Galbis, Antonio & Maestre, Manuel|title=वेक्टर विश्लेषण बनाम वेक्टर पथरी|publisher=Springer|year=2012|isbn=978-1-4614-2199-3|page=12|url=https://books.google.com/books?id=tdF8uTn2cnMC&pg=PA12}}</ref> उदाहरण के लिए, विमान में एक सदिश क्षेत्र को दिए गए परिमाण और विमान में एक बिंदु से जुड़ी प्रत्येक दिशा के साथ तीरों के संग्रह के रूप में देखा जा सकता है। सदिश क्षेत्र अक्सर नमूना के लिए उपयोग किए जाते हैं, उदाहरण के लिए, पूरे अंतरिक्ष में एक गतिशील तरल पदार्थ की गति और दिशा, या चुंबकीय क्षेत्र या गुरुत्वाकर्षण बल जैसे कुछ बल की ताकत और दिशा, क्योंकि यह बिंदु से बिंदु में बदलती है। उदाहरण के लिए, इसका उपयोग एक रेखा पर किए गए कार्य (भौतिकी) की गणना के लिए किया जा सकता है। | कार्यभार है।<ref name="Galbis-2012-p12">{{cite book|authors=Galbis, Antonio & Maestre, Manuel|title=वेक्टर विश्लेषण बनाम वेक्टर पथरी|publisher=Springer|year=2012|isbn=978-1-4614-2199-3|page=12|url=https://books.google.com/books?id=tdF8uTn2cnMC&pg=PA12}}</ref> उदाहरण के लिए, विमान में एक सदिश क्षेत्र को दिए गए परिमाण और विमान में एक बिंदु से जुड़ी प्रत्येक दिशा के साथ तीरों के संग्रह के रूप में देखा जा सकता है। सदिश क्षेत्र अक्सर नमूना के लिए उपयोग किए जाते हैं, उदाहरण के लिए, पूरे अंतरिक्ष में एक गतिशील तरल पदार्थ की गति और दिशा, या चुंबकीय क्षेत्र या गुरुत्वाकर्षण बल जैसे कुछ बल की ताकत और दिशा, क्योंकि यह बिंदु से बिंदु में बदलती है। उदाहरण के लिए, इसका उपयोग एक रेखा पर किए गए कार्य (भौतिकी) की गणना के लिए किया जा सकता है। | ||
=== सदिश और | === सदिश और आभासीसदिश === | ||
अधिक विकसित उपचारों में, | अधिक विकसित उपचारों में, आभासीसदिश क्षेत्र औरआभासीअदिस क्षेत्र को अलग किया जाता है, जो सदिश क्षेत्र और अदिस क्षेत्र के समान होते हैं, इसके अतिरिक्त कि वे ओरिएंटेशन-रिवर्सिंग क्षेत्र के तहत साइन बदलते हैं: उदाहरण के लिए, सदिश क्षेत्र का कर्ल (गणित) एक है आभासीसदिश क्षेत्र, और यदि कोई सदिश क्षेत्र को दर्शाता है, तो कर्ल विपरीत दिशा में दर्शाता करता है। इस अंतर को ज्यामितीय बीजगणित में स्पष्ट और विस्तृत किया गया है, जैसा कि नीचे वर्णित है। | ||
== सदिश बीजगणित == | == सदिश बीजगणित == | ||
{{main| | {{main|सदिश बीजगणित#मूल गुण}} | ||
सदिश कलन में बीजगणितीय (गैर-विभेदक) संचालन को सदिश बीजगणित के रूप में संदर्भित किया जाता है, जिसे सदिश स्थान के लिए परिभाषित किया जाता है और फिर विश्व स्तर पर सदिश क्षेत्र में लागू किया जाता है। बुनियादी बीजगणितीय संचालन में शामिल हैं: | सदिश कलन में बीजगणितीय (गैर-विभेदक) संचालन को सदिश बीजगणित के रूप में संदर्भित किया जाता है, जिसे सदिश स्थान के लिए परिभाषित किया जाता है और फिर विश्व स्तर पर सदिश क्षेत्र में लागू किया जाता है। बुनियादी बीजगणितीय संचालन में शामिल हैं: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिश कलन में संकेतन | ||
|- | |- | ||
!scope="col"| | !scope="col"|संचालन | ||
!scope="col"| | !scope="col"|संकेतन | ||
!scope="col"| | !scope="col"|विवरण | ||
|- | |- | ||
![[Vector addition]] | ! [[Vector addition|सदिशजोड़]] | ||
|<math>\mathbf{v}_1 + \mathbf{v}_2</math> | |<math>\mathbf{v}_1 + \mathbf{v}_2</math> | ||
| | |दो सदिशों का जोड़, एक सदिश प्राप्त करना। | ||
|- | |- | ||
!scope="row"|[[Scalar multiplication]] | !scope="row"|[[Scalar multiplication|अदिश गुणन]] | ||
|<math>a \mathbf{v}</math> | |<math>a \mathbf{v}</math> | ||
| | |अदिश और सदिश का गुणन, सदिश प्राप्त करना। | ||
|- | |- | ||
!scope="row"|[[Dot product]] | !scope="row"| [[Dot product|बिंदु-गुणनफल]] | ||
|<math>\mathbf{v}_1 \cdot \mathbf{v}_2</math> | |<math>\mathbf{v}_1 \cdot \mathbf{v}_2</math> | ||
| | |दो सदिशों का गुणन, एक अदिश प्राप्त करना। | ||
|- | |- | ||
!scope="row"|[[Cross product]] | !scope="row"| [[Cross product|संकर गुणन]] | ||
|<math>\mathbf{v}_1 \times \mathbf{v}_2</math> | |<math>\mathbf{v}_1 \times \mathbf{v}_2</math> | ||
| | |में दो सदिशों का गुणन <math>\mathbb R^3</math>, एक (आभासी ) वेक्टर उत्पन्न करना। | ||
|} | |} | ||
समान्यता उपयोग किए जाने वाले दो [[ ट्रिपल उत्पाद ]] भी हैं: | समान्यता उपयोग किए जाने वाले दो [[ ट्रिपल उत्पाद ]] भी हैं: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिश कलन तीन गुना उत्पाद | ||
|- | |- | ||
!scope="col"| | !scope="col"|संचालन | ||
!scope="col"| | !scope="col"|संकेतन | ||
!scope="col"| | !scope="col"|विवरण | ||
|- | |- | ||
!scope="row"|[[Scalar triple product]] | !scope="row"|[[Scalar triple product|अदिश त्रिपक्षीय गुणनफल]] | ||
|<math>\mathbf{v}_1\cdot\left( \mathbf{v}_2\times\mathbf{v}_3 \right)</math> | |<math>\mathbf{v}_1\cdot\left( \mathbf{v}_2\times\mathbf{v}_3 \right)</math> | ||
| | |गुणन बिंदु दो सदिशों के परस्पर गुणनफल का। | ||
|- | |- | ||
!scope="row"|[[Vector triple product]] | !scope="row"|[[Vector triple product|सदिश त्रिपक्षीय गुणनफल]] | ||
|<math>\mathbf{v}_1\times\left( \mathbf{v}_2\times\mathbf{v}_3 \right)</math> | |<math>\mathbf{v}_1\times\left( \mathbf{v}_2\times\mathbf{v}_3 \right)</math> | ||
| | |दो सदिश ों के संकर उत्पाद का संकर उत्पाद। | ||
|} | |} | ||
== प्रचालक और प्रमेय == | == प्रचालक और प्रमेय == | ||
{{main| | {{main|प्रचालक और प्रमेय}} | ||
=== विभेदक प्रचालक === | === विभेदक प्रचालक === | ||
{{main| | {{main|प्रवणता|विचलन|कर्ल (गणित)| | ||
लाप्लासियन}} | |||
