छद्म-रीमैनियन मैनिफोल्ड: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 1: Line 1:
{{Short description|Differentiable manifold with nondegenerate metric tensor}}
{{Short description|Differentiable manifold with nondegenerate metric tensor}}
{{General geometry|शाखाएं}}
{{General geometry|शाखाएं}}
Line 83: Line 82:
==बाहरी संबंध                                                                                                                                                                              ==
==बाहरी संबंध                                                                                                                                                                              ==
* {{Commonscatinline|Lorentzian manifolds}}
* {{Commonscatinline|Lorentzian manifolds}}
[[Category: बर्नहार्ड रीमैन]] [[Category: विभेदक ज्यामिति]] [[Category: लोरेंट्ज़ियन मैनिफोल्ड्स|*]] [[Category: रीमैनियन ज्यामिति]] [[Category: रीमैनियन मैनिफोल्ड्स]] [[Category: चिकनी कई गुना]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/07/2023]]
[[Category:Created On 03/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:चिकनी कई गुना]]
[[Category:बर्नहार्ड रीमैन]]
[[Category:रीमैनियन ज्यामिति]]
[[Category:रीमैनियन मैनिफोल्ड्स]]
[[Category:लोरेंट्ज़ियन मैनिफोल्ड्स|*]]
[[Category:विभेदक ज्यामिति]]

Latest revision as of 11:46, 3 August 2023

विभेदक ज्यामिति में, छद्म-रीमैनियन मैनिफोल्ड,[1][2] इसे सेमी-रिमैनियन मैनिफोल्ड भी कहा जाता है, यह मीट्रिक टेंसर के साथ भिन्न -भिन्न मैनिफोल्ड है जो प्रत्येकस्पेस गैर-पतित बिलिनियर रूप में होता है। यह रीमैनियन मैनिफ़ोल्ड का सामान्यीकरण है जिसमें धनात्मक -निश्चित द्विरेखीय रूप की आवश्यकता में छूट दी गई है।

छद्म-रीमैनियन मैनिफोल्ड का प्रत्येक स्पर्शरेखा स्पेस छद्म-यूक्लिडियन सदिशस्पेस है।

सामान्य सापेक्षता में उपयोग किया जाने वाला विशेष स्थिति अंतरिक्ष समय मॉडलिंग के लिए चार-आयामी लोरेंत्ज़ियन मैनिफोल्ड है, जहां स्पर्शरेखा सदिश को कारण संरचना टाइमलाइक, शून्य और स्पेसलाइक के रूप में वर्गीकृत किया जा सकता है।

परिचय

मैनिफोल्ड

डिफरेंशियल ज्योमेट्री में, डिफरेंशियल विविध एक ऐसास्पेस है जो स्थानीय रूप से यूक्लिडियनस्पेस के समान होता है। n-आयामी यूक्लिडियन स्पेस में किसी भी बिंदु को n वास्तविक संख्याओं द्वारा निर्दिष्ट किया जा सकता है। इन्हें बिंदु के निर्देशांक कहा जाता है।

एक n-डायमेंशनल डिफरेंशियल मैनिफोल्ड,n-डायमेंशनल यूक्लिडियन स्पेस का सामान्यीकरण है। मैनिफोल्ड में केवल स्थानीय रूप से निर्देशांक को परिभाषित करना संभव हो सकता है। यह समन्वय पैच को परिभाषित करके प्राप्त किया जाता है: मैनिफोल्ड के सबसेट जिन्हेंn-आयामी यूक्लिडियन स्पेस में मैप किया जा सकता है।

अधिक विवरण के लिए मैनिफोल्ड, डिफरेंशियल मैनिफोल्ड, कोआर्डिनेट पैच देखें।

स्पर्शरेखा रिक्तस्पेस और मीट्रिक टेंसर

प्रत्येक बिंदु से संबद्ध में -आयामी विभेदक मैनिफोल्ड स्पर्शरेखा स्पेस है (चिह्नित)। ). यह -आयामी सदिश समष्टि जिसके अवयवों को बिंदु से गुजरने वाले वक्रों के समतुल्य वर्ग के रूप में माना जा सकता है .

