टेन्सर क्षेत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
सहज रूप से, सदिश क्षेत्र को क्षेत्र के प्रत्येक बिंदु से जुड़े तीर के रूप में देखा जाता है, जिसमें चर लंबाई और दिशा होती है। [[घुमावदार स्थान]] पर सदिश क्षेत्र का उदाहरण मौसम मानचित्र है जो पृथ्वी की सतह के प्रत्येक बिंदु पर क्षैतिज पवन वेग दिखाता है। | सहज रूप से, सदिश क्षेत्र को क्षेत्र के प्रत्येक बिंदु से जुड़े तीर के रूप में देखा जाता है, जिसमें चर लंबाई और दिशा होती है। [[घुमावदार स्थान]] पर सदिश क्षेत्र का उदाहरण मौसम मानचित्र है जो पृथ्वी की सतह के प्रत्येक बिंदु पर क्षैतिज पवन वेग दिखाता है। | ||
अब और अधिक जटिल क्षेत्रों पर विचार करें। उदाहरण के लिए, यदि मैनिफोल्ड रीमैनियन है, तो उसके पास मीट्रिक क्षेत्र <math>g</math> है, जैसे कोई भी दो वैक्टर <math>v, w</math> बिंदु पर <math>x</math> दिए गए हैं, उनका आंतरिक उत्पाद <math>g_x(v, w)</math> है। क्षेत्र <math>g</math> | अब और अधिक जटिल क्षेत्रों पर विचार करें। उदाहरण के लिए, यदि मैनिफोल्ड रीमैनियन है, तो उसके पास मीट्रिक क्षेत्र <math>g</math> है, जैसे कोई भी दो वैक्टर <math>v, w</math> बिंदु पर <math>x</math> दिए गए हैं, उनका आंतरिक उत्पाद <math>g_x(v, w)</math> है। क्षेत्र <math>g</math> आव्यूह रूप में दिया जा सकता है, किन्तु यह निर्देशांक की पसंद पर निर्भर करता है। इसके अतिरिक्त इसे प्रत्येक बिंदु पर त्रिज्या 1 के दीर्घवृत्त के रूप में दिया जा सकता है, जो कि समन्वय-मुक्त है। पृथ्वी की सतह पर प्रायुक्त, यह तंतु का सूचक है। | ||
सामान्यतः, हम टेंसर क्षेत्र्स को समन्वय-स्वतंत्र तरीके से निर्दिष्ट करना चाहते हैं: यह अक्षांश और देशांतर से स्वतंत्र रूप से उपस्थित होना चाहिए, या जो भी विशेष कार्टोग्राफिक प्रक्षेपण हम संख्यात्मक निर्देशांक प्रस्तुत करने के लिए उपयोग कर रहे हैं। | |||
== समन्वय संक्रमण के माध्यम से == | == समन्वय संक्रमण के माध्यम से == | ||
{{harvtxt|स्काउटन|1951}} और {{harvtxt|मैककोनेल|1957}} के बाद, टेन्सर की अवधारणा एक संदर्भ फ्रेम (या समन्वय प्रणाली) की अवधारणा पर निर्भर करती है, जिसे तय किया जा सकता है (कुछ पृष्ठभूमि संदर्भ फ्रेम के सापेक्ष), किन्तु सामान्यतः इसकी अनुमति दी जा सकती है इन समन्वय प्रणालियों के परिवर्तनों के कुछ वर्ग के अन्दर भिन्न होते हैं।<ref>The term "[[affinor]]" employed in the English translation of Schouten is no longer in use.</ref> | |||
उदाहरण के लिए, एन- | |||
उदाहरण के लिए, एन-आयामी [[वास्तविक समन्वय स्थान]] से संबंधित निर्देशांक <math>\R^n</math> स्वैच्छिक विधि से परिवर्तन के अधीन हो सकते हैं: | |||
:<math>x^k\mapsto A^k_jx^j + a^k</math> | :<math>x^k\mapsto A^k_jx^j + a^k</math> | ||
(एन-आयामी सूचकांकों के साथ, [[आइंस्टीन योग सम्मेलन]])। सहसंयोजक सदिश, या कोसदिश, | (एन-आयामी सूचकांकों के साथ, [[आइंस्टीन योग सम्मेलन]])। सहसंयोजक सदिश, या कोसदिश, फलनों <math>v_k</math> की प्रणाली है जो नियम से इस सजातीय परिवर्तन के अंतर्गत रूपांतरित होता है | ||
:<math>v_k\mapsto v_iA^i_k.</math> | :<math>v_k\mapsto v_iA^i_k.</math> | ||
कार्तीय निर्देशांक आधार सदिशों की सूची <math>\mathbf e_k</math> | कार्तीय निर्देशांक आधार सदिशों की सूची <math>\mathbf e_k</math> सजातीय परिवर्तन के तहत, कोसदिश <math>\mathbf e_k\mapsto A^i_k\mathbf e_i</math> के रूप में रूपांतरित करता है। एक प्रतिपरिवर्ती सदिश निर्देशांकों के <math>v^k</math> फलनों की एक प्रणाली है, जो इस तरह के एक संबधित परिवर्तन के तहत एक परिवर्तन से गुजरती है | ||
:<math>v^k\mapsto (A^{-1})^k_jv^j.</math> | :<math>v^k\mapsto (A^{-1})^k_jv^j.</math> | ||
यह | यह निश्चित रूप से यह सुनिश्चित करने के लिए आवश्यक आवश्यकता है कि मात्रा <math>v^k\mathbf e_k</math> एक अपरिवर्तनीय वस्तु है जो चुनी गई समन्वय प्रणाली पर निर्भर नहीं करती है। अधिक सामान्यतः, वैलेंस के एक टेंसर (''p'',''q'') में p नीचे के सूचकांक और q ऊपर के सूचकांक होते हैं, परिवर्तन नियम के साथ | ||
:<math>{T_{i_1\cdots i_p}}^{j_1\cdots j_q}\mapsto A^{i'_1}_{i_1}\cdots A^{i'_p}_{i_p}{T_{i'_1\cdots i'_p}}^{j'_1\cdots j'_q}(A^{-1})^{j_1}_{j'_1}\cdots (A^{-1})^{j_q}_{j'_q}.</math> | :<math>{T_{i_1\cdots i_p}}^{j_1\cdots j_q}\mapsto A^{i'_1}_{i_1}\cdots A^{i'_p}_{i_p}{T_{i'_1\cdots i'_p}}^{j'_1\cdots j'_q}(A^{-1})^{j_1}_{j'_1}\cdots (A^{-1})^{j_q}_{j'_q}.</math> | ||
टेंसर क्षेत्र की अवधारणा को अनुमत समन्वय परिवर्तनों को सुचारू | टेंसर क्षेत्र की अवधारणा को अनुमत समन्वय परिवर्तनों को सुचारू फलन (या अलग-अलग फलन, [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]], आदि) होने के लिए विशेषज्ञता के द्वारा प्राप्त किया जा सकता है। एक कोसदिश क्षेत्र निर्देशांक का एक फलन <math>v_k</math> हैं जो संक्रमण फलनों (दिए गए वर्ग में) के [[ जैकबियन मैट्रिक्स |जैकबियन आव्यूह]] द्वारा परिवर्तित होते हैं। इसी प्रकार, प्रतिपरिवर्ती सदिश क्षेत्र <math>v^k</math> व्युत्क्रम जैकबियन द्वारा रूपांतरित होता है। | ||