सदिश कलन, अदिश या सदिश क्षेत्रों पर परिभाषित विभिन्न अवकल संकारकों का अध्ययन करता है, जो विशिष्ट रूप से डेल प्रचालक (<math>\nabla</math>), के संदर्भ में व्यक्त किए जाते हैं, जिसे नबला के नाम से भी जाना जाता है। तीन बुनियादी सदिश प्रचालक हैं:<ref>{{Cite web|title=डिफरेंशियल ऑपरेटर्स|url=http://192.168.1.121/math2/differential-operators/|access-date=2020-09-17|website=Math24|language=en-US}}</ref> | सदिश कलन, अदिश या सदिश क्षेत्रों पर परिभाषित विभिन्न अवकल संकारकों का अध्ययन करता है, जो विशिष्ट रूप से डेल प्रचालक (<math>\nabla</math>), के संदर्भ में व्यक्त किए जाते हैं, जिसे नबला के नाम से भी जाना जाता है। तीन बुनियादी सदिश प्रचालक हैं:<ref>{{Cite web|title=डिफरेंशियल ऑपरेटर्स|url=http://192.168.1.121/math2/differential-operators/|access-date=2020-09-17|website=Math24|language=en-US}}</ref> | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिश प्रचालक में विभेदक | ||
|- | |- | ||
!scope="col"| | !scope="col"|संचालन | ||
!scope="col"| | !scope="col"|संकेतन | ||
!scope="col"| | !scope="col"|विवरण | ||
!scope="col"|[[Notation_for_differentiation#Notation_in_vector_calculus| | !scope="col"|[[Notation_for_differentiation#Notation_in_vector_calculus|राष्ट्र<br /> समानता]] | ||
!scope="col"| | !scope="col"|कार्यक्षेत्र/श्रेणी | ||
|- | |- | ||
!scope="row"|[[Gradient]] | !scope="row"| [[Gradient|प्रवणता]] | ||
|<math>\operatorname{grad}(f)=\nabla f</math> | |<math>\operatorname{grad}(f)=\nabla f</math> | ||
| | |स्केलर क्षेत्र में परिवर्तन की दर और दिशा को मापता है। | ||
|[[Scalar multiplication]] | |[[Scalar multiplication|अदिश गुणनफल]] | ||
| | |सदिश क्षेत्र को सदिश क्षेत्र में मापा करता है. | ||
|- | |- | ||
!scope="row"|[[Divergence]] | !scope="row"|[[Divergence|विचलन]] | ||
|<math>\operatorname{div}(\mathbf{F})=\nabla\cdot\mathbf{F}</math> | |<math>\operatorname{div}(\mathbf{F})=\nabla\cdot\mathbf{F}</math> | ||
| | |सदिश क्षेत्र में किसी दिए गए बिंदु पर किसी स्रोत या सिंक के स्केलर को मापता है। | ||
|[[Dot product]] | |[[Dot product|बिन्दु गुणनफल]] | ||
| | |सदिश क्षेत्र को सदिश क्षेत्र में मापा करता है. | ||
|- | |- | ||
!scope="row"|[[Curl (mathematics)| | !scope="row"|[[Curl (mathematics)|वक्र]] | ||
|<math>\operatorname{curl}(\mathbf{F})=\nabla\times\mathbf{F}</math> | |<math>\operatorname{curl}(\mathbf{F})=\nabla\times\mathbf{F}</math> | ||
| | |सदिश क्षेत्र में एक बिंदु <math>\mathbb R^3</math>के चारों ओर घूमने की प्रवृत्ति को मापता है | ||
|[[Cross product]] | |[[Cross product|संकर गुणनफल]] | ||
| | |सदिश क्षेत्र को (आभासी ) सदिश क्षेत्र में मापा करता है। | ||
|- | |- | ||
!scope="row" colspan=5| | !scope="row" colspan=5| | ||
Line 109: | Line 109: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिश कलन में लाप्लास प्रचालक | ||
|- | |- | ||
!scope="col"| | !scope="col"|संचालन | ||
!scope="col"| | !scope="col"|संकेतन | ||
!scope="col"| | !scope="col"|विवरण | ||
!scope="col"| | !scope="col"|कार्यक्षेत्र/श्रेणी | ||
|- | |- | ||
!scope="row"|[[Laplace operator| | !scope="row"|[[Laplace operator|लाप्लासियन]] | ||
|<math>\Delta f=\nabla^2 f=\nabla\cdot \nabla f</math> | |<math>\Delta f=\nabla^2 f=\nabla\cdot \nabla f</math> | ||
| | |असीम गेंदों पर इसके औसत के साथ अदिश क्षेत्र के मान के बीच के अंतर को मापता है। | ||
| | |अदिश क्षेत्रों के बीच मापन. | ||
|- | |- | ||
!scope="row"|[[Vector Laplacian]] | !scope="row"|[[Vector Laplacian|सदिश लाप्लासियन]] | ||
|<math>\nabla^2\mathbf{F}=\nabla(\nabla\cdot\mathbf{F})-\nabla \times (\nabla \times \mathbf{F})</math> | |<math>\nabla^2\mathbf{F}=\nabla(\nabla\cdot\mathbf{F})-\nabla \times (\nabla \times \mathbf{F})</math> | ||
| | |सदिश क्षेत्र के मान के बीच अंतर को मापता है, जो कि अनंत गेंदों पर औसत है। | ||
| | |सदिश क्षेत्रों के बीच मापन. | ||
|- | |- | ||
!scope="row" colspan=4 | !scope="row" colspan=4|f एक अदिश क्षेत्र को दर्शाता है और F एक सदिश क्षेत्र को दर्शाता है | ||
|} | |} | ||
जैकोबियन मैट्रिक्स और निर्धारक नामक एक मात्रा कार्यों का अध्ययन करने के लिए उपयोगी होती है जब फलन के डोमेन और रेंज दोनों बहुविकल्पीय होते हैं, जैसे एकीकरण के दौरान चर के परिवर्तन। | जैकोबियन मैट्रिक्स और निर्धारक नामक एक मात्रा कार्यों का अध्ययन करने के लिए उपयोगी होती है जब फलन के डोमेन और रेंज दोनों बहुविकल्पीय होते हैं, जैसे एकीकरण के दौरान चर के परिवर्तन। | ||
Line 134: | Line 134: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिशकलन का अभिन्न प्रमेय | ||
|- | |- | ||
!scope="col"| | !scope="col"| प्रमेय | ||
!scope="col"| | !scope="col"| कथन | ||
!scope="col"| | !scope="col"| विवरण | ||
|- | |- | ||
!scope="row"| [[Gradient theorem]] | !scope="row"| [[Gradient theorem|प्रवणता प्रमेय]] | ||
| <math> \int_{L \subset \mathbb R^n}\!\!\! \nabla\varphi\cdot d\mathbf{r} \ =\ \varphi\left(\mathbf{q}\right)-\varphi\left(\mathbf{p}\right)\ \ \text{ for }\ \ L = L[p\to q] </math> | | <math> \int_{L \subset \mathbb R^n}\!\!\! \nabla\varphi\cdot d\mathbf{r} \ =\ \varphi\left(\mathbf{q}\right)-\varphi\left(\mathbf{p}\right)\ \ \text{ for }\ \ L = L[p\to q] </math> | ||
