सिंपलेक्टिक मैनिफ़ोल्ड: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:सिंपलेक्टिक_मैनिफ़ोल्ड) |
(No difference)
|
Revision as of 16:21, 13 July 2023
विभेदक ज्यामिति में, गणित विषय, सिम्प्लेक्टिक मैनिफोल्ड डिफरेंशियल मैनिफोल्ड की परिभाषा को संदर्भित करता है, यहाँ पर विवृत और सही अंतर को प्राप्त करने वाले विभिन्न रूपों से सुसज्जित होने वाले गैर-अपक्षयी रूप विभेदक रूप या प्राप्त होने वाले अंतर के 2-रूप , सिंपलेक्टिक फॉर्म कहा जाता है। इस प्रकार सिंपलेक्टिक मैनिफोल्ड्स के अध्ययन को सिंपलेक्टिक ज्यामिति या सिंपलेक्टिक टोपोलॉजी कहा जाता है। सिंपलेक्टिक मैनिफोल्ड्स मौलिक यांत्रिकी और विश्लेषणात्मक यांत्रिकी के सूत्रीकरण में मैनिफोल्ड्स के कोटैंजेंट समूह के रूप में स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, मौलिक यांत्रिकी के हैमिल्टनियन यांत्रिकी में, जो क्षेत्र के लिए प्रमुख प्रेरणाओं में से प्रदान करता है, उसे प्रणाली के सभी संभावित विन्यासों के समुच्चय को कई गुना होने तक तैयार किया जाता है, और इस प्रकार यह कई गुना होने के कारण कोटैंजेंट समूह वाली प्रणाली के चरण क्षेत्र का वर्णन करता है।
प्रेरणा
मौलिक यांत्रिकी से सिंपलेक्टिक मैनिफ़ोल्ड उत्पन्न होते हैं, इस प्रकार विशेष रूप से विवृत प्रणाली के चरण क्षेत्र का सामान्यीकरण किया जाता हैं।[1] उसी प्रकार हैमिल्टन समीकरण किसी अंतर समीकरण के समुच्चय से प्रणाली के समय के विकास को प्राप्त करने की अनुमति देते हैं, इस प्रकार सहानुभूतिपूर्ण रूप से किसी को हैमिल्टनियन फलन एच के अंतर डीएच से प्रणाली के प्रवाह का वर्णन करने वाला वेक्टर क्षेत्र प्राप्त करने की अनुमति मिलनी चाहिए।[2] इसलिए हमें रेखीय मानचित्र की आवश्यकता है, इस प्रकार TM → T∗M स्पर्शरेखा मैनिफोल्ड टीएम सेस्पर्शरेखा अनेक गुना टी तक∗M, या समकक्ष, का तत्व T∗M ⊗ T∗M द्वारा प्रदर्शित करता हैं। यहाँ पर मान लीजिए कि ω खंड मुख्य रूप से फाइबर समूह T∗M ⊗ T∗M को दर्शाता है, यहाँ पर आवश्यकता यह है कि ω विकृत रूप में उपयोग किया जा रहा हो। इस प्रकार गैर-डीजेनरेट यह सुनिश्चित करता है कि प्रत्येक अंतर डीएच के लिए अद्वितीय संगत वेक्टर फ़ील्ड वीH है, जहाँ पर dH = ω(VH, · ) के आधार पर हैमिल्टनियन प्रवाह रेखाओं के साथ स्थिर रखते हैं, तो उसे इस प्रकार हल कर सकते हैं जिसके लिए उक्त समीकरण ω(VH, VH) = dH(VH) = 0 का प्रयोग किया जाता है, जिसका अर्थ है कि ω वैकल्पिक रूप से उपयोग किया जा रहा है और इसलिए इसके 2-रूप है। अंत में, आवश्यकता के अनुसार ω के प्रवाह रेखाओं के अनुसार परिवर्तित नहीं करना चाहिए, अर्ताथ वी के साथ ωH का असत्य व्युत्पन्न विलुप्त हो जाता है, इस प्रकार कार्टन होमोटॉपी फॉर्मूला या कार्टन के फॉर्मूला को लागू किया जाता हैं, इसका अर्थ है जो इसका आंतरिक उत्पाद है:
जिससे कि इस प्रकार के विभिन्न सुचारू कार्यों के लिए इस तर्क को द्वारा दोहराया जा सके, इस प्रकार संगत रूप से प्रत्येक बिंदु पर स्पर्शरेखा क्षेत्र का विस्तार करें जिस पर तर्क लागू किया गया है, हम देखते हैं कि प्रवाह के साथ लुप्त होने वाले लाई व्युत्पन्न की आवश्यकता है, यहाँ पर इस विधि से उक्त समतल के अनुरूप को इस प्रकार उपयोग किया जाता है कि यह समतुल्य हो जाता हैं जो इस प्रकार हैं कि ω को विवृत किया जाना चाहिए और सटीक अंतर को उपयोग किया जाना चाहिए।
परिभाषा
किसी समतल पर कई गुना सिम्प्लेक्टिक रूप को विवृत करके गैर-पतित अंतर के अनुसार 2-रूपों में विभाजित कर दिया जाता है,[3][4] यहाँ पर अ-विक्षिप्त का अर्थ है कि हर बिंदु के लिए , स्पर्शरेखा क्षेत्र पर इस विकर्ण के अनुसार सममित युग्मन द्वारा परिभाषित गैर पतित के रूप में प्रदर्शित करते है, यहाँ पर इसका तात्पर्य यह है कि यदि किसी समय मान प्राप्त होता है, इसके आधार पर मुख्य रूप से द्वारा होने पर यह मान प्राप्त करता हैं। चूँकि विषम आयामों में, विकर्ण के सममित आव्यूह सदैव एकवचन को प्रस्तुत करते है, इसलिए यह आवश्यक है कि अविक्षिप्त होता हैं, जिसका तात्पर्य है कि सम आयाम है।[3][4] इस प्रकार विवृत स्थिति का अर्थ है कि बाहरी व्युत्पन्न विलुप्त हो जाता है, यहाँ पर सिम्प्लेक्टिक मैनिफोल्ड जोड़ी है, यहाँ पर समतल विविधता है और सांकेतिक रूप है, जिसको सिम्पलेक्सिक फॉर्म निर्दिष्ट करता हैं, इस प्रकार का मान सिम्पलेक्सिक संरचना को प्रदर्शित करता हैं।
उदाहरण
सिंपलेक्टिक वेक्टर रिक्त क्षेत्र
यहां पर के लिए आधार बनाया जाता हैं, हम इस आधार पर अपने सहानुभूतिपूर्ण रूप से ω को इस प्रकार परिभाषित करते हैं:
इस स्थिति में सिंपलेक्टिक रूप सरल द्विघात रूप में कम हो जाता है। यदि Inn × n आइडेंटिटी आव्यूह को दर्शाता है, तो इस द्विघात रूप का आव्यूह Ω द्वारा दिया जाता है, इस प्रकार 2n × 2n प्रकार के ब्लॉक आव्यूह के लिए:
कोटैंजेंट समूह
इस समूह के लिए आयाम की सहज विविधता को उपयोग करते हैं, इसके पश्चात कोटैंजेंट समूह का कुल क्षेत्र का प्राकृतिक सहानुभूतिपूर्ण रूप है, जिसे पोंकारे दो-रूप या विहित सहानुभूतिपूर्ण रूप कहा जाता है-