== टेंसर बंडल == | == टेंसर बंडल == | ||
Line 42: | Line 43: | ||
जहाँ V उस बिंदु पर स्पर्शरेखा स्थान है और V<sup>∗</sup> कॉटैंजेंट स्पेस है। टेंगेंट बंडल और [[स्पर्शरेखा बंडल]] भी देखें। | जहाँ V उस बिंदु पर स्पर्शरेखा स्थान है और V<sup>∗</sup> कॉटैंजेंट स्पेस है। टेंगेंट बंडल और [[स्पर्शरेखा बंडल]] भी देखें। | ||
दो टेन्सर बंडलों E → M और F → M को देखते हुए, रेखीय मानचित्र A: Γ(E) → Γ(F) E के अनुभागों के स्थान से F के अनुभागों तक स्वयं को टेंसर अनुभाग के रूप में माना जा सकता है <math>\scriptstyle E^*\otimes F</math> यदि और केवल यदि यह Γ(E) में प्रत्येक खंड s के लिए A(fs) = fA(s) को संतुष्ट करता है और M पर प्रत्येक सुचारू | दो टेन्सर बंडलों E → M और F → M को देखते हुए, रेखीय मानचित्र A: Γ(E) → Γ(F) E के अनुभागों के स्थान से F के अनुभागों तक स्वयं को टेंसर अनुभाग के रूप में माना जा सकता है <math>\scriptstyle E^*\otimes F</math> यदि और केवल यदि यह Γ(E) में प्रत्येक खंड s के लिए A(fs) = fA(s) को संतुष्ट करता है और M पर प्रत्येक सुचारू फलन करता है। इस प्रकार टेन्सर अनुभाग न केवल वर्गों के सदिश स्थान पर रैखिक नक्शा है, किन्तु सी<sup>∞</sup>(एम)-खंडों के [[मॉड्यूल (गणित)]] पर रैखिक मानचित्र। उदाहरण के लिए, इस संपत्ति का उपयोग यह जांचने के लिए किया जाता है कि भले ही लाई व्युत्पन्न और सहसंयोजक व्युत्पन्न टेंसर नहीं हैं, [[मरोड़ टेंसर]] और उनसे निर्मित [[एफ़िन कनेक्शन]] हैं। | ||
== नोटेशन == | == नोटेशन == | ||
Line 54: | Line 55: | ||
बाद वाले मामले में, हमारे पास केवल टेंसर स्पेस है, जबकि पूर्व में, हमारे पास कई गुना एम में प्रत्येक बिंदु के लिए टेंसर स्पेस परिभाषित है। | बाद वाले मामले में, हमारे पास केवल टेंसर स्पेस है, जबकि पूर्व में, हमारे पास कई गुना एम में प्रत्येक बिंदु के लिए टेंसर स्पेस परिभाषित है। | ||
घुंघराले (लिपि) अक्षरों का उपयोग कभी-कभी सुचारू | घुंघराले (लिपि) अक्षरों का उपयोग कभी-कभी सुचारू फलन के सेट को निरूपित करने के लिए किया जाता है। एम पर असीम रूप से अलग-अलग टेंसर क्षेत्र। इस प्रकार, | ||
:<math>\mathcal{T}^m_n(M)</math> | :<math>\mathcal{T}^m_n(M)</math> | ||
एम पर (एम, एन) टेंसर बंडल के खंड हैं जो असीम रूप से अलग-अलग हैं। टेंसर क्षेत्र इस सेट का तत्व है। | एम पर (एम, एन) टेंसर बंडल के खंड हैं जो असीम रूप से अलग-अलग हैं। टेंसर क्षेत्र इस सेट का तत्व है। | ||
== सी<sup>∞</sup>(एम) मॉड्यूल स्पष्टीकरण == | == सी<sup>∞</sup>(एम) मॉड्यूल स्पष्टीकरण == | ||
कई गुना एम पर टेंसर क्षेत्र्स को चिह्नित करने का और अधिक सार ( | कई गुना एम पर टेंसर क्षेत्र्स को चिह्नित करने का और अधिक सार (किन्तु अक्सर उपयोगी) तरीका है, जो टेंसर क्षेत्र को ईमानदार टेंसर (यानी सिंगल मल्टीलाइनर मैपिंग) में बनाता है, हालांकि अलग प्रकार का (हालांकि यह सामान्यतः ऐसा नहीं है कि कोई अक्सर टेंसर क्यों कहता है जब का वास्तव में मतलब टेंसर क्षेत्र होता है)। सबसे पहले, हम सभी चिकनी (सी<sup>∞</sup>) M पर सदिश क्षेत्र, <math>\mathcal{T}(M)</math> (उपरोक्त नोटेशन पर अनुभाग देखें) एकल स्थान के रूप में - मॉड्यूल (गणित) चिकनी फलनों की [[अंगूठी (गणित)]] पर, सी<sup>∞</sup>(M), बिंदुवार अदिश गुणन द्वारा। मल्टीलाइनरिटी और टेंसर उत्पादों की धारणा किसी भी [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय अंगूठी]] पर मॉड्यूल के मामले में आसानी से फैलती है। | ||
प्रेरक उदाहरण के रूप में, स्थान पर विचार करें <math>\mathcal{T}^*(M)</math> स्मूथ कोसदिश क्षेत्र्स ([[ विभेदक रूप | विभेदक रूप]] | 1-फॉर्म्स), स्मूथ फंक्शन्स पर मॉड्यूल भी। ये सुचारू सदिश क्षेत्रों पर | प्रेरक उदाहरण के रूप में, स्थान पर विचार करें <math>\mathcal{T}^*(M)</math> स्मूथ कोसदिश क्षेत्र्स ([[ विभेदक रूप | विभेदक रूप]] | 1-फॉर्म्स), स्मूथ फंक्शन्स पर मॉड्यूल भी। ये सुचारू सदिश क्षेत्रों पर फलन करते हैं, बिंदुवार मूल्यांकन द्वारा सुचारू फलन करने के लिए, अर्थात्, कोसदिश क्षेत्र ω और सदिश क्षेत्र X दिया जाता है, हम परिभाषित करते हैं | ||
:(ω(एक्स))(पी) = ω(पी)(एक्स(पी))। | :(ω(एक्स))(पी) = ω(पी)(एक्स(पी))। | ||
Line 69: | Line 70: | ||
:(ω(fX))(p) = f(p)ω(p)(X(p)) = (fω)(p)(X(p)) = (fω(X))(p) | :(ω(fX))(p) = f(p)ω(p)(X(p)) = (fω)(p)(X(p)) = (fω(X))(p) | ||
एम में किसी भी पी के लिए और सुचारू | एम में किसी भी पी के लिए और सुचारू फलन च। इस प्रकार हम कोसदिश क्षेत्र्स को न केवल कॉटैंजेंट बंडल के अनुभागों के रूप में देख सकते हैं, बल्कि सदिश क्षेत्र्स के रेखीय मैपिंग को फ़ंक्शन में भी देख सकते हैं। दोहरे-दोहरी निर्माण द्वारा, सदिश क्षेत्रों को समान रूप से फलनों में कोसदिश क्षेत्रों के मानचित्रण के रूप में व्यक्त किया जा सकता है (अर्थात्, हम मूल रूप से कोसदिश क्षेत्रों के साथ शुरू कर सकते हैं और वहां से काम कर सकते हैं)। | ||