| | | एक वक्र L पर एक अदिश क्षेत्र की प्रवणता का रेखा समाकल, वक्र के अंत बिंदु p और q के बीच अदिश क्षेत्र में परिवर्तन के बराबर होता है। | ||
|- | |- | ||
!scope="row"| [[Divergence theorem]] | !scope="row"| [[Divergence theorem|विचलन प्रमेय]] | ||
| <math> \underbrace{ \int \!\cdots\! \int_{V \subset \mathbb R^n} }_n (\nabla \cdot \mathbf{F}) \, dV | | <math> \underbrace{ \int \!\cdots\! \int_{V \subset \mathbb R^n} }_n (\nabla \cdot \mathbf{F}) \, dV | ||
\ = \ \underbrace{ \oint \!\cdots\! \oint_{\partial V} }_{n-1} \mathbf{F} \cdot d \mathbf{S} </math> | \ = \ \underbrace{ \oint \!\cdots\! \oint_{\partial V} }_{n-1} \mathbf{F} \cdot d \mathbf{S} </math> | ||
| | | एक n- शेयर सॉलिड V पर एक सादिश क्षेत्र के अपसरण का समाकल सॉलिड के (n−1)- ऋण बंद सीमा सतह के माध्यम से सदिश क्षेत्र के [[flux|प्रवाह]] के बराबर है। | ||
|- | |- | ||
!scope="row"| [[Kelvin–Stokes theorem| | !scope="row"| [[Kelvin–Stokes theorem|वक्र (केल्विन-स्टोक्स) प्रमेय]] | ||
| <math> \iint_{\Sigma\,\subset\mathbb R^3} (\nabla \times \mathbf{F}) \cdot d\mathbf{\Sigma} \ =\ \oint_{\!\! \partial \Sigma} \mathbf{F} \cdot d \mathbf{r} </math> | | <math> \iint_{\Sigma\,\subset\mathbb R^3} (\nabla \times \mathbf{F}) \cdot d\mathbf{\Sigma} \ =\ \oint_{\!\! \partial \Sigma} \mathbf{F} \cdot d \mathbf{r} </math> | ||
| | | एक [[Surface (topology)|सतह]] Σ में एक वेक्टर क्षेत्र के कर्ल का अभिन्न अंग [[Surface (topology)|सतह]] <math>\mathbb R^3</math>सतह को घेरने वाले बंद वक्र के चारों ओर सदिश क्षेत्र के संचलन के बराबर है. | ||
|- | |- | ||
!scope="row" colspan=5| | !scope="row" colspan=5| | ||
Line 158: | Line 158: | ||
{| class="wikitable" style="text-align:center" | {| class="wikitable" style="text-align:center" | ||
|+ | |+सदिश कलन की ग्रीन की प्रमेय | ||
|- | |- | ||
! scope="col"| | ! scope="col"| प्रमेय | ||
! scope="col"| | ! scope="col"| कथन | ||
! scope="col"| | ! scope="col"| विवरण | ||
|- | |- | ||
!scope="row"| [[Green's theorem]] | !scope="row"| [[Green's theorem|ग्रीन की प्रमेय]] | ||
| <math> \iint_{A\,\subset\mathbb R^2} \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) dA \ =\ \oint_{\partial A} \left ( L\, dx + M\, dy \right ) </math>|| | | <math> \iint_{A\,\subset\mathbb R^2} \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) dA \ =\ \oint_{\partial A} \left ( L\, dx + M\, dy \right ) </math>|| किसी क्षेत्र A में सदिश क्षेत्र के अपसरण (या कर्ल) का समाकल <math>\mathbb R^2</math> क्षेत्र को घेरने वाले बंद वक्र पर वेक्टर क्षेत्र के प्रवाह (या संचलन) के बराबर है। | ||
|- | |- | ||
!scope="row" colspan=5| | !scope="row" colspan=5|विचलन के लिए, {{math|1=''F'' = (''M'', −''L'')}}. कर्ल के लिए , {{math|1=''F'' = (''L'', ''M'', 0)}}. {{mvar|L}} और {{mvar|M}} {{math|(''x'', ''y'')}} के कार्य हैं। | ||
|} | |} | ||
Line 174: | Line 174: | ||
=== रैखिक सन्निकटन === | === रैखिक सन्निकटन === | ||
{{main| | {{main|रैखिक सन्निकटन }} | ||
रैखिक सन्निकटन का उपयोग जटिल कार्यों को रैखिक कार्यों के साथ बदलने के लिए किया जाता है जो लगभग समान होते हैं। वास्तविक मूल्यों के साथ एक अलग कार्य {{math|''f''(''x'', ''y'')}}, को देखते हुए कोई सूत्र द्वारा {{math|(''a'', ''b'')}} के करीब {{math|(''x'', ''y'')}} के लिये {{math|''f''(''x'', ''y'')}} अनुमान लगा सकता है | रैखिक सन्निकटन का उपयोग जटिल कार्यों को रैखिक कार्यों के साथ बदलने के लिए किया जाता है जो लगभग समान होते हैं। वास्तविक मूल्यों के साथ एक अलग कार्य {{math|''f''(''x'', ''y'')}}, को देखते हुए कोई सूत्र द्वारा {{math|(''a'', ''b'')}} के करीब {{math|(''x'', ''y'')}} के लिये {{math|''f''(''x'', ''y'')}} अनुमान लगा सकता है | ||
:<math>f(x,y)\ \approx\ f(a,b)+\tfrac{\partial f}{\partial x} (a,b)\,(x-a)+\tfrac{\partial f}{\partial y}(a,b)\,(y-b).</math> | :<math>f(x,y)\ \approx\ f(a,b)+\tfrac{\partial f}{\partial x} (a,b)\,(x-a)+\tfrac{\partial f}{\partial y}(a,b)\,(y-b).</math> | ||
Line 181: | Line 181: | ||
=== अनुकूलन === | === अनुकूलन === | ||
{{main| | {{main|गणितीय अनुकूलन}} | ||
कई वास्तविक चरों के निरंतर भिन्न होने वाले फलन के लिए, एक बिंदु P (अर्थात, इनपुट चर के लिए मानों का एक सेट, जिसे 'R' में एक बिंदु के रूप में देखा जाता है)<sup>n</sup>) 'महत्वपूर्ण' है यदि फलन के सभी आंशिक अवकलज P | कई वास्तविक चरों के निरंतर भिन्न होने वाले फलन के लिए, एक बिंदु P (अर्थात, इनपुट चर के लिए मानों का एक सेट, जिसे 'R' में एक बिंदु के रूप में देखा जाता है)<sup>n</sup>) 'महत्वपूर्ण' है यदि फलन के सभी आंशिक अवकलज P पर शून्य हैं, या, समकक्ष, यदि इसकी प्रवणता शून्य है। महत्वपूर्ण मान महत्वपूर्ण बिंदुओं पर फलन के मान हैं। | ||
यदि फलन सुचारू रूप से कार्य करता है, या कम से कम दो बार निरंतर भिन्न होता है, तो एक महत्वपूर्ण बिंदु या तो एक स्थानीय अधिकतम, एक स्थानीय न्यूनतम या एक काठी बिंदु हो सकता है। दूसरे अवकलज के हेस्सियन मैट्रिक्स के हैजेनमान पर विचार करके विभिन्न मामलों को अलग किया जा सकता है। | यदि फलन सुचारू रूप से कार्य करता है, या कम से कम दो बार निरंतर भिन्न होता है, तो एक महत्वपूर्ण बिंदु या तो एक स्थानीय अधिकतम, एक स्थानीय न्यूनतम या एक काठी बिंदु हो सकता है। दूसरे अवकलज के हेस्सियन मैट्रिक्स के हैजेनमान पर विचार करके विभिन्न मामलों को अलग किया जा सकता है। | ||
Line 200: | Line 200: | ||