यहाँ पर क्या कोई क्षेत्रीय निर्देशांक चालू हैं? इसके लिए और कोटैंजेंट सदिश के संबंध में फाइबरवाइज निर्देशांक को प्रदर्शित करता हैं, इस प्रकार कोटैंजेंट समूह मौलिक यांत्रिकी के प्राकृतिक चरण क्षेत्र हैं। यहाँ पर ऊपरी और निचले सूचकांकों को अलग करने का बिंदु मीट्रिक टेंसर वाले मैनिफोल्ड के स्थिति से प्रेरित होता है, जैसा कि रीमैनियन मैनिफोल्ड्स के स्थिति में होता है। ऊपरी और निचले सूचकांक समन्वय फ्रेम के परिवर्तन के अनुसार विपरीत और सहसंयोजक रूप से बदलते हैं। कोटैंजेंट सदिश के संबंध में फ़ाइबरवाइज कोऑर्डिनेट वाक्यांश का अर्थ यह बताना है कि संवेग वेगों के सोल्डर रूप हैं . सोल्डरिंग इस विचार की अभिव्यक्ति है कि वेग और संवेग एकरेखीय हैं, इसमें दोनों ही दिशा में चलते हैं, और पैमाने के कारक से भिन्न होते हैं।
काहलर मैनिफोल्ड्स
काहलर मैनिफोल्ड संगत एकीकृत जटिल संरचना से सुसज्जित सहानुभूतिपूर्ण मैनिफोल्ड है। वे जटिल विविधताओं का विशेष वर्ग बनाते हैं। उदाहरणों का बड़ा वर्ग जटिल बीजगणितीय ज्यामिति से आता है। कोई भी समतल जटिल प्रक्षेप्य किस्म इसका सहानुभूतिपूर्ण रूप है जो फ़ुबिनी-अध्ययन मीट्रिक का प्रतिबंध है|फ़ुबिनी-प्रक्षेप्य क्षेत्र पर अध्ययन प्रपत्र .
लगभग-जटिल कई गुना
रीमैनियन के साथ कई गुना होता है -संगत लगभग जटिल संरचना को लगभग-जटिल मैनिफोल्ड्स कहा जाता है। इस प्रकार के काहलर, मैनिफोल्ड्स का सामान्यीकरण करते हैं, जिसमें उन्हें एकीकृत होने की आवश्यकता नहीं है। अर्थात् वे आवश्यक रूप से अनेक गुना जटिल संरचना से उत्पन्न नहीं होते हैं।
लैग्रेंजियन और अन्य सबमेनिफोल्ड्स
सिम्प्लेक्टिक मैनिफोल्ड के सबमैनिफोल्ड की कई प्राकृतिक ज्यामितीय धारणाएँ हैं :
- जिसके लिए सिम्प्लेक्टिक सबमैनिफोल्ड्स संभावित रूप से किसी भी सम आयाम के रूप में प्रदर्शित होते हैं, यहाँ पर इस प्रकार है कि पर प्रतीकात्मक रूप को प्रदर्शित करते है,
- आइसोट्रोपिक सबमैनिफोल्ड्स सबमैनिफोल्ड्स हैं, जहां सहानुभूति रूप की सीमा शून्य तक सीमित रहती है, अर्ताथ प्रत्येक स्पर्शरेखा क्षेत्र परिवेश मैनिफोल्ड के स्पर्शरेखा क्षेत्र का आइसोट्रोपिक उपक्षेत्र माना जाता है। इसी प्रकार यदि किसी सबमैनिफोल्ड का प्रत्येक स्पर्शरेखा उप-क्षेत्र सह-आइसोट्रोपिक मुख्य रूप से आइसोट्रोपिक उप-क्षेत्र का द्वैत संबंध को प्रदर्शित करता है, यहाँ पर सबमैनिफोल्ड को सह-आइसोट्रोपिक कहा जाता है।
- सिंपलेक्टिक मैनिफोल्ड के लैग्रेंजियन सबमैनिफोल्ड्स उपमानव हैं, जहां सहानुभूति रूप का प्रतिबंध है, इस प्रकार यह को होने पर लुप्त कर देता है, अर्थात और लैग्रेंजियन सबमैनिफोल्ड्स अधिकतम आइसोट्रोपिक सबमैनिफोल्ड्स प्राप्त करता हैं।
इसका प्रमुख उदाहरण यह है कि उत्पाद सिंपलेक्टिक मैनिफोल्ड में लक्षणरूपता का ग्राफ (M × M, ω × −ω) लैग्रेन्जियन प्रकार का है। उनके प्रतिच्छेदन को इसके कठोर होने वाले विभिन्न गुणों को प्रदर्शित करने में सहायक माना जाता हैं, जो समतल मैनिफोल्ड्स के पास नहीं होते हैं, इसके आधार पर अर्नोल्ड अनुमानतः स्मूथ केस में यूलर विशेषता के अतिरिक्त स्मूथ लैग्रेंजियन सबमैनिफोल्ड के स्वयं प्रतिच्छेदन की संख्या के लिए निचली सीमा के रूप में सबमैनिफोल्ड की बेट्टी संख्याओं का योग देता है।