एक मीट्रिक टेंसर गैर-पतित, सरल, सममित, द्विरेखीय मानचित्र है जो मैनिफोल्ड के प्रत्येक स्पर्शरेखा स्पेस पर स्पर्शरेखा सदिश के जोड़े को वास्तविक संख्या प्रदान करता है। मीट्रिक टेंसर को इससे निरूपित करना इसे हम इस प्रकार व्यक्त कर सकते हैं

मैप सममित और द्विरेखीय है इसलिए यदि बिंदु पर स्पर्शरेखा सदिश हैं मैनिफोल्ड तक तो हमारे पास हैं

किसी भी वास्तविक संख्या के लिए .

वह अशून्य है अर्थात कोई अशून्य नहीं है ऐसा है कि सभी के लिए .

मीट्रिक हस्ताक्षर

n-आयामी वास्तविक मैनिफोल्ड पर मीट्रिक टेंसर जी दिया गया था, द्विघात रूप q(x) = g(x, x) किसी भी ऑर्थोगोनल आधार के प्रत्येक सदिश पर प्रयुक्त मीट्रिक टेंसर से जुड़ा हुआ n वास्तविक मान उत्पन्न करता है। सिल्वेस्टर के जड़त्व के नियम के अनुसार द्विघात रूपों के लिए जड़त्व का नियम सिल्वेस्टर के जड़त्व के नियम के अनुसार, इस विधि से उत्पादित प्रत्येक धनात्मक , ऋणात्मक और शून्य मानों की संख्या मीट्रिक टेंसर के अपरिवर्तनीय हैं, जो ऑर्थोगोनल आधार की पसंद से स्वतंत्र हैं। 'मीट्रिक हस्ताक्षर' (p, q, r) मेट्रिक टेंसर का ये नंबर देता है, जो उसी क्रम में दिखाया गया है। गैर-पतित मीट्रिक r = 0 टेंसर है और हस्ताक्षर को (p, q) दर्शाया जा सकता है, जहां p + q = n. है

परिभाषा

एक छद्म-रीमैनियन मैनिफोल्ड भिन्नात्मक विविधता है प्रत्येक स्पेस गैर-विकृत, चिकनी, सममित मीट्रिक टेंसर से सुसज्जित है

ऐसी मीट्रिक को छद्म-रिमानियन मीट्रिक कहा जाता है। सदिश फ़ील्ड पर प्रयुक्त, मैनिफोल्ड के किसी भी बिंदु पर परिणामी स्केलर फ़ील्ड मान धनात्मक , ऋणात्मक या शून्य हो सकता है।

छद्म-रीमानियन मीट्रिक (p, q) का हस्ताक्षर है , जहां p और q दोनों गैर-ऋणात्मक हैं। निरंतरता के साथ गैर-अपघटन स्थिति का तात्पर्य है कि p और q पूरे मैनिफोल्ड में अपरिवर्तित रहते हैं (यह मानते हुए कि यह जुड़ा हुआ है)।

छद्म-रीमैनियन मैनिफोल्ड्स के गुण

यूक्लिडियनस्पेस की तरह मॉडल रीमैनियन मैनिफोल्ड, मिन्कोवस्कीस्पेस के रूप में सोचा जा सकता है फ्लैट मिन्कोवस्की मीट्रिक के साथ मॉडल लोरेंत्ज़ियन मैनिफोल्ड है। इसी तरह, हस्ताक्षर के छद्म-रिमानियन मैनिफोल्ड के लिए मॉडलस्पेस (p, q) है