=== विभिन्न 3-कई गुना === | === विभिन्न 3-कई गुना === | ||
सदिश कलन को शुरू में यूक्लिडियन 3-स्पेस <math>\mathbb{R}^3,</math> के लिए परिभाषित किया गया है, जिसमें केवल 3-आयामी वास्तविक सदिश स्थान होने से परे अतिरिक्त संरचना है, अर्थात्: एक आंतरिक उत्पाद ([[ डॉट उत्पाद ]]) के माध्यम से परिभाषित एक मानदंड (गणित) (लंबाई की धारणा देना), जो बदले में कोण की धारणा और एक अभिविन्यास देता है, जो बाएं हाथ और दाएं हाथ की धारणा देती है। ये संरचनाएं एक आयतन रूप को जन्म देती हैं, और | सदिश कलन को शुरू में यूक्लिडियन 3-स्पेस <math>\mathbb{R}^3,</math> के लिए परिभाषित किया गया है, जिसमें केवल 3-आयामी वास्तविक सदिश स्थान होने से परे अतिरिक्त संरचना है, अर्थात्: एक आंतरिक उत्पाद ([[ डॉट उत्पाद ]]) के माध्यम से परिभाषित एक मानदंड (गणित) (लंबाई की धारणा देना), जो बदले में कोण की धारणा और एक अभिविन्यास देता है, जो बाएं हाथ और दाएं हाथ की धारणा देती है। ये संरचनाएं एक आयतन रूप को जन्म देती हैं, और संकर उत्पाद भी, जिसका व्यापक रूप से सदिश कलन में उपयोग किया जाता है। | ||
प्रवणता और विचलन के लिए केवल आंतरिक उत्पाद की आवश्यकता होती है, जबकि कर्ल और | प्रवणता और विचलन के लिए केवल आंतरिक उत्पाद की आवश्यकता होती है, जबकि कर्ल और संकर उत्पाद को भी समन्वय प्रणाली की आवश्यकता को ध्यान में रखा जाना चाहिए (अधिक विवरण के लिए संकर उत्पाद # हैंडेडनेस देखें)। | ||
सदिश कलन को अन्य 3-आयामी वास्तविक सदिश रिक्त स्थान पर परिभाषित किया जा सकता है यदि उनके पास एक आंतरिक उत्पाद (या अधिक | सदिश कलन को अन्य 3-आयामी वास्तविक सदिश रिक्त स्थान पर परिभाषित किया जा सकता है यदि उनके पास एक आंतरिक उत्पाद (या अधिक सामान्यतः एक सममित अविकृत रूप) और एक अभिविन्यास है; ध्यान दें कि यह यूक्लिडियन अंतरिक्ष के लिए एक समरूपता से कम जानकारी है, क्योंकि इसमें निर्देशांक (संदर्भ का एक फ्रेम) के समूह की आवश्यकता नहीं होती है, जो इस तथ्य को दर्शाता है कि सदिश कलन घूर्णन के तहत अपरिवर्तनीय है (विशेष ऑर्थोगोनल समूह SO(3)) . | ||
सामान्यतः से अधिक सदिश कलन को किसी भी 3-आयामी स्पष्ट रिमेंनियन कई गुना पर परिभाषित किया जा सकता है, या अधिक सामान्यतः | सामान्यतः से अधिक सदिश कलन को किसी भी 3-आयामी स्पष्ट रिमेंनियन कई गुना पर परिभाषित किया जा सकता है, या अधिक सामान्यतः आभासी -रिमेंनियन मैनिफोल्ड। इस संरचना का सीधा सा मतलब है कि प्रत्येक बिंदु पर स्पर्शरेखा स्थान में एक आंतरिक उत्पाद होता है (अधिक सामान्यतः, एक सममित अविकृत रूप) और एक अभिविन्यास, या अधिक विश्व स्तर पर कि एक सममित अविकृत रूप मीट्रिक टेंसर और एक अभिविन्यास है, और काम करता है क्योंकि सदिश कलन को प्रत्येक बिंदु पर स्पर्शरेखा सदिश के संदर्भ में परिभाषित किया गया है | ||
=== अन्य आयाम === | === अन्य आयाम === | ||
अधिकांश विश्लेषणात्मक परिणामों को अधिक सामान्य रूप में, आसानी से समझा जा सकता है, विभेदक ज्यामिति तन्त्र का उपयोग करते हुए, जिनमें से सदिश कलन एक उपसमूह बनाता है। ग्रैड और डिव तुरंत अन्य आयामों के लिए सामान्यीकरण करते हैं, जैसा कि प्रवणता प्रमेय, विचलन प्रमेय, और लाप्लासियन (उपज देने वाले हार्मोनिक विश्लेषण) करते हैं, जबकि कर्ल और | अधिकांश विश्लेषणात्मक परिणामों को अधिक सामान्य रूप में, आसानी से समझा जा सकता है, विभेदक ज्यामिति तन्त्र का उपयोग करते हुए, जिनमें से सदिश कलन एक उपसमूह बनाता है। ग्रैड और डिव तुरंत अन्य आयामों के लिए सामान्यीकरण करते हैं, जैसा कि प्रवणता प्रमेय, विचलन प्रमेय, और लाप्लासियन (उपज देने वाले हार्मोनिक विश्लेषण) करते हैं, जबकि कर्ल और संकर उत्पाद सीधे सामान्यीकरण नहीं करते हैं। | ||
एक सामान्य दृष्टिकोण से, (3-आयामी) सदिश कलन में विभिन्न क्षेत्रों को समान रूप से k-सदिश क्षेत्र के रूप में देखा जाता है: स्केलर क्षेत्र 0-सदिश क्षेत्र हैं, सदिश क्षेत्र 1-सदिश क्षेत्र हैं, | एक सामान्य दृष्टिकोण से, (3-आयामी) सदिश कलन में विभिन्न क्षेत्रों को समान रूप से k-सदिश क्षेत्र के रूप में देखा जाता है: स्केलर क्षेत्र 0-सदिश क्षेत्र हैं, सदिश क्षेत्र 1-सदिश क्षेत्र हैं, आभासी सदिश क्षेत्र 2-सदिश क्षेत्र हैं, और आभासीअदिश क्षेत्र 3-सदिश क्षेत्र हैं। उच्च आयामों में अतिरिक्त प्रकार के क्षेत्र हैं (अदिश /सदिश/आभासीसदिश/आभासीअदिश 0/1/n−1/n आयामों के अनुरूप, जो आयाम 3 में संपूर्ण है), इसलिए कोई केवल (आभासी) अदिस और ( आभासी ) सदिश के साथ काम नहीं कर सकता है । | ||
एक गैर-डीजेनरेट फॉर्म मानते हुए,किसी भी आयाम में स्केलर फलन का श्रेणी एक सदिश क्षेत्र होता है, और सदिश क्षेत्र का डिव एक अदिश फलन होता है, लेकिन केवल आयाम 3 या 7 में<ref>Lizhong Peng & Lei Yang (1999) "The curl in seven dimensional space and its applications", ''Approximation Theory and Its Applications'' 15(3): 66 to 80 {{doi|10.1007/BF02837124}}</ref> (और, क्षुद्र रूप से, आयाम 0 या 1 में) एक सदिश क्षेत्र का कर्ल एक सदिश क्षेत्र है, और केवल 3 या सात-आयामी | एक गैर-डीजेनरेट फॉर्म मानते हुए,किसी भी आयाम में स्केलर फलन का श्रेणी एक सदिश क्षेत्र होता है, और सदिश क्षेत्र का डिव एक अदिश फलन होता है, लेकिन केवल आयाम 3 या 7 में<ref>Lizhong Peng & Lei Yang (1999) "The curl in seven dimensional space and its applications", ''Approximation Theory and Its Applications'' 15(3): 66 to 80 {{doi|10.1007/BF02837124}}</ref> (और, क्षुद्र रूप से, आयाम 0 या 1 में) एक सदिश क्षेत्र का कर्ल एक सदिश क्षेत्र है, और केवल 3 या सात-आयामी संकर उत्पाद आयामों में एक संकर उत्पाद को परिभाषित किया जा सकता है (अन्य आयामों में सामान्यीकरण या तो आवश्यकता होती है <math>n-1</math> सदिश 1 सदिश प्राप्त करने के लिए, या वैकल्पिक झूठ बीजगणित हैं, जो अधिक सामान्य एंटीसिमेट्रिक बिलिनियर उत्पाद हैं)। ग्रेड और डिव का सामान्यीकरण, और कर्ल को कैसे सामान्यीकृत किया जा सकता है, इसे कर्ल (गणित) में संक्षेप किया गया है, एक सदिश क्षेत्र का कर्ल एक द्विभाजक क्षेत्र है, जिसे अनन्तसूक्ष्म घुमावों के विशेष ऑर्थोगोनल झूठ बीजगणित के रूप में व्याख्या किया जा सकता है; हालाँकि, इसे सदिश क्षेत्र से पहचाना नहीं जा सकता क्योंकि आयाम भिन्न हैं - 3 आयामों में घुमाव के 3 आयाम हैं, लेकिन 4 आयामों में घुमाव के 6 आयाम हैं (और अधिक सामान्यतः <math>\textstyle{\binom{n}{2}=\frac{1}{2}n(n-1)}</math> n आयामों में घुमावों के आयाम)। | ||