उदाहरण
उदाहरण के लिए यहाँ पर वैश्विक निर्देशांक लेबल किए गए हैं, जिसके लिए को हम द्वारा सुसज्जित कर सकते हैं, यह विहित सहानुभूतिपूर्ण रूप के साथ
- द्वारा दिये गये मानक लैग्रेंजियन सबमैनिफोल्ड को प्रदर्शित करता है, इस प्रकार फार्म पर को विलुप्त कर देता है, क्योंकि स्पर्शरेखा सदिशों के इस संयोजन को रूप से प्रदर्शित करता है, यहाँ पर हमारे पास मान प्राप्त होता है, इसे स्पष्ट करने के लिए स्थिति पर विचार करें, इसके लिए और पर ध्यान दें कि जब हम इसका विस्तार करते हैं तो उक्त समीकरण प्राप्त होता हैं।
इन दोनों शर्तों के कारण कारक, जो परिभाषा के अनुसार 0 मान प्रकट करता है।
उदाहरण: कोटैंजेंट समूह
मैनिफोल्ड के कोटैंजेंट समूह को पहले उदाहरण के समान क्षेत्र पर क्षेत्रीय रूप से तैयार किया गया है। यह दिखाया जा सकता है कि हम इन एफ़िन सिम्प्लेक्टिक रूपों को संयोजित कर सकते हैं, इसलिए इस समूह सिम्प्लेक्टिक मैनिफोल्ड बनाता है। इस प्रकार लैग्रेंजियन सबमैनिफोल्ड का उचित मान उदाहरण मैनिफोल्ड के कोटैंजेंट समूह का शून्य खंड है। उदाहरण के लिए
फिर, हम द्वारा इसे प्रस्तुत कर सकते हैं,
जहां हम प्रतीकों का मान प्राप्त करते हैं, इसके निर्देशांक के रूप में प्रदर्शित होते हैं, यहाँ पर हम उस उपसमुच्चय पर विचार कर सकते हैं जहां निर्देशांक और हैं, इस प्रकार हमें शून्य अनुभाग प्राप्त होता है। इस उदाहरण को सुचारु कार्यों के लुप्त होने वाले क्षेत्रों द्वारा परिभाषित किसी भी मैनिफोल्ड के लिए दोहराया जा सकता है, जिसके आधार पर और उनके अंतर के द्वारा इन्हें प्रदर्शित करते हैं।
उदाहरण: पैरामीट्रिक सबमैनिफोल्ड
विहित क्षेत्र पर विचार करें, इस प्रकार उक्त निर्देशांकों के साथ पैरामीट्रिक सबमैनिफोल्ड का रूप हैं। यहाँ पर जो निर्देशांक द्वारा मानकीकृत होते है, वे इस प्रकार हैं-
यदि लैग्रेंज ब्रैकेट है तो यह मैनिफोल्ड लैग्रेंजियन सबमैनिफोल्ड है, यहाँ पर सभी के लिए का मान विलुप्त हो जाता है, अर्थात यह लैग्रेन्जियन है यदि
- के लिए का मान विस्तारित करके देखा जा सकता है, जो इस प्रकार है-
लैग्रेंजियन सबमैनिफोल्ड की स्थिति में . इसका अर्थ यह है कि स्पर्शरेखा मैनिफोल्ड पर सहानुभूतिपूर्ण रूप विलुप्त हो जाना चाहिए , अर्थात्, यह सभी स्पर्शरेखा सदिशों के लिए लुप्त हो जाना चाहिए:
सभी के लिए . विहित सहानुभूति प्रपत्र का उपयोग करके परिणाम को सरल बनाएं:
और अन्य सभी विलुप्त हो रहे हैं।
