अर्धचालक सामग्रियों की सूची

From Vigyanwiki
Revision as of 00:17, 2 August 2023 by alpha>