सदिश कलन के दो महत्वपूर्ण वैकल्पिक सामान्यीकरण हैं। पहला, ज्यामितीय बीजगणित, सदिश क्षेत्र के अतिरिक्त एक से अधिक सदिश | k-सदिश क्षेत्र का उपयोग करता है (3 या उससे कम आयामों में, प्रत्येक के-सदिश क्षेत्र को अदिस फलन या सदिश क्षेत्र से पहचाना जा सकता है, लेकिन यह उच्च आयामों में सत्य नहीं है)। यह | सदिश कलन के दो महत्वपूर्ण वैकल्पिक सामान्यीकरण हैं। पहला, ज्यामितीय बीजगणित, सदिश क्षेत्र के अतिरिक्त एक से अधिक सदिश | k-सदिश क्षेत्र का उपयोग करता है (3 या उससे कम आयामों में, प्रत्येक के-सदिश क्षेत्र को अदिस फलन या सदिश क्षेत्र से पहचाना जा सकता है, लेकिन यह उच्च आयामों में सत्य नहीं है)। यह संकर उत्पाद को प्रतिस्थापित करता है, जो 3 आयामों के लिए विशिष्ट है, दो सदिश क्षेत्रों में ले रहा है और आउटपुट के रूप में एक सदिश क्षेत्र दे रहा है, बाहरी उत्पाद के साथ, जो सभी आयामों में मौजूद है और दो सदिश क्षेत्रों में लेता है, आउटपुट के रूप में एक बायसदिश (2-सदिश) क्षेत्र। यह उत्पाद सदिश रिक्त स्थान पर बीजीय संरचना के रूप में क्लिफोर्ड बीजगणित उत्पन्न करता है (एक अभिविन्यास और गैर डिजेनरेट फॉर्म के साथ)। ज्यामितीय बीजगणित का उपयोग ज्यादातर भौतिकी के सामान्यीकरण और अन्य अनुप्रयुक्त क्षेत्रों में उच्च आयामों में किया जाता है। | ||
दूसरा सामान्यीकरण सदिश क्षेत्र या के-सदिश क्षेत्र के बजाय अवकलन अवस्था (k-सदिश क्षेत्र) का उपयोग करता है, और गणित में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से विभेदक ज्योमेट्री, ज्यामितीय टोपोलॉजी और हार्मोनिक विश्लेषण में, विशेष रूप से उन्मुख | दूसरा सामान्यीकरण सदिश क्षेत्र या के-सदिश क्षेत्र के बजाय अवकलन अवस्था (k-सदिश क्षेत्र) का उपयोग करता है, और गणित में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से विभेदक ज्योमेट्री, ज्यामितीय टोपोलॉजी और हार्मोनिक विश्लेषण में, विशेष रूप से उन्मुख आभासी -रीमैनियन मैनिफोल्ड्स पर हॉज सिद्धांत देने वाले। इस दृष्टिकोण से, ग्रेड, कर्ल और डिव क्रमशः 0-रूपों, 1-रूपों और 2-रूपों के बाहरी व्युत्पन्न के अनुरूप हैं, और सदिश कलन के प्रमुख प्रमेय स्टोक्स प्रमेय के सामान्य रूप के सभी विशेष मामले हैं। | ||
इन दोनों सामान्यीकरणों के दृष्टिकोण से, सदिश कलन गणितीय रूप से विशिष्ट वस्तुओं की स्पष्ट रूप से पहचान करता है, जो प्रस्तुति को सरल बनाता है लेकिन अंतर्निहित गणितीय संरचना और सामान्यीकरण कम स्पष्ट होता है। | इन दोनों सामान्यीकरणों के दृष्टिकोण से, सदिश कलन गणितीय रूप से विशिष्ट वस्तुओं की स्पष्ट रूप से पहचान करता है, जो प्रस्तुति को सरल बनाता है लेकिन अंतर्निहित गणितीय संरचना और सामान्यीकरण कम स्पष्ट होता है। | ||
ज्यामितीय बीजगणित के दृष्टिकोण से, सदिश कलन स्पष्ट रूप से सदिश क्षेत्र या अदिस फलन के साथ के-सदिश क्षेत्र की पहचान करता है: 0- | ज्यामितीय बीजगणित के दृष्टिकोण से, सदिश कलन स्पष्ट रूप से सदिश क्षेत्र या अदिस फलन के साथ के-सदिश क्षेत्र की पहचान करता है: 0-सदिश और अदिश के साथ 3-सदिश, 1-सदिश और सदिश के साथ 2-सदिश। विभेदक रूपों के दृष्टिकोण से, सदिश कलन स्पष्ट रूप से अदिश क्षेत्र या सदिश क्षेत्र के साथ k-अवस्था की पहचान करता है: 0-अवस्था और 3-अवस्था अदिश क्षेत्र के साथ, 1-अवस्था और 2-अवस्था सदिश क्षेत्र के साथ। इस प्रकार उदाहरण के लिए कर्ल स्वाभाविक रूप से एक सदिश क्षेत्र या 1-अवस्था इनपुट के रूप में लेता है, लेकिन स्वाभाविक रूप से आउटपुट के रूप में 2-सदिश क्षेत्र या 2-अवस्था (इसलिए आभासी सदिश क्षेत्र) होता है, जिसे सीधे सदिश क्षेत्र के रूप में व्याख्या किया जाता है, बजाय सीधे लेने के सदिश क्षेत्र से सदिश क्षेत्र; यह उच्च आयामों में एक सदिश क्षेत्र के कर्ल में परिलक्षित होता है, जिसमें सदिश क्षेत्र का उत्पादन नहीं होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 273: | Line 273: | ||
{{Industrial and applied mathematics}} | {{Industrial and applied mathematics}} | ||
{{Authority control}} | {{Authority control}} | ||
[[Category: | [[Category:All articles lacking in-text citations]] | ||
[[Category:All articles needing additional references]] | |||
[[Category:Articles lacking in-text citations from February 2016]] | |||
[[Category:Articles needing additional references from August 2019]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 13/11/2022]] | [[Category:Created On 13/11/2022]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages using sidebar with the child parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गणितीय भौतिकी]] | |||
[[Category:वेक्टर कलन| ]] |
Latest revision as of 10:16, 30 December 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2016) (Learn how and when to remove this template message) |
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