रीमैनियन ज्यामिति के कुछ मूलभूत प्रमेयों को छद्म-रिमैनियन स्थिति में सामान्यीकृत किया जा सकता है। विशेष रूप से, रीमैनियन ज्यामिति का मौलिक प्रमेय छद्म-रिमैनियन मैनिफोल्ड्स के लिए भी सच है। यह किसी को संबंधित रीमैन वक्रता टेंसर के साथ छद्म-रीमैनियन मैनिफोल्ड पर लेवी-सिविटा कनेक्शन के बारे में बात करने की अनुमति देता है। दूसरी ओर, रीमैनियन ज्यामिति में अनेक प्रमेय हैं जो सामान्यीकृत स्थिति में प्रयुक्त नहीं होते हैं। उदाहरण के लिए, यह सच नहीं है कि प्रत्येक स्मूथ मैनिफोल्ड किसी दिए गए हस्ताक्षर के छद्म-रीमैनियन मीट्रिक को स्वीकार करता है; कुछ टोपोलॉजी बाधाएँ हैं। इसके अतिरिक्त, सबमैनिफोल्ड को हमेशा छद्म-रीमानियन मैनिफोल्ड की संरचना विरासत में नहीं मिलती है; उदाहरण के लिए, किसी भी मिन्कोव्स्की स्पेस कारण संरचना प्रकाश-सदृश वक्र पर मीट्रिक टेंसर शून्य हो जाता है। क्लिफ्टन-पोहल टोरस छद्म-रिमानियन मैनिफोल्ड का उदाहरण प्रदान करता है जो कॉम्पैक्ट है किन्तु पूर्ण नहीं है, गुणों का संयोजन जो हॉपफ-रिनो प्रमेय रीमैनियन मैनिफोल्ड के लिए अस्वीकार करता है।[3]

लोरेंत्ज़ियन मैनिफोल्ड

एक लोरेंट्ज़ियन मैनिफोल्ड छद्म-रीमैनियन मैनिफोल्ड का महत्वपूर्ण विशेष स्थिति है जिसमें मीट्रिक (1, n−1) हस्ताक्षर है संधिपत्र पर हस्ताक्षर करें देखें)। ऐसे आव्युह को 'लोरेंत्ज़ियन आव्युह ' कहा जाता है. इनका नाम डच भौतिक विज्ञानी हेंड्रिक लोरेंत्ज़ के नाम पर रखा गया है।

भौतिकी में अनुप्रयोग

रीमैनियन मैनिफोल्ड्स के पश्चात , लोरेंत्ज़ियन मैनिफोल्ड्स छद्म-रिमैनियन मैनिफोल्ड्स का सबसे महत्वपूर्ण उपवर्ग बनाते हैं। वे सामान्य सापेक्षता के अनुप्रयोगों में महत्वपूर्ण हैं।

सामान्य सापेक्षता का प्रमुख आधार यह है कि स्पेसटाइम को हस्ताक्षर के 4-आयामी लोरेंत्ज़ियन मैनिफोल्ड के रूप में तैयार किया जा सकता है (3, 1) या, समकक्ष, (1, 3). धनात्मक -निश्चित आव्युह के साथ रीमैनियन मैनिफोल्ड्स के विपरीत, अनिश्चित हस्ताक्षर स्पर्शरेखा सदिश को टाइमलाइक, शून्य या स्पेसलाइक में वर्गीकृत करने की अनुमति देता है। (p, 1) के हस्ताक्षर के साथ या (1, q), मैनिफोल्ड स्थानीय रूप से (और संभवतः विश्व स्तर पर) समय-उन्मुख भी है (कारण संरचना देखें)।

यह भी देखें

टिप्पणियाँ

संदर्भ

  • Benn, I.M.; Tucker, R.W. (1987), An introduction to Spinors and Geometry with Applications in Physics (First published 1987 ed.), Adam Hilger, ISBN 0-85274-169-3
  • Bishop, Richard L.; Goldberg, Samuel I. (1968), Tensor Analysis on Manifolds (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6
  • Chen, Bang-Yen (2011), Pseudo-Riemannian Geometry, [delta]-invariants and Applications, World Scientific Publisher, ISBN 978-981-4329-63-7
  • O'Neill, Barrett (1983), Semi-Riemannian Geometry With Applications to Relativity, Pure and Applied Mathematics, vol. 103, Academic Press, ISBN 9780080570570
  • Vrănceanu, G.; Roşca, R. (1976), Introduction to Relativity and Pseudo-Riemannian Geometry, Bucarest: Editura Academiei Republicii Socialiste România.

बाहरी संबंध