एम पर सामान्य सिंगल टेंसर (टेंसर क्षेत्र नहीं!) के निर्माण के पूर्ण समानांतर में वैक्टर और कोसदिश पर बहुरेखीय नक्शे के रूप में, हम एम पर सामान्य (के, एल) टेंसर क्षेत्र को सी मान सकते हैं।<sup>∞</sup>(एम)-बहुरेखीय नक्शों की एल प्रतियों पर परिभाषित <math>\mathcal{T}(M)</math> और कश्मीर की प्रतियां <math>\mathcal{T}^*(M)</math> सी में<sup>∞</sup>(म). | एम पर सामान्य सिंगल टेंसर (टेंसर क्षेत्र नहीं!) के निर्माण के पूर्ण समानांतर में वैक्टर और कोसदिश पर बहुरेखीय नक्शे के रूप में, हम एम पर सामान्य (के, एल) टेंसर क्षेत्र को सी मान सकते हैं।<sup>∞</sup>(एम)-बहुरेखीय नक्शों की एल प्रतियों पर परिभाषित <math>\mathcal{T}(M)</math> और कश्मीर की प्रतियां <math>\mathcal{T}^*(M)</math> सी में<sup>∞</sup>(म). | ||
Line 93: | Line 94: | ||
टेंसर क्षेत्र आइडिया के विस्तार में M पर अतिरिक्त लाइन बंडल L शामिल है। यदि W, L के साथ V का टेंसर उत्पाद बंडल है, तो W, V के समान आयाम वाले सदिश रिक्त स्थान का बंडल है। यह किसी को परिभाषित करने की अनुमति देता है '[[ टेंसर घनत्व ]]' की अवधारणा, 'ट्विस्टेड' प्रकार का टेंसर क्षेत्र। टेन्सर घनत्व विशेष मामला है जहां एल कई गुना पर घनत्व का बंडल है, अर्थात् कॉटेन्जेंट बंडल का [[निर्धारक बंडल]]। (सख्ती से सटीक होने के लिए, किसी को [[टोपोलॉजी]] के लिए निरपेक्ष मान भी प्रायुक्त करना चाहिए - यह [[ कुंडा कई गुना |कुंडा कई गुना]] के लिए थोड़ा अंतर रखता है।) अधिक पारंपरिक स्पष्टीकरण के लिए टेन्सर डेंसिटी लेख देखें। | टेंसर क्षेत्र आइडिया के विस्तार में M पर अतिरिक्त लाइन बंडल L शामिल है। यदि W, L के साथ V का टेंसर उत्पाद बंडल है, तो W, V के समान आयाम वाले सदिश रिक्त स्थान का बंडल है। यह किसी को परिभाषित करने की अनुमति देता है '[[ टेंसर घनत्व ]]' की अवधारणा, 'ट्विस्टेड' प्रकार का टेंसर क्षेत्र। टेन्सर घनत्व विशेष मामला है जहां एल कई गुना पर घनत्व का बंडल है, अर्थात् कॉटेन्जेंट बंडल का [[निर्धारक बंडल]]। (सख्ती से सटीक होने के लिए, किसी को [[टोपोलॉजी]] के लिए निरपेक्ष मान भी प्रायुक्त करना चाहिए - यह [[ कुंडा कई गुना |कुंडा कई गुना]] के लिए थोड़ा अंतर रखता है।) अधिक पारंपरिक स्पष्टीकरण के लिए टेन्सर डेंसिटी लेख देखें। | ||
घनत्व के बंडल की विशेषता (फिर से उन्मुखता मानते हुए) एल यह है कि एल<sup>s</sup> s के वास्तविक संख्या मानों के लिए अच्छी तरह से परिभाषित है; इसे ट्रांज़िशन फ़ंक्शंस से पढ़ा जा सकता है, जो सख्ती से सकारात्मक वास्तविक मान लेते हैं। उदाहरण के लिए इसका मतलब है कि हम आधा घनत्व ले सकते हैं, मामला जहां s = ½ है। | घनत्व के बंडल की विशेषता (फिर से उन्मुखता मानते हुए) एल यह है कि एल<sup>s</sup> s के वास्तविक संख्या मानों के लिए अच्छी तरह से परिभाषित है; इसे ट्रांज़िशन फ़ंक्शंस से पढ़ा जा सकता है, जो सख्ती से सकारात्मक वास्तविक मान लेते हैं। उदाहरण के लिए इसका मतलब है कि हम आधा घनत्व ले सकते हैं, मामला जहां s = ½ है। सामान्यतः हम W के खंड ले सकते हैं, L के साथ V का टेन्सर उत्पाद<sup>s</sup>, और वज़न s के साथ 'टेंसर डेंसिटी क्षेत्र्स' पर विचार करें। | ||
अर्ध-घनत्व को कई गुना पर अभिन्न संचालकों को परिभाषित करने और [[ज्यामितीय परिमाणीकरण]] जैसे क्षेत्रों में प्रायुक्त किया जाता है। | अर्ध-घनत्व को कई गुना पर अभिन्न संचालकों को परिभाषित करने और [[ज्यामितीय परिमाणीकरण]] जैसे क्षेत्रों में प्रायुक्त किया जाता है। | ||
Line 105: | Line 106: | ||
टेन्सर अवधारणा की उन्नत व्याख्या के रूप में, बहुविकल्पीय मामले में [[श्रृंखला नियम]] की व्याख्या कर सकता है, जैसा कि परिवर्तनों को समन्वयित करने के लिए प्रायुक्त किया जाता है, साथ ही टेन्सर क्षेत्रों को जन्म देने वाले टेंसर की आत्मनिर्भर अवधारणाओं की आवश्यकता के रूप में भी। | टेन्सर अवधारणा की उन्नत व्याख्या के रूप में, बहुविकल्पीय मामले में [[श्रृंखला नियम]] की व्याख्या कर सकता है, जैसा कि परिवर्तनों को समन्वयित करने के लिए प्रायुक्त किया जाता है, साथ ही टेन्सर क्षेत्रों को जन्म देने वाले टेंसर की आत्मनिर्भर अवधारणाओं की आवश्यकता के रूप में भी। | ||
संक्षेप में, हम श्रृंखला नियम को 1-[[कोचेन (बीजीय टोपोलॉजी)]] के रूप में पहचान सकते हैं। यह स्पर्शरेखा बंडल को आंतरिक तरीके से परिभाषित करने के लिए आवश्यक स्थिरता देता है। टेंसरों के अन्य सदिश बंडलों में तुलनात्मक चक्र होते हैं, जो टेंसर निर्माणों के | संक्षेप में, हम श्रृंखला नियम को 1-[[कोचेन (बीजीय टोपोलॉजी)]] के रूप में पहचान सकते हैं। यह स्पर्शरेखा बंडल को आंतरिक तरीके से परिभाषित करने के लिए आवश्यक स्थिरता देता है। टेंसरों के अन्य सदिश बंडलों में तुलनात्मक चक्र होते हैं, जो टेंसर निर्माणों के फलनात्मक गुणों को श्रृंखला नियम में प्रायुक्त करने से आते हैं; यही कारण है कि वे आंतरिक (पढ़ें, 'प्राकृतिक') अवधारणाएं भी हैं। | ||