सदिश कलन, या सदिश विश्लेषण, मुख्य रूप से 3-आयामी यूक्लिडियन अंतरिक्ष में सदिश क्षेत्र के व्युत्पन्न और अभिन्न अंग से संबंधित है सदिश कलन शब्द को कभी-कभी बहुविकल्पीय कलन के व्यापक विषय के समानार्थी के रूप में प्रयोग किया जाता है, जो सदिश कलन के साथ-साथ आंशिक व्युत्पन्न और एक से अधिक अभिन्न अंग भी विस्तृत करता है। सदिश कलन अवकलन ज्यामितीय में और आंशिक अवकलन समीकरण अध्ययन में महत्वपूर्ण भूमिका निभाता है। यह भौतिकी और इंजीनियरिंग में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से विद्युत चुम्बकीय क्षेत्र, गुरुत्वाकर्षण क्षेत्र और द्रव प्रवाह के विवरण में।
सदिश कलन को 19वीं सदी के अंत में जे. विलार्ड गिब्स और ओलिवर हीविसाइड द्वारा चार का समुदाय विश्लेषण से विकसित किया गया था, और अधिकांश संकेतन और शब्दावली गिब्स और एडविन बिडवेल विल्सन ने अपनी 1901 की पुस्तक, सदिश एनालिसिस में स्थापित की थी। संकर उत्पादों का उपयोग करने वाले पारंपरिक रूप में, सदिश कलन उच्च आयामों को सामान्यीकृत नहीं करता है, जबकि ज्यामितीय बीजगणित का वैकल्पिक दृष्टिकोण जो बाहरी उत्पादों का उपयोग करता है (§ सामान्यीकरण के लिए नीचे देखें)।
मूल वस्तुएं
अदिश क्षेत्र
एक अदिश क्षेत्र एक अदिश (गणित) मान को अंतरिक्ष के प्रत्येक बिंदु से जोड़ता है। अदिश एक गणितीय संख्या है है जो एक भौतिकी मात्रा का प्रतिनिधित्व करता है। अनुप्रयोगों में अदिश क्षेत्रों के उदाहरणों में पूरे अंतरिक्ष में तापमान वितरण, द्रव में दबाव वितरण, और स्पिन-शून्य क्वांटम क्षेत्र (स्केलर बोसॉन के रूप में जाना जाता है), जैसे हिग्स क्षेत्र शामिल हैं। ये क्षेत्र अदिश क्षेत्र सिद्धांत के विषय हैं।
सदिश क्षेत्र
एक सदिश क्षेत्र एक अंतरिक्ष (गणित) में प्रत्येक बिंदु के लिए एक सदिश (ज्यामिति) का एक
कार्यभार है।[1] उदाहरण के लिए, विमान में एक सदिश क्षेत्र को दिए गए परिमाण और विमान में एक बिंदु से जुड़ी प्रत्येक दिशा के साथ तीरों के संग्रह के रूप में देखा जा सकता है। सदिश क्षेत्र अक्सर नमूना के लिए उपयोग किए जाते हैं, उदाहरण के लिए, पूरे अंतरिक्ष में एक गतिशील तरल पदार्थ की गति और दिशा, या चुंबकीय क्षेत्र या गुरुत्वाकर्षण बल जैसे कुछ बल की ताकत और दिशा, क्योंकि यह बिंदु से बिंदु में बदलती है। उदाहरण के लिए, इसका उपयोग एक रेखा पर किए गए कार्य (भौतिकी) की गणना के लिए किया जा सकता है।
सदिश और आभासीसदिश
अधिक विकसित उपचारों में, आभासीसदिश क्षेत्र औरआभासीअदिस क्षेत्र को अलग किया जाता है, जो सदिश क्षेत्र और अदिस क्षेत्र के समान होते हैं, इसके अतिरिक्त कि वे ओरिएंटेशन-रिवर्सिंग क्षेत्र के तहत साइन बदलते हैं: उदाहरण के लिए, सदिश क्षेत्र का कर्ल (गणित) एक है आभासीसदिश क्षेत्र, और यदि कोई सदिश क्षेत्र को दर्शाता है, तो कर्ल विपरीत दिशा में दर्शाता करता है। इस अंतर को ज्यामितीय बीजगणित में स्पष्ट और विस्तृत किया गया है, जैसा कि नीचे वर्णित है।
सदिश बीजगणित
सदिश कलन में बीजगणितीय (गैर-विभेदक) संचालन को सदिश बीजगणित के रूप में संदर्भित किया जाता है, जिसे सदिश स्थान के लिए परिभाषित किया जाता है और फिर विश्व स्तर पर सदिश क्षेत्र में लागू किया जाता है। बुनियादी बीजगणितीय संचालन में शामिल हैं:
संचालन | संकेतन | विवरण |
---|---|---|
सदिशजोड़ | दो सदिशों का जोड़, एक सदिश प्राप्त करना। | |
अदिश गुणन | अदिश और सदिश का गुणन, सदिश प्राप्त करना। | |
बिंदु-गुणनफल | दो सदिशों का गुणन, एक अदिश प्राप्त करना। | |
संकर गुणन | में दो सदिशों का गुणन , एक (आभासी ) वेक्टर उत्पन्न करना। |
समान्यता उपयोग किए जाने वाले दो ट्रिपल उत्पाद भी हैं:
संचालन | संकेतन | विवरण |
---|---|---|
अदिश त्रिपक्षीय गुणनफल | गुणन बिंदु दो सदिशों के परस्पर गुणनफल का। | |
सदिश त्रिपक्षीय गुणनफल | दो सदिश ों के संकर उत्पाद का संकर उत्पाद। |
प्रचालक और प्रमेय
विभेदक प्रचालक
सदिश कलन, अदिश या सदिश क्षेत्रों पर परिभाषित विभिन्न अवकल संकारकों का अध्ययन करता है, जो विशिष्ट रूप से डेल प्रचालक (), के संदर्भ में व्यक्त किए जाते हैं, जिसे नबला के नाम से भी जाना जाता है। तीन बुनियादी सदिश प्रचालक हैं:[2]
संचालन | संकेतन | विवरण | राष्ट्र समानता |
कार्यक्षेत्र/श्रेणी |
---|---|---|---|---|
प्रवणता | स्केलर क्षेत्र में परिवर्तन की दर और दिशा को मापता है। | अदिश गुणनफल | सदिश क्षेत्र को सदिश क्षेत्र में मापा करता है. | |
विचलन | सदिश क्षेत्र में किसी दिए गए बिंदु पर किसी स्रोत या सिंक के स्केलर को मापता है। | बिन्दु गुणनफल | सदिश क्षेत्र को सदिश क्षेत्र में मापा करता है. | |
वक्र | सदिश क्षेत्र में एक बिंदु के चारों ओर घूमने की प्रवृत्ति को मापता है | संकर गुणनफल | सदिश क्षेत्र को (आभासी ) सदिश क्षेत्र में मापा करता है। | |
इस्तेमाल किए जाने वाले समान्यता दो लाप्लास प्रचालक भी हैं:
संचालन | संकेतन | विवरण | कार्यक्षेत्र/श्रेणी |
---|---|---|---|
लाप्लासियन | असीम गेंदों पर इसके औसत के साथ अदिश क्षेत्र के मान के बीच के अंतर को मापता है। | अदिश क्षेत्रों के बीच मापन. | |
सदिश लाप्लासियन | सदिश क्षेत्र के मान के बीच अंतर को मापता है, जो कि अनंत गेंदों पर औसत है। | सदिश क्षेत्रों के बीच मापन. | |
f एक अदिश क्षेत्र को दर्शाता है और F एक सदिश क्षेत्र को दर्शाता है |
जैकोबियन मैट्रिक्स और निर्धारक नामक एक मात्रा कार्यों का अध्ययन करने के लिए उपयोगी होती है जब फलन के डोमेन और रेंज दोनों बहुविकल्पीय होते हैं, जैसे एकीकरण के दौरान चर के परिवर्तन।
अभिन्न प्रमेय
तीन बुनियादी सदिश प्रचालको से संबंधित प्रमेय होते हैं जो कलन के मौलिक प्रमेय को उच्च आयामों के लिए सामान्यीकृत करते हैं:
प्रमेय | कथन | विवरण | ||
---|---|---|---|---|
प्रवणता प्रमेय | एक वक्र L पर एक अदिश क्षेत्र की प्रवणता का रेखा समाकल, वक्र के अंत बिंदु p और q के बीच अदिश क्षेत्र में परिवर्तन के बराबर होता है। | |||