जैसा कि सिंपलेक्टिक मैनिफोल्ड पर चार्ट (टोपोलॉजी) विहित रूप लेता है, यह उदाहरण बताता है कि लैग्रेंजियन सबमैनिफोल्ड अपेक्षाकृत अप्रतिबंधित हैं। इस प्रकार सिंपलेक्टिक मैनिफ़ोल्ड्स का वर्गीकरण फ़्लोर होमोलॉजी के माध्यम से किया जाता है, यह लैग्रेंजियन सबमैनिफ़ोल्ड्स के बीच मानचित्रों के लिए भौतिकी प्रक्रिया के लिए मोर्स सिद्धांत का अनुप्रयोग है। यहाँ पर भौतिकी क्रियाओं के लिए उक्त भौतिक प्रणाली के समय विकास का वर्णन करती है, यहां पर इसे ब्रैन्स की गतिशीलता के विवरण के रूप में लिया जा सकता है।
उदाहरण: मोर्स सिद्धांत
लैग्रेंजियन सबमैनिफोल्ड्स का अन्य उपयोगी वर्ग मोर्स सिद्धांत में पाया जाता है। मोर्स फलन दिया गया हैं, और इसके कम मान के लिए कोई लुप्त हो रहे क्षेत्र द्वारा दिए गए लैग्रेंजियन सबमैनिफोल्ड का निर्माण कर सकता है, इस प्रकार सामान्य रूप से मोर्स फलन के लिए हमारे पास लैग्रेन्जियन प्रतिच्छेदन उपलब्ध रहता है, जो के द्वारा दिया जाता है।
विशेष लैग्रेंजियन सबमैनिफोल्ड्स
काहलर मैनिफोल्ड्स या कैलाबी-यॉ मैनिफोल्ड्स की स्थिति में हम विकल्प चुन सकते हैं, यहाँ पर होलोमोर्फिक एन-फॉर्म के रूप में उपयोग किया जाता हैं, जहां इसका सही भाग है और काल्पनिक भाग हैं, जिसे लैग्रेंजियन सबमैनिफोल्ड कहा जाता है, इस प्रकार यदि उपरोक्त लैग्रेंजियन स्थिति के अतिरिक्त प्रतिबंध होने पर को लुप्त कर देता है, इसके लिए दूसरे शब्दों में इसके वास्तविक भाग पर प्रतिबंधित वॉल्यूम फॉर्म को आगे ले जाते है, इस प्रकार निम्नलिखित उदाहरणों को विशेष लैग्रेंजियन सबमैनिफोल्ड्स के रूप में जाना जाता है।
- हाइपरकेहलर मैनिफोल्ड्स के जटिल लैग्रेंजियन सबमैनिफोल्ड्स,
कैलाबी-याउ मैनिफोल्ड्स की वास्तविक संरचना के लिए निश्चित बिंदु हैं।
एसवाईजेड अनुमान दर्पण समरूपता (स्ट्रिंग सिद्धांत) में विशेष लैग्रेंजियन सबमैनिफोल्ड्स (हिटचिन 1999) के अध्ययन से संबंधित है।
थॉमस-याउ अनुमान भविष्यवाणी करता है कि लैग्रैंगियंस के हैमिल्टनियन आइसोटोप वर्गों में कैलाबी-याउ मैनिफोल्ड्स पर विशेष लैग्रैन्जियन सबमैनिफोल्ड्स का अस्तित्व मैनिफोल्ड की फुकाया श्रेणी पर ब्रिजलैंड स्थिरता की स्थिति के संबंध में स्थिरता के समान है।
लैग्रेंजियन कंपन
सिम्प्लेक्टिक मैनिफोल्ड एम का लैग्रेंजियन फ़िब्रेशन है, जहाँ सभी फ़ाइबर युक्त समूहों को इसकी औपचारिक परिभाषाओं के अनुसार लैग्रैन्जियन सबमैनिफ़ोल्ड्स के रूप में उपयोग करते हैं। चूंकि यहाँ पर एम सम-आयामी है, इसलिए हम क्षेत्रीय निर्देशांक (p1,…,pn, q1,…,qn), ले सकते हैं और डार्बौक्स के प्रमेय द्वारा सहानुभूतिपूर्ण रूप ω को, कम से कम क्षेत्रीय रूप से, इसे ω = ∑ dpk ∧ dqk प्रकार लिखा जा सकता है, जहां d बाहरी व्युत्पन्न को दर्शाता है और ∧ बाहरी उत्पाद को दर्शाता है। इस फॉर्म को पोंकारे टू-फॉर्म या कैनोनिकल टू-फॉर्म कहा जाता है। इस समुच्चय-अप का उपयोग करके हम क्षेत्रीय रूप से एम को कोटैंजेंट समूह के रूप में सोच सकते हैं और लैग्रेंजियन फ़िब्रेशन को तुच्छ फ़िब्रेशन के रूप में यह विहित चित्र है।