जिसे सामान्यतः टेंसरों के लिए 'शास्त्रीय' दृष्टिकोण के रूप में कहा जाता है, वह इसे पीछे की ओर पढ़ने की कोशिश करता है - और इसलिए वास्तव में मूलभूत दृष्टिकोण के अतिरिक्त अनुमानी, पोस्ट हॉक दृष्टिकोण है। समन्वय परिवर्तन के तहत वे कैसे बदलते हैं, इसके द्वारा टेन्सरों को परिभाषित करने में निहित है, यह प्रकार की आत्म-स्थिरता है जिसे कोसायकल व्यक्त करता है। टेन्सर घनत्व का निर्माण चक्रीय स्तर पर 'ट्विस्टिंग' है। जियोमीटर को टेंसर राशियों की ज्यामितीय प्रकृति के बारे में कोई संदेह नहीं है; इस प्रकार का [[वंश (श्रेणी सिद्धांत)]] तर्क अमूर्त रूप से पूरे सिद्धांत को सही ठहराता है। | जिसे सामान्यतः टेंसरों के लिए 'शास्त्रीय' दृष्टिकोण के रूप में कहा जाता है, वह इसे पीछे की ओर पढ़ने की कोशिश करता है - और इसलिए वास्तव में मूलभूत दृष्टिकोण के अतिरिक्त अनुमानी, पोस्ट हॉक दृष्टिकोण है। समन्वय परिवर्तन के तहत वे कैसे बदलते हैं, इसके द्वारा टेन्सरों को परिभाषित करने में निहित है, यह प्रकार की आत्म-स्थिरता है जिसे कोसायकल व्यक्त करता है। टेन्सर घनत्व का निर्माण चक्रीय स्तर पर 'ट्विस्टिंग' है। जियोमीटर को टेंसर राशियों की ज्यामितीय प्रकृति के बारे में कोई संदेह नहीं है; इस प्रकार का [[वंश (श्रेणी सिद्धांत)]] तर्क अमूर्त रूप से पूरे सिद्धांत को सही ठहराता है। | ||
Line 113: | Line 114: | ||
=== टेंसर घनत्व === | === टेंसर घनत्व === | ||
{{main|Tensor density}} | {{main|Tensor density}} | ||
टेंसर क्षेत्र की अवधारणा को उन वस्तुओं पर विचार करके सामान्यीकृत किया जा सकता है जो अलग-अलग रूपांतरित होती हैं। वस्तु जो समन्वय परिवर्तनों के तहत सामान्य टेन्सर क्षेत्र के रूप में परिवर्तित होती है, सिवाय इसके कि यह जैकोबियन | टेंसर क्षेत्र की अवधारणा को उन वस्तुओं पर विचार करके सामान्यीकृत किया जा सकता है जो अलग-अलग रूपांतरित होती हैं। वस्तु जो समन्वय परिवर्तनों के तहत सामान्य टेन्सर क्षेत्र के रूप में परिवर्तित होती है, सिवाय इसके कि यह जैकोबियन आव्यूह के निर्धारक द्वारा गुणा किया जाता है और व्युत्क्रम समन्वय परिवर्तन के निर्धारक को wth शक्ति में परिवर्तित करता है, इसे भार w के साथ टेंसर घनत्व कहा जाता है।<ref>{{Springer|id=T/t092390|title=Tensor density}}</ref> अनिवार्य रूप से, बहुरेखीय बीजगणित की भाषा में, कोई टेंसर घनत्व के बारे में सोच सकता है क्योंकि [[घनत्व बंडल]] में उनके मान लेने वाले बहुरेखीय मानचित्र जैसे कि (1-आयामी) n-रूपों का स्थान (जहाँ n स्थान का आयाम है), जैसा उनके मूल्यों को सिर्फ 'आर' में लेने का विरोध किया। उच्च वजन तब सीमा में इस स्थान के साथ अतिरिक्त टेंसर उत्पादों को लेने के अनुरूप होता है। | ||
विशेष मामला स्केलर घनत्व है। स्केलर 1-घनत्व विशेष रूप से महत्वपूर्ण हैं क्योंकि यह कई गुना अधिक उनके अभिन्न को परिभाषित करने के लिए समझ में आता है। उदाहरण के लिए, वे सामान्य सापेक्षता में आइंस्टीन-हिल्बर्ट क्रिया में दिखाई देते हैं। अदिश 1-घनत्व का सबसे आम उदाहरण आयतन तत्व है, जो मीट्रिक टेन्सर g की उपस्थिति में निर्देशांक में इसके निर्धारक का वर्गमूल है, जिसे निरूपित किया गया है <math>\sqrt{\det g}</math>. मीट्रिक टेन्सर क्रम 2 का सहसंयोजक टेन्सर है, और इसलिए इसका निर्धारक निर्देशांक संक्रमण के वर्ग द्वारा मापता है: | विशेष मामला स्केलर घनत्व है। स्केलर 1-घनत्व विशेष रूप से महत्वपूर्ण हैं क्योंकि यह कई गुना अधिक उनके अभिन्न को परिभाषित करने के लिए समझ में आता है। उदाहरण के लिए, वे सामान्य सापेक्षता में आइंस्टीन-हिल्बर्ट क्रिया में दिखाई देते हैं। अदिश 1-घनत्व का सबसे आम उदाहरण आयतन तत्व है, जो मीट्रिक टेन्सर g की उपस्थिति में निर्देशांक में इसके निर्धारक का वर्गमूल है, जिसे निरूपित किया गया है <math>\sqrt{\det g}</math>. मीट्रिक टेन्सर क्रम 2 का सहसंयोजक टेन्सर है, और इसलिए इसका निर्धारक निर्देशांक संक्रमण के वर्ग द्वारा मापता है: | ||
:<math>\det(g') = \left(\det\frac{\partial x}{\partial x'}\right)^2\det(g),</math> | :<math>\det(g') = \left(\det\frac{\partial x}{\partial x'}\right)^2\det(g),</math> | ||
जो वजन +2 के स्केलर घनत्व के लिए परिवर्तन | जो वजन +2 के स्केलर घनत्व के लिए परिवर्तन नियम है। | ||
अधिक सामान्यतः, कोई भी टेन्सर घनत्व उचित वजन के स्केलर घनत्व के साथ सामान्य टेन्सर का उत्पाद होता है। सदिश बंडलों की भाषा में, स्पर्शरेखा बंडल का निर्धारक बंडल लाइन बंडल है जिसका उपयोग अन्य बंडलों को w बार 'मोड़ने' के लिए किया जा सकता है। जबकि स्थानीय रूप से अधिक सामान्य परिवर्तन | अधिक सामान्यतः, कोई भी टेन्सर घनत्व उचित वजन के स्केलर घनत्व के साथ सामान्य टेन्सर का उत्पाद होता है। सदिश बंडलों की भाषा में, स्पर्शरेखा बंडल का निर्धारक बंडल लाइन बंडल है जिसका उपयोग अन्य बंडलों को w बार 'मोड़ने' के लिए किया जा सकता है। जबकि स्थानीय रूप से अधिक सामान्य परिवर्तन नियम का उपयोग वास्तव में इन टेंसरों को पहचानने के लिए किया जा सकता है, वैश्विक प्रश्न उठता है, जो दर्शाता है कि परिवर्तन नियम में या तो जैकोबियन निर्धारक या इसके पूर्ण मूल्य को लिखा जा सकता है। घनत्व के बंडल के (सकारात्मक) संक्रमण फलनों की गैर-अभिन्न शक्तियाँ समझ में आती हैं, ताकि घनत्व का भार, उस अर्थ में, पूर्णांक मानों तक सीमित न हो। सकारात्मक जेकोबियन निर्धारक के साथ निर्देशांक के परिवर्तन को प्रतिबंधित करना ओरिएंटेबल मैनिफोल्ड्स पर संभव है, क्योंकि माइनस संकेतों को खत्म करने का सुसंगत वैश्विक तरीका है; किन्तु अन्यथा घनत्व के लाइन बंडल और एन-रूपों के लाइन बंडल अलग-अलग हैं। आंतरिक अर्थ पर अधिक जानकारी के लिए, [[कई गुना घनत्व]] देखें। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 06:22, 21 March 2023