विचलन प्रमेय | एक n- शेयर सॉलिड V पर एक सादिश क्षेत्र के अपसरण का समाकल सॉलिड के (n−1)- ऋण बंद सीमा सतह के माध्यम से सदिश क्षेत्र के प्रवाह के बराबर है। | |||
वक्र (केल्विन-स्टोक्स) प्रमेय | एक सतह Σ में एक वेक्टर क्षेत्र के कर्ल का अभिन्न अंग सतह सतह को घेरने वाले बंद वक्र के चारों ओर सदिश क्षेत्र के संचलन के बराबर है. | |||
विचलन और कर्ल प्रमेय दो आयामों में, ग्रीन के प्रमेय को कम करते हैं:
प्रमेय | कथन | विवरण | ||
---|---|---|---|---|
ग्रीन की प्रमेय | किसी क्षेत्र A में सदिश क्षेत्र के अपसरण (या कर्ल) का समाकल क्षेत्र को घेरने वाले बंद वक्र पर वेक्टर क्षेत्र के प्रवाह (या संचलन) के बराबर है। | |||
विचलन के लिए, F = (M, −L). कर्ल के लिए , F = (L, M, 0). L और M (x, y) के कार्य हैं। |
अनुप्रयोग
रैखिक सन्निकटन
रैखिक सन्निकटन का उपयोग जटिल कार्यों को रैखिक कार्यों के साथ बदलने के लिए किया जाता है जो लगभग समान होते हैं। वास्तविक मूल्यों के साथ एक अलग कार्य f(x, y), को देखते हुए कोई सूत्र द्वारा (a, b) के करीब (x, y) के लिये f(x, y) अनुमान लगा सकता है
दायीं ओर z = f(x, y) पर (a, b). के ग्राफ पर समतल स्पर्शरेखा का समीकरण है
अनुकूलन
कई वास्तविक चरों के निरंतर भिन्न होने वाले फलन के लिए, एक बिंदु P (अर्थात, इनपुट चर के लिए मानों का एक सेट, जिसे 'R' में एक बिंदु के रूप में देखा जाता है)n) 'महत्वपूर्ण' है यदि फलन के सभी आंशिक अवकलज P पर शून्य हैं, या, समकक्ष, यदि इसकी प्रवणता शून्य है। महत्वपूर्ण मान महत्वपूर्ण बिंदुओं पर फलन के मान हैं।
यदि फलन सुचारू रूप से कार्य करता है, या कम से कम दो बार निरंतर भिन्न होता है, तो एक महत्वपूर्ण बिंदु या तो एक स्थानीय अधिकतम, एक स्थानीय न्यूनतम या एक काठी बिंदु हो सकता है। दूसरे अवकलज के हेस्सियन मैट्रिक्स के हैजेनमान पर विचार करके विभिन्न मामलों को अलग किया जा सकता है।
फर्मेट के प्रमेय (स्थिर बिंदु) | फर्मेट के प्रमेय द्वारा, एक अलग-अलग फलन के सभी स्थानीय उच्तम और निम्नतम महत्वपूर्ण बिंदुओं पर होते हैं। इसलिए, सैद्धांतिक रूप से,स्थानीय उच्तम और निम्नतम को खोजने के लिए इन शून्यों पर हेस्सियन मैट्रिक्स के प्रवणता के शून्य और हैजेनमान की गणना करना पर्याप्त है।
भौतिकी और अभियांत्रिकी
अध्ययन में सदिश कलन विशेष रूप से उपयोगी है:
- द्रव्यमान केंद्र
- क्षेत्र सिद्धांत (भौतिकी)
- गतिकी
- मैक्सवेल के समीकरण
सामान्यीकरण
This section does not cite any sources. (August 2019) (Learn how and when to remove this template message) |
विभिन्न 3-कई गुना
सदिश कलन को शुरू में यूक्लिडियन 3-स्पेस के लिए परिभाषित किया गया है, जिसमें केवल 3-आयामी वास्तविक सदिश स्थान होने से परे अतिरिक्त संरचना है, अर्थात्: एक आंतरिक उत्पाद (डॉट उत्पाद ) के माध्यम से परिभाषित एक मानदंड (गणित) (लंबाई की धारणा देना), जो बदले में कोण की धारणा और एक अभिविन्यास देता है, जो बाएं हाथ और दाएं हाथ की धारणा देती है। ये संरचनाएं एक आयतन रूप को जन्म देती हैं, और संकर उत्पाद भी, जिसका व्यापक रूप से सदिश कलन में उपयोग किया जाता है।
प्रवणता और विचलन के लिए केवल आंतरिक उत्पाद की आवश्यकता होती है, जबकि कर्ल और संकर उत्पाद को भी समन्वय प्रणाली की आवश्यकता को ध्यान में रखा जाना चाहिए (अधिक विवरण के लिए संकर उत्पाद # हैंडेडनेस देखें)।
सदिश कलन को अन्य 3-आयामी वास्तविक सदिश रिक्त स्थान पर परिभाषित किया जा सकता है यदि उनके पास एक आंतरिक उत्पाद (या अधिक सामान्यतः एक सममित अविकृत रूप) और एक अभिविन्यास है; ध्यान दें कि यह यूक्लिडियन अंतरिक्ष के लिए एक समरूपता से कम जानकारी है, क्योंकि इसमें निर्देशांक (संदर्भ का एक फ्रेम) के समूह की आवश्यकता नहीं होती है, जो इस तथ्य को दर्शाता है कि सदिश कलन घूर्णन के तहत अपरिवर्तनीय है (विशेष ऑर्थोगोनल समूह SO(3)) .
सामान्यतः से अधिक सदिश कलन को किसी भी 3-आयामी स्पष्ट रिमेंनियन कई गुना पर परिभाषित किया जा सकता है, या अधिक सामान्यतः आभासी -रिमेंनियन मैनिफोल्ड। इस संरचना का सीधा सा मतलब है कि प्रत्येक बिंदु पर स्पर्शरेखा स्थान में एक आंतरिक उत्पाद होता है (अधिक सामान्यतः, एक सममित अविकृत रूप) और एक अभिविन्यास, या अधिक विश्व स्तर पर कि एक सममित अविकृत रूप मीट्रिक टेंसर और एक अभिविन्यास है, और काम करता है क्योंकि सदिश कलन को प्रत्येक बिंदु पर स्पर्शरेखा सदिश के संदर्भ में परिभाषित किया गया है
अन्य आयाम
अधिकांश विश्लेषणात्मक परिणामों को अधिक सामान्य रूप में, आसानी से समझा जा सकता है, विभेदक ज्यामिति तन्त्र का उपयोग करते हुए, जिनमें से सदिश कलन एक उपसमूह बनाता है। ग्रैड और डिव तुरंत अन्य आयामों के लिए सामान्यीकरण करते हैं, जैसा कि प्रवणता प्रमेय, विचलन प्रमेय, और लाप्लासियन (उपज देने वाले हार्मोनिक विश्लेषण) करते हैं, जबकि कर्ल और संकर उत्पाद सीधे सामान्यीकरण नहीं करते हैं।
एक सामान्य दृष्टिकोण से, (3-आयामी) सदिश कलन में विभिन्न क्षेत्रों को समान रूप से k-सदिश क्षेत्र के रूप में देखा जाता है: स्केलर क्षेत्र 0-सदिश क्षेत्र हैं, सदिश क्षेत्र 1-सदिश क्षेत्र हैं, आभासी सदिश क्षेत्र 2-सदिश क्षेत्र हैं, और आभासीअदिश क्षेत्र 3-सदिश क्षेत्र हैं। उच्च आयामों में अतिरिक्त प्रकार के क्षेत्र हैं (अदिश /सदिश/आभासीसदिश/आभासीअदिश 0/1/n−1/n आयामों के अनुरूप, जो आयाम 3 में संपूर्ण है), इसलिए कोई केवल (आभासी) अदिस और ( आभासी ) सदिश के साथ काम नहीं कर सकता है ।