लैग्रेंजियन मैपिंग
मान लीजिए कि L इमर्शन (गणित) द्वारा दिए गए सिंपलेक्टिक मैनिफोल्ड (K,ω) का लैग्रेंजियन सबमैनिफोल्ड है। i : L ↪ K (i को 'लैग्रेंजियन इमर्शन' कहा जाता है)। होने देना π : K ↠ B K का लैग्रेंजियन फ़िब्रेशन दें। समग्र (π ∘ i) : L ↪ K ↠ B लैग्रेंजियन मैपिंग है। π ∘ i के क्रांतिक मान को कास्टिक (गणित) कहा जाता है।
दो लैग्रेंजियन मानचित्र (π1 ∘ i1) : L1 ↪ K1 ↠ B1 और (π2 ∘ i2) : L2 ↪ K2 ↠ B2 को लैग्रेंजियन समतुल्य कहा जाता है यदि σ, τ और ν भिन्नताएं मौजूद हैं जैसे कि सही क्रमविनिमेय आरेख पर दिए गए आरेख के दोनों पक्ष, और τ सहानुभूति रूप को संरक्षित करते हैं .[4]प्रतीकात्मक रूप से:
कहां τ∗o2 ω2 के विभेदक रूपों के पुलबैक (विभेदक ज्यामिति) पुलबैक को τ द्वारा दर्शाते है।
विशेष स्थिति और सामान्यीकरण
- एक सिंपलेक्टिक मैनिफोल्ड यदि सिंपलेक्टिक रूप सटीक है, यहाँ पर विवृत और सटीक विभेदक रूप है। उदाहरण के लिए समतल मैनिफोल्ड का कोटैंजेंट समूह सटीक सिंपलेक्टिक मैनिफोल्ड है। विहित सहानुभूतिपूर्ण रूप सटीक है।
- एक मीट्रिक टेंसर से संपन्न सिंपलेक्टिक मैनिफोल्ड, जो लगभग जटिल मैनिफोल्ड है, इसके आधार पर सिंपलेक्टिक रूप के साथ संगत त्रिगुण इस अर्थ में लगभग काहलर मैनिफोल्ड है कि स्पर्शरेखा समूह में लगभग जटिल संरचना होती है, लेकिन इसके लिए इंटीग्रेबिलिटी स्थिति की आवश्यकता नहीं होती है।
- सिंपलेक्टिक मैनिफोल्ड्स पॉइसन मैनिफ़ोल्ड के विशेष स्थिति हैं।
- डिग्री के का मल्टीसिम्पलेक्टिक मैनिफोल्ड विवृत गैर-अपक्षयी के-फॉर्म से सुसज्जित मैनिफोल्ड है।[5]
- एक पॉलीसिम्पलेक्टिक मैनिफोल्ड लीजेंड्रे समूह है जो पॉलीसिम्पलेक्टिक स्पर्शरेखा-मूल्य के साथ प्रदान किया जाता है -प्रपत्र, इसका उपयोग हैमिल्टनियन क्षेत्र सिद्धांत में किया जाता है।[6]
यह भी देखें
- लगभग सिंपलेक्टिक मैनिफ़ोल्ड
- अनेक गुना संपर्क करें-सिम्प्लेक्टिक मैनिफोल्ड का एक विषम-आयामी समकक्ष।
- सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत
- फेडोसोव मैनिफोल्ड
- पॉइसन ब्रैकेट
- सहानुभूति समूह – Mathematical group
- सिंपलेक्टिक मैट्रिक्स
- सिंपलेक्टिक टोपोलॉजी
- सिम्प्लेक्टिक वेक्टर स्पेस
- लक्षणात्मकता – Isomorphism of symplectic manifolds
- टॉटोलॉजिकल एक-रूप
- विर्टिंगर असमानता (2-रूप)
उद्धरण
- ↑ Webster, Ben (9 January 2012). "What is a symplectic manifold, really?".