गणित और भौतिकी में, टेन्सर क्षेत्र गणितीय स्थान के प्रत्येक बिंदु (सामान्यतः यूक्लिडियन स्थान या कई गुना) के लिए टेन्सर प्रदान करता है। टेंसर क्षेत्र का उपयोग अंतर ज्यामिति, बीजगणितीय ज्यामिति, सामान्य सापेक्षता, पदार्थ में तनाव (भौतिकी) और तनाव टेंसर के विश्लेषण में और भौतिक विज्ञान में कई अनुप्रयोगों में किया जाता है। टेन्सर अदिश (भौतिकी) (शुद्ध संख्या जो मूल्य का प्रतिनिधित्व करती है, उदाहरण के लिए गति) और यूक्लिडियन सदिश (शुद्ध संख्या और दिशा, वेग की तरह) का सामान्यीकरण है, टेन्सर क्षेत्र एक अदिश क्षेत्र का सामान्यीकरण है जो स्थान के प्रत्येक बिंदु के लिए क्रमशः एक अदिश या सदिश निर्दिष्ट करता है। यदि एक टेंसर A को मॉड्यूल M पर X(M) सेट सदिश क्षेत्र पर परिभाषित किया गया है, तो हम A को M पर टेंसर क्षेत्र कहते हैं। [1]
टेंसर कहलाने वाली कई गणितीय संरचनाएं भी टेंसर क्षेत्र हैं। उदाहरण के लिए, रीमैन वक्रता टेन्सर टेंसर क्षेत्र है क्योंकि यह टेंसर को रीमैनियन कई गुना के प्रत्येक बिंदु से जोड़ता है, जो स्थलीय स्थान है।
ज्यामितीय परिचय
सहज रूप से, सदिश क्षेत्र को क्षेत्र के प्रत्येक बिंदु से जुड़े तीर के रूप में देखा जाता है, जिसमें चर लंबाई और दिशा होती है। घुमावदार स्थान पर सदिश क्षेत्र का उदाहरण मौसम मानचित्र है जो पृथ्वी की सतह के प्रत्येक बिंदु पर क्षैतिज पवन वेग दिखाता है।
अब और अधिक जटिल क्षेत्रों पर विचार करें। उदाहरण के लिए, यदि मैनिफोल्ड रीमैनियन है, तो उसके पास मीट्रिक क्षेत्र है, जैसे कोई भी दो वैक्टर बिंदु पर दिए गए हैं, उनका आंतरिक उत्पाद है। क्षेत्र आव्यूह रूप में दिया जा सकता है, किन्तु यह निर्देशांक की पसंद पर निर्भर करता है। इसके अतिरिक्त इसे प्रत्येक बिंदु पर त्रिज्या 1 के दीर्घवृत्त के रूप में दिया जा सकता है, जो कि समन्वय-मुक्त है। पृथ्वी की सतह पर प्रायुक्त, यह तंतु का सूचक है।
सामान्यतः, हम टेंसर क्षेत्र्स को समन्वय-स्वतंत्र तरीके से निर्दिष्ट करना चाहते हैं: यह अक्षांश और देशांतर से स्वतंत्र रूप से उपस्थित होना चाहिए, या जो भी विशेष कार्टोग्राफिक प्रक्षेपण हम संख्यात्मक निर्देशांक प्रस्तुत करने के लिए उपयोग कर रहे हैं।
समन्वय संक्रमण के माध्यम से
स्काउटन (1951) और मैककोनेल (1957) के बाद, टेन्सर की अवधारणा एक संदर्भ फ्रेम (या समन्वय प्रणाली) की अवधारणा पर निर्भर करती है, जिसे तय किया जा सकता है (कुछ पृष्ठभूमि संदर्भ फ्रेम के सापेक्ष), किन्तु सामान्यतः इसकी अनुमति दी जा सकती है इन समन्वय प्रणालियों के परिवर्तनों के कुछ वर्ग के अन्दर भिन्न होते हैं।[2]
उदाहरण के लिए, एन-आयामी वास्तविक समन्वय स्थान से संबंधित निर्देशांक स्वैच्छिक विधि से परिवर्तन के अधीन हो सकते हैं:
(एन-आयामी सूचकांकों के साथ, आइंस्टीन योग सम्मेलन)। सहसंयोजक सदिश, या कोसदिश, फलनों की प्रणाली है जो नियम से इस सजातीय परिवर्तन के अंतर्गत रूपांतरित होता है
कार्तीय निर्देशांक आधार सदिशों की सूची सजातीय परिवर्तन के तहत, कोसदिश के रूप में रूपांतरित करता है। एक प्रतिपरिवर्ती सदिश निर्देशांकों के फलनों की एक प्रणाली है, जो इस तरह के एक संबधित परिवर्तन के तहत एक परिवर्तन से गुजरती है
यह निश्चित रूप से यह सुनिश्चित करने के लिए आवश्यक आवश्यकता है कि मात्रा एक अपरिवर्तनीय वस्तु है जो चुनी गई समन्वय प्रणाली पर निर्भर नहीं करती है। अधिक सामान्यतः, वैलेंस के एक टेंसर (p,q) में p नीचे के सूचकांक और q ऊपर के सूचकांक होते हैं, परिवर्तन नियम के साथ
टेंसर क्षेत्र की अवधारणा को अनुमत समन्वय परिवर्तनों को सुचारू फलन (या अलग-अलग फलन, विश्लेषणात्मक फलन, आदि) होने के लिए विशेषज्ञता के द्वारा प्राप्त किया जा सकता है। एक कोसदिश क्षेत्र निर्देशांक का एक फलन हैं जो संक्रमण फलनों (दिए गए वर्ग में) के जैकबियन आव्यूह द्वारा परिवर्तित होते हैं। इसी प्रकार, प्रतिपरिवर्ती सदिश क्षेत्र व्युत्क्रम जैकबियन द्वारा रूपांतरित होता है।
टेंसर बंडल
टेन्सर बंडल फाइबर बंडल है जहां फाइबर [[स्पर्शरेखा स्थान]] की किसी भी संख्या की प्रतियों का टेंसर उत्पाद है और/या आधार स्थान का कॉटैंगेंट स्थान है, जो कि कई गुना है। जैसे, फाइबर सदिश स्थल है और टेंसर बंडल विशेष प्रकार का सदिश बंडल है।