एक गैर-डीजेनरेट फॉर्म मानते हुए,किसी भी आयाम में स्केलर फलन का श्रेणी एक सदिश क्षेत्र होता है, और सदिश क्षेत्र का डिव एक अदिश फलन होता है, लेकिन केवल आयाम 3 या 7 में[3] (और, क्षुद्र रूप से, आयाम 0 या 1 में) एक सदिश क्षेत्र का कर्ल एक सदिश क्षेत्र है, और केवल 3 या सात-आयामी संकर उत्पाद आयामों में एक संकर उत्पाद को परिभाषित किया जा सकता है (अन्य आयामों में सामान्यीकरण या तो आवश्यकता होती है सदिश 1 सदिश प्राप्त करने के लिए, या वैकल्पिक झूठ बीजगणित हैं, जो अधिक सामान्य एंटीसिमेट्रिक बिलिनियर उत्पाद हैं)। ग्रेड और डिव का सामान्यीकरण, और कर्ल को कैसे सामान्यीकृत किया जा सकता है, इसे कर्ल (गणित) में संक्षेप किया गया है, एक सदिश क्षेत्र का कर्ल एक द्विभाजक क्षेत्र है, जिसे अनन्तसूक्ष्म घुमावों के विशेष ऑर्थोगोनल झूठ बीजगणित के रूप में व्याख्या किया जा सकता है; हालाँकि, इसे सदिश क्षेत्र से पहचाना नहीं जा सकता क्योंकि आयाम भिन्न हैं - 3 आयामों में घुमाव के 3 आयाम हैं, लेकिन 4 आयामों में घुमाव के 6 आयाम हैं (और अधिक सामान्यतः n आयामों में घुमावों के आयाम)।
सदिश कलन के दो महत्वपूर्ण वैकल्पिक सामान्यीकरण हैं। पहला, ज्यामितीय बीजगणित, सदिश क्षेत्र के अतिरिक्त एक से अधिक सदिश | k-सदिश क्षेत्र का उपयोग करता है (3 या उससे कम आयामों में, प्रत्येक के-सदिश क्षेत्र को अदिस फलन या सदिश क्षेत्र से पहचाना जा सकता है, लेकिन यह उच्च आयामों में सत्य नहीं है)। यह संकर उत्पाद को प्रतिस्थापित करता है, जो 3 आयामों के लिए विशिष्ट है, दो सदिश क्षेत्रों में ले रहा है और आउटपुट के रूप में एक सदिश क्षेत्र दे रहा है, बाहरी उत्पाद के साथ, जो सभी आयामों में मौजूद है और दो सदिश क्षेत्रों में लेता है, आउटपुट के रूप में एक बायसदिश (2-सदिश) क्षेत्र। यह उत्पाद सदिश रिक्त स्थान पर बीजीय संरचना के रूप में क्लिफोर्ड बीजगणित उत्पन्न करता है (एक अभिविन्यास और गैर डिजेनरेट फॉर्म के साथ)। ज्यामितीय बीजगणित का उपयोग ज्यादातर भौतिकी के सामान्यीकरण और अन्य अनुप्रयुक्त क्षेत्रों में उच्च आयामों में किया जाता है।
दूसरा सामान्यीकरण सदिश क्षेत्र या के-सदिश क्षेत्र के बजाय अवकलन अवस्था (k-सदिश क्षेत्र) का उपयोग करता है, और गणित में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से विभेदक ज्योमेट्री, ज्यामितीय टोपोलॉजी और हार्मोनिक विश्लेषण में, विशेष रूप से उन्मुख आभासी -रीमैनियन मैनिफोल्ड्स पर हॉज सिद्धांत देने वाले। इस दृष्टिकोण से, ग्रेड, कर्ल और डिव क्रमशः 0-रूपों, 1-रूपों और 2-रूपों के बाहरी व्युत्पन्न के अनुरूप हैं, और सदिश कलन के प्रमुख प्रमेय स्टोक्स प्रमेय के सामान्य रूप के सभी विशेष मामले हैं।
इन दोनों सामान्यीकरणों के दृष्टिकोण से, सदिश कलन गणितीय रूप से विशिष्ट वस्तुओं की स्पष्ट रूप से पहचान करता है, जो प्रस्तुति को सरल बनाता है लेकिन अंतर्निहित गणितीय संरचना और सामान्यीकरण कम स्पष्ट होता है।
ज्यामितीय बीजगणित के दृष्टिकोण से, सदिश कलन स्पष्ट रूप से सदिश क्षेत्र या अदिस फलन के साथ के-सदिश क्षेत्र की पहचान करता है: 0-सदिश और अदिश के साथ 3-सदिश, 1-सदिश और सदिश के साथ 2-सदिश। विभेदक रूपों के दृष्टिकोण से, सदिश कलन स्पष्ट रूप से अदिश क्षेत्र या सदिश क्षेत्र के साथ k-अवस्था की पहचान करता है: 0-अवस्था और 3-अवस्था अदिश क्षेत्र के साथ, 1-अवस्था और 2-अवस्था सदिश क्षेत्र के साथ। इस प्रकार उदाहरण के लिए कर्ल स्वाभाविक रूप से एक सदिश क्षेत्र या 1-अवस्था इनपुट के रूप में लेता है, लेकिन स्वाभाविक रूप से आउटपुट के रूप में 2-सदिश क्षेत्र या 2-अवस्था (इसलिए आभासी सदिश क्षेत्र) होता है, जिसे सीधे सदिश क्षेत्र के रूप में व्याख्या किया जाता है, बजाय सीधे लेने के सदिश क्षेत्र से सदिश क्षेत्र; यह उच्च आयामों में एक सदिश क्षेत्र के कर्ल में परिलक्षित होता है, जिसमें सदिश क्षेत्र का उत्पादन नहीं होता है।
यह भी देखें
- वास्तविक मूल्यवान समारोह
- एक वास्तविक चर का कार्य
- कई वास्तविक चर का कार्य
- वेक्टर पथरी पहचान
- वेक्टर बीजगणित संबंध
- डेल बेलनाकार और गोलाकार निर्देशांक में
- दिशात्मक व्युत्पन्न
- रूढ़िवादी वेक्टर क्षेत्र
- सोलेनॉइडल वेक्टर फील्ड
- लाप्लासियन वेक्टर क्षेत्र
- हेल्महोल्ट्ज़ अपघटन
- ऑर्थोगोनल निर्देशांक
- तिरछा निर्देशांक
- वक्रीय निर्देशांक
- टेंसर
- ज्यामितीय कलन
संदर्भ
उद्धरण
- ↑ Galbis, Antonio & Maestre, Manuel (2012). वेक्टर विश्लेषण बनाम वेक्टर पथरी. Springer. p. 12. ISBN 978-1-4614-2199-3.
{{cite book}}
: CS1 maint: uses authors parameter (link) - ↑ "डिफरेंशियल ऑपरेटर्स". Math24 (in English). Retrieved 2020-09-17.
- ↑ Lizhong Peng & Lei Yang (1999) "The curl in seven dimensional space and its applications", Approximation Theory and Its Applications 15(3): 66 to 80 doi:10.1007/BF02837124
स्रोत
- सैंड्रो कैपरिनी (2002) क्षणों और कोणीय वेग के वेक्टर प्रतिनिधित्व की खोज, सटीक विज्ञान के इतिहास के लिए पुरालेख 56:151–81 .
- Crowe, Michael J. (1967). वेक्टर विश्लेषण का इतिहास: एक वेक्टरियल सिस्टम के विचार का विकास (reprint ed.). Dover Publications. ISBN 978-0-486-67910-5.
- Marsden, J. E. (1976). वेक्टर पथरी. W. H. Freeman & Company. ISBN 978-0-7167-0462-1.
- Schey, H. M. (2005). डिव ग्रैड कर्ल और वह सब: वेक्टर कलन पर एक अनौपचारिक पाठ. W. W. Norton & Company. ISBN 978-0-393-92516-6.
- बैरी स्पेन (1965) वेक्टर विश्लेषण, दूसरा संस्करण, इंटरनेट आर्काइव से लिंक।
- चेन-टू ताई (1995)। वेक्टर विश्लेषण का एक ऐतिहासिक अध्ययन। तकनीकी रिपोर्ट आरएल 915, विकिरण प्रयोगशाला, मिशिगन विश्वविद्यालय।
बाहरी संबंध
- "Vector analysis", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Vector algebra", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- A survey of the improper use of ∇ in vector analysis (1994) Tai, Chen-To
- Vector Analysis: A Text-book for the Use of Students of Mathematics and Physics, (based upon the lectures of Willard Gibbs) by Edwin Bidwell Wilson, published 1902.
- Earliest Known Uses of Some of the Words of Mathematics: Vector Analysis