- ↑ Cohn, Henry. "शास्त्रीय यांत्रिकी के लिए सिंपलेक्टिक ज्यामिति प्राकृतिक सेटिंग क्यों है?".
- ↑ 3.0 3.1 de Gosson, Maurice (2006). सिंपलेक्टिक ज्यामिति और क्वांटम यांत्रिकी. Basel: Birkhäuser Verlag. p. 10. ISBN 3-7643-7574-4.
- ↑ 4.0 4.1 4.2 Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M. (1985). The Classification of Critical Points, Caustics and Wave Fronts: Singularities of Differentiable Maps, Vol 1. Birkhäuser. ISBN 0-8176-3187-9.
- ↑ Cantrijn, F.; Ibort, L. A.; de León, M. (1999). "मल्टीसिम्प्लेक्टिक मैनिफोल्ड्स की ज्यामिति पर". J. Austral. Math. Soc. Ser. A. 66 (3): 303–330. doi:10.1017/S1446788700036636.
- ↑ Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1999). "क्षेत्र सिद्धांत के लिए सहसंयोजक हैमिल्टनियन समीकरण". Journal of Physics. A32 (38): 6629–6642. arXiv:hep-th/9904062. Bibcode:1999JPhA...32.6629G. doi:10.1088/0305-4470/32/38/302. S2CID 204899025.
सामान्य और उद्धृत संदर्भ
- McDuff, Dusa; Salamon, D. (1998). सिंपलेक्टिक टोपोलॉजी का परिचय. Oxford Mathematical Monographs. ISBN 0-19-850451-9.
- Auroux, Denis. "दर्पण समरूपता पर संगोष्ठी".
- Meinrenken, Eckhard. "सिंपलेक्टिक ज्यामिति" (PDF).
- Abraham, Ralph; Marsden, Jerrold E. (1978). यांत्रिकी की नींव. London: Benjamin-Cummings. See Section 3.2. ISBN 0-8053-0102-X.
- de Gosson, Maurice A. (2006). सिंपलेक्टिक ज्यामिति और क्वांटम यांत्रिकी. Basel: Birkhäuser Verlag. ISBN 3-7643-7574-4.
- Alan Weinstein (1971). "सिंपलेक्टिक मैनिफोल्ड्स और उनके लैग्रेंजियन सबमैनिफोल्ड्स". Advances in Mathematics. 6 (3): 329–46. doi:10.1016/0001-8708(71)90020-X.
- Arnold, V. I. (1990). "Ch.1, Symplectic geometry". कास्टिक्स और तरंग मोर्चों की विलक्षणताएँ. Mathematics and Its Applications. Vol. 62. Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-3330-2. ISBN 978-1-4020-0333-2. OCLC 22509804.
अग्रिम पठन
- Dunin-Barkowski, Petr (2022). "Symplectic duality for topological recursion". arXiv:2206.14792 [math-ph].
- "How to find Lagrangian Submanifolds". Stack Exchange. December 17, 2014.
- Lumist, Ü. (2001) [1994], "Symplectic Structure", Encyclopedia of Mathematics, EMS Press
- Sardanashvily, G. (2009). "Fibre bundles, jet manifolds and Lagrangian theory". Lectures for Theoreticians. arXiv:0908.1886.
- McDuff, D. (November 1998). "Symplectic Structures—A New Approach to Geometry" (PDF). Notices of the AMS.
- Hitchin, Nigel (1999). "Lectures on Special Lagrangian Submanifolds". arXiv:math/9907034.