सदिश बंडल पैरामीटर पर निरंतर (या आसानी से) निर्भर करता है सदिश स्पेस का प्राकृतिक विचार है - पैरामीटर कई गुना एम के बिंदु हैं। उदाहरण के लिए, कोण के आधार पर आयाम का सदिश स्पेस मोबियस स्ट्रिप या वैकल्पिक रूप से दिख सकता है सिलेंडर (ज्यामिति) की तरह। एम पर सदिश बंडल वी दिया गया है, संबंधित क्षेत्र अवधारणा को बंडल का खंड कहा जाता है: एम के लिए एम से भिन्न, सदिश का विकल्प
- विmवी मेंm,
जहां वीmm पर सदिश स्थान है।
चूंकि टेन्सर उत्पाद अवधारणा आधार के किसी भी विकल्प से स्वतंत्र है, एम पर दो सदिश बंडलों के टेन्सर उत्पाद लेना नियमित है। स्पर्शरेखा बंडल (स्पर्शरेखा रिक्त स्थान का बंडल) से शुरू करते हुए पूरे उपकरण को टेन्सर के घटक-मुक्त उपचार पर समझाया गया है - फिर से स्वतंत्र रूप से निर्देशांक के रूप में, जैसा कि परिचय में बताया गया है।
इसलिए हम 'टेंसर क्षेत्र' की परिभाषा दे सकते हैं, अर्थात् कुछ टेंसर बंडल के अनुभाग (फाइबर बंडल) के रूप में। (ऐसे सदिश बंडल हैं जो टेंसर बंडल नहीं हैं: उदाहरण के लिए मोबियस बैंड।) इसके बाद यह ज्यामितीय पदार्थ की गारंटी है, क्योंकि सब कुछ आंतरिक तरीके से किया गया है। अधिक सटीक रूप से, टेंसर क्षेत्र स्थान में कई गुना टेंसर के किसी दिए गए बिंदु को निर्दिष्ट करता है
जहाँ V उस बिंदु पर स्पर्शरेखा स्थान है और V∗ कॉटैंजेंट स्पेस है। टेंगेंट बंडल और स्पर्शरेखा बंडल भी देखें।
दो टेन्सर बंडलों E → M और F → M को देखते हुए, रेखीय मानचित्र A: Γ(E) → Γ(F) E के अनुभागों के स्थान से F के अनुभागों तक स्वयं को टेंसर अनुभाग के रूप में माना जा सकता है यदि और केवल यदि यह Γ(E) में प्रत्येक खंड s के लिए A(fs) = fA(s) को संतुष्ट करता है और M पर प्रत्येक सुचारू फलन करता है। इस प्रकार टेन्सर अनुभाग न केवल वर्गों के सदिश स्थान पर रैखिक नक्शा है, किन्तु सी∞(एम)-खंडों के मॉड्यूल (गणित) पर रैखिक मानचित्र। उदाहरण के लिए, इस संपत्ति का उपयोग यह जांचने के लिए किया जाता है कि भले ही लाई व्युत्पन्न और सहसंयोजक व्युत्पन्न टेंसर नहीं हैं, मरोड़ टेंसर और उनसे निर्मित एफ़िन कनेक्शन हैं।
नोटेशन
टेन्सर क्षेत्र्स के लिए संकेतन कभी-कभी भ्रामक रूप से टेंसर स्पेस के संकेतन के समान हो सकते हैं। इस प्रकार, स्पर्शरेखा बंडल TM = T(M) को कभी-कभी इस रूप में लिखा जा सकता है
इस बात पर जोर देने के लिए कि स्पर्शरेखा बंडल कई गुना एम पर (1,0) टेंसर क्षेत्र्स (यानी, सदिश क्षेत्र्स) की रेंज स्पेस है। इसे बहुत समान दिखने वाले नोटेशन से भ्रमित नहीं किया जाना चाहिए
- ;
बाद वाले मामले में, हमारे पास केवल टेंसर स्पेस है, जबकि पूर्व में, हमारे पास कई गुना एम में प्रत्येक बिंदु के लिए टेंसर स्पेस परिभाषित है।
घुंघराले (लिपि) अक्षरों का उपयोग कभी-कभी सुचारू फलन के सेट को निरूपित करने के लिए किया जाता है। एम पर असीम रूप से अलग-अलग टेंसर क्षेत्र। इस प्रकार,
एम पर (एम, एन) टेंसर बंडल के खंड हैं जो असीम रूप से अलग-अलग हैं। टेंसर क्षेत्र इस सेट का तत्व है।
सी∞(एम) मॉड्यूल स्पष्टीकरण
कई गुना एम पर टेंसर क्षेत्र्स को चिह्नित करने का और अधिक सार (किन्तु अक्सर उपयोगी) तरीका है, जो टेंसर क्षेत्र को ईमानदार टेंसर (यानी सिंगल मल्टीलाइनर मैपिंग) में बनाता है, हालांकि अलग प्रकार का (हालांकि यह सामान्यतः ऐसा नहीं है कि कोई अक्सर टेंसर क्यों कहता है जब का वास्तव में मतलब टेंसर क्षेत्र होता है)। सबसे पहले, हम सभी चिकनी (सी∞) M पर सदिश क्षेत्र, (उपरोक्त नोटेशन पर अनुभाग देखें) एकल स्थान के रूप में - मॉड्यूल (गणित) चिकनी फलनों की अंगूठी (गणित) पर, सी∞(M), बिंदुवार अदिश गुणन द्वारा। मल्टीलाइनरिटी और टेंसर उत्पादों की धारणा किसी भी क्रमविनिमेय अंगूठी पर मॉड्यूल के मामले में आसानी से फैलती है।
प्रेरक उदाहरण के रूप में, स्थान पर विचार करें स्मूथ कोसदिश क्षेत्र्स ( विभेदक रूप | 1-फॉर्म्स), स्मूथ फंक्शन्स पर मॉड्यूल भी। ये सुचारू सदिश क्षेत्रों पर फलन करते हैं, बिंदुवार मूल्यांकन द्वारा सुचारू फलन करने के लिए, अर्थात्, कोसदिश क्षेत्र ω और सदिश क्षेत्र X दिया जाता है, हम परिभाषित करते हैं
- (ω(एक्स))(पी) = ω(पी)(एक्स(पी))।
शामिल सभी चीज़ों की बिंदुवार प्रकृति के कारण, X पर ω की क्रिया C है∞(एम)-रैखिक नक्शा, यानी,
- (ω(fX))(p) = f(p)ω(p)(X(p)) = (fω)(p)(X(p)) = (fω(X))(p)
एम में किसी भी पी के लिए और सुचारू फलन च। इस प्रकार हम कोसदिश क्षेत्र्स को न केवल कॉटैंजेंट बंडल के अनुभागों के रूप में देख सकते हैं, बल्कि सदिश क्षेत्र्स के रेखीय मैपिंग को फ़ंक्शन में भी देख सकते हैं। दोहरे-दोहरी निर्माण द्वारा, सदिश क्षेत्रों को समान रूप से फलनों में कोसदिश क्षेत्रों के मानचित्रण के रूप में व्यक्त किया जा सकता है (अर्थात्, हम मूल रूप से कोसदिश क्षेत्रों के साथ शुरू कर सकते हैं और वहां से काम कर सकते हैं)।
एम पर सामान्य सिंगल टेंसर (टेंसर क्षेत्र नहीं!) के निर्माण के पूर्ण समानांतर में वैक्टर और कोसदिश पर बहुरेखीय नक्शे के रूप में, हम एम पर सामान्य (के, एल) टेंसर क्षेत्र को सी मान सकते हैं।∞(एम)-बहुरेखीय नक्शों की एल प्रतियों पर परिभाषित और कश्मीर की प्रतियां सी में∞(म).
अब, k की प्रतियों के उत्पाद से कोई मनमाना मानचित्रण T दिया गया है और एल की प्रतियां सी में∞(एम), यह पता चला है कि यह एम पर टेन्सर क्षेत्र से उत्पन्न होता है यदि और केवल यदि यह सी पर बहुरेखीय है∞(म). इस प्रकार इस प्रकार की बहुरैखिकता स्पष्ट रूप से इस तथ्य को व्यक्त करती है कि हम वास्तव में बिंदुवार परिभाषित वस्तु से निपट रहे हैं, यानी टेंसर क्षेत्र, फ़ंक्शन के विपरीत, जो बिंदु पर मूल्यांकन किए जाने पर भी, सदिश क्षेत्र के सभी मूल्यों पर निर्भर करता है। और 1-रूप साथ।
इस सामान्य नियम का लगातार उदाहरण आवेदन दिखा रहा है कि लेवी-Civita कनेक्शन, जो चिकनी सदिश क्षेत्रों का मानचित्रण है सदिश क्षेत्रों की जोड़ी को सदिश क्षेत्र में ले जाना, एम पर टेंसर क्षेत्र को परिभाषित नहीं करता है। ऐसा इसलिए है क्योंकि यह वाई में केवल आर-रैखिक है (पूर्ण सी के स्थान पर)∞(एम)-रैखिकता, यह लीबनिज नियम को संतुष्ट करता है, )). फिर भी, यह जोर दिया जाना चाहिए कि भले ही यह टेन्सर क्षेत्र नहीं है, यह अभी भी घटक-मुक्त व्याख्या के साथ ज्यामितीय वस्तु के रूप में योग्यता प्राप्त करता है।
अनुप्रयोग
अवकल ज्यामिति में वक्रता टेंसर की चर्चा की जाती है और तनाव-ऊर्जा टेंसर भौतिकी में महत्वपूर्ण है, और ये दो टेंसर आइंस्टीन के सामान्य सापेक्षता के सिद्धांत से संबंधित हैं।
विद्युत चुंबकत्व में, विद्युत और चुंबकीय क्षेत्र विद्युत चुम्बकीय टेंसर में संयोजित होते हैं।
यह ध्यान देने योग्य है कि मैनिफोल्ड पर एकीकरण को परिभाषित करने में उपयोग किए जाने वाले विभेदक रूप, प्रकार का टेंसर क्षेत्र हैं।
टेन्सर कैलकुलस
सैद्धांतिक भौतिकी और अन्य क्षेत्रों में, टेन्सर क्षेत्रों के संदर्भ में अवकल समीकरण उन संबंधों को व्यक्त करने का बहुत ही सामान्य तरीका प्रदान करते हैं जो ज्यामितीय प्रकृति (टेंसर प्रकृति द्वारा गारंटीकृत) और पारंपरिक रूप से डिफरेंशियल कैलकुलस से जुड़े होते हैं। यहां तक कि ऐसे समीकरणों को तैयार करने के लिए नई अवधारणा, सहपरिवर्ती अवकलज की आवश्यकता होती है। यह सदिश क्षेत्र के साथ टेंसर क्षेत्र की भिन्नता के सूत्रीकरण को संभालता है। मूल निरपेक्ष अंतर कलन धारणा, जिसे बाद में टेंसर कैलकुलेशन कहा गया, ने कनेक्शन की ज्यामितीय अवधारणा (अंतर ज्यामिति) को अलग कर दिया।
लाइन बंडल द्वारा घुमाव
टेंसर क्षेत्र आइडिया के विस्तार में M पर अतिरिक्त लाइन बंडल L शामिल है। यदि W, L के साथ V का टेंसर उत्पाद बंडल है, तो W, V के समान आयाम वाले सदिश रिक्त स्थान का बंडल है। यह किसी को परिभाषित करने की अनुमति देता है 'टेंसर घनत्व ' की अवधारणा, 'ट्विस्टेड' प्रकार का टेंसर क्षेत्र। टेन्सर घनत्व विशेष मामला है जहां एल कई गुना पर घनत्व का बंडल है, अर्थात् कॉटेन्जेंट बंडल का निर्धारक बंडल। (सख्ती से सटीक होने के लिए, किसी को टोपोलॉजी के लिए निरपेक्ष मान भी प्रायुक्त करना चाहिए - यह कुंडा कई गुना के लिए थोड़ा अंतर रखता है।) अधिक पारंपरिक स्पष्टीकरण के लिए टेन्सर डेंसिटी लेख देखें।
घनत्व के बंडल की विशेषता (फिर से उन्मुखता मानते हुए) एल यह है कि एलs s के वास्तविक संख्या मानों के लिए अच्छी तरह से परिभाषित है; इसे ट्रांज़िशन फ़ंक्शंस से पढ़ा जा सकता है, जो सख्ती से सकारात्मक वास्तविक मान लेते हैं। उदाहरण के लिए इसका मतलब है कि हम आधा घनत्व ले सकते हैं, मामला जहां s = ½ है। सामान्यतः हम W के खंड ले सकते हैं, L के साथ V का टेन्सर उत्पादs, और वज़न s के साथ 'टेंसर डेंसिटी क्षेत्र्स' पर विचार करें।
अर्ध-घनत्व को कई गुना पर अभिन्न संचालकों को परिभाषित करने और ज्यामितीय परिमाणीकरण जैसे क्षेत्रों में प्रायुक्त किया जाता है।
फ्लैट केस
जब एम यूक्लिडियन स्थान है और सभी क्षेत्रों को एम के वैक्टर द्वारा अनुवाद (ज्यामिति) द्वारा अपरिवर्तनीय होने के लिए लिया जाता है, तो हम उस स्थिति में वापस आ जाते हैं जहां टेंसर क्षेत्र 'मूल पर बैठे' टेंसर का पर्याय बन जाता है। यह कोई बड़ा नुकसान नहीं करता है, और अक्सर अनुप्रयोगों में प्रयोग किया जाता है। जैसा कि टेन्सर घनत्वों पर प्रायुक्त होता है, इससे फर्क पड़ता है। घनत्व के बंडल को 'बिंदु पर' गंभीरता से परिभाषित नहीं किया जा सकता है; और इसलिए टेंसरों के समकालीन गणितीय उपचार की सीमा यह है कि टेन्सर घनत्वों को राउंडअबाउट फैशन में परिभाषित किया जाता है।
साइकिल और चेन नियम
टेन्सर अवधारणा की उन्नत व्याख्या के रूप में, बहुविकल्पीय मामले में श्रृंखला नियम की व्याख्या कर सकता है, जैसा कि परिवर्तनों को समन्वयित करने के लिए प्रायुक्त किया जाता है, साथ ही टेन्सर क्षेत्रों को जन्म देने वाले टेंसर की आत्मनिर्भर अवधारणाओं की आवश्यकता के रूप में भी।
संक्षेप में, हम श्रृंखला नियम को 1-कोचेन (बीजीय टोपोलॉजी) के रूप में पहचान सकते हैं। यह स्पर्शरेखा बंडल को आंतरिक तरीके से परिभाषित करने के लिए आवश्यक स्थिरता देता है। टेंसरों के अन्य सदिश बंडलों में तुलनात्मक चक्र होते हैं, जो टेंसर निर्माणों के फलनात्मक गुणों को श्रृंखला नियम में प्रायुक्त करने से आते हैं; यही कारण है कि वे आंतरिक (पढ़ें, 'प्राकृतिक') अवधारणाएं भी हैं।
जिसे सामान्यतः टेंसरों के लिए 'शास्त्रीय' दृष्टिकोण के रूप में कहा जाता है, वह इसे पीछे की ओर पढ़ने की कोशिश करता है - और इसलिए वास्तव में मूलभूत दृष्टिकोण के अतिरिक्त अनुमानी, पोस्ट हॉक दृष्टिकोण है। समन्वय परिवर्तन के तहत वे कैसे बदलते हैं, इसके द्वारा टेन्सरों को परिभाषित करने में निहित है, यह प्रकार की आत्म-स्थिरता है जिसे कोसायकल व्यक्त करता है। टेन्सर घनत्व का निर्माण चक्रीय स्तर पर 'ट्विस्टिंग' है। जियोमीटर को टेंसर राशियों की ज्यामितीय प्रकृति के बारे में कोई संदेह नहीं है; इस प्रकार का वंश (श्रेणी सिद्धांत) तर्क अमूर्त रूप से पूरे सिद्धांत को सही ठहराता है।
सामान्यीकरण
टेंसर घनत्व
टेंसर क्षेत्र की अवधारणा को उन वस्तुओं पर विचार करके सामान्यीकृत किया जा सकता है जो अलग-अलग रूपांतरित होती हैं। वस्तु जो समन्वय परिवर्तनों के तहत सामान्य टेन्सर क्षेत्र के रूप में परिवर्तित होती है, सिवाय इसके कि यह जैकोबियन आव्यूह के निर्धारक द्वारा गुणा किया जाता है और व्युत्क्रम समन्वय परिवर्तन के निर्धारक को wth शक्ति में परिवर्तित करता है, इसे भार w के साथ टेंसर घनत्व कहा जाता है।[3] अनिवार्य रूप से, बहुरेखीय बीजगणित की भाषा में, कोई टेंसर घनत्व के बारे में सोच सकता है क्योंकि घनत्व बंडल में उनके मान लेने वाले बहुरेखीय मानचित्र जैसे कि (1-आयामी) n-रूपों का स्थान (जहाँ n स्थान का आयाम है), जैसा उनके मूल्यों को सिर्फ 'आर' में लेने का विरोध किया। उच्च वजन तब सीमा में इस स्थान के साथ अतिरिक्त टेंसर उत्पादों को लेने के अनुरूप होता है।
विशेष मामला स्केलर घनत्व है। स्केलर 1-घनत्व विशेष रूप से महत्वपूर्ण हैं क्योंकि यह कई गुना अधिक उनके अभिन्न को परिभाषित करने के लिए समझ में आता है। उदाहरण के लिए, वे सामान्य सापेक्षता में आइंस्टीन-हिल्बर्ट क्रिया में दिखाई देते हैं। अदिश 1-घनत्व का सबसे आम उदाहरण आयतन तत्व है, जो मीट्रिक टेन्सर g की उपस्थिति में निर्देशांक में इसके निर्धारक का वर्गमूल है, जिसे निरूपित किया गया है . मीट्रिक टेन्सर क्रम 2 का सहसंयोजक टेन्सर है, और इसलिए इसका निर्धारक निर्देशांक संक्रमण के वर्ग द्वारा मापता है:
जो वजन +2 के स्केलर घनत्व के लिए परिवर्तन नियम है।
अधिक सामान्यतः, कोई भी टेन्सर घनत्व उचित वजन के स्केलर घनत्व के साथ सामान्य टेन्सर का उत्पाद होता है। सदिश बंडलों की भाषा में, स्पर्शरेखा बंडल का निर्धारक बंडल लाइन बंडल है जिसका उपयोग अन्य बंडलों को w बार 'मोड़ने' के लिए किया जा सकता है। जबकि स्थानीय रूप से अधिक सामान्य परिवर्तन नियम का उपयोग वास्तव में इन टेंसरों को पहचानने के लिए किया जा सकता है, वैश्विक प्रश्न उठता है, जो दर्शाता है कि परिवर्तन नियम में या तो जैकोबियन निर्धारक या इसके पूर्ण मूल्य को लिखा जा सकता है। घनत्व के बंडल के (सकारात्मक) संक्रमण फलनों की गैर-अभिन्न शक्तियाँ समझ में आती हैं, ताकि घनत्व का भार, उस अर्थ में, पूर्णांक मानों तक सीमित न हो। सकारात्मक जेकोबियन निर्धारक के साथ निर्देशांक के परिवर्तन को प्रतिबंधित करना ओरिएंटेबल मैनिफोल्ड्स पर संभव है, क्योंकि माइनस संकेतों को खत्म करने का सुसंगत वैश्विक तरीका है; किन्तु अन्यथा घनत्व के लाइन बंडल और एन-रूपों के लाइन बंडल अलग-अलग हैं। आंतरिक अर्थ पर अधिक जानकारी के लिए, कई गुना घनत्व देखें।
यह भी देखें
टिप्पणियाँ
- ↑ O'Neill, Barrett. Semi-Riemannian Geometry With Applications to Relativity
- ↑ The term "affinor" employed in the English translation of Schouten is no longer in use.
- ↑ "Tensor density", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
संदर्भ
- O'neill, Barrett (1983). Semi-Riemannian Geometry With Applications to Relativity. Elsevier Science. ISBN 9780080570570.
- Frankel, T. (2012), The Geometry of Physics (3rd edition), Cambridge University Press, ISBN 978-1-107-60260-1.
- Lambourne [Open University], R.J.A. (2010), Relativity, Gravitation, and Cosmology, Cambridge University Press, ISBN 978-0-521-13138-4.
- Lerner, R.G.; Trigg, G.L. (1991), Encyclopaedia of Physics (2nd Edition), VHC Publishers.
- McConnell, A. J. (1957), Applications of Tensor Analysis, Dover Publications, ISBN 9780486145020.
- McMahon, D. (2006), Relativity DeMystified, McGraw Hill (USA), ISBN 0-07-145545-0.
- C. Misner, K. S. Thorne, J. A. Wheeler (1973), Gravitation, W.H. Freeman & Co, ISBN 0-7167-0344-0
{{citation}}
: CS1 maint: multiple names: authors list (link). - Parker, C.B. (1994), McGraw Hill Encyclopaedia of Physics (2nd Edition), McGraw Hill, ISBN 0-07-051400-3.
- Schouten, Jan Arnoldus (1951), Tensor Analysis for Physicists, Oxford University Press.
- Steenrod, Norman (5 April 1999). The Topology of Fibre Bundles. Princeton Mathematical Series. Vol. 14. Princeton, N.J.: Princeton University Press. ISBN 978-0-691-00548-5. OCLC 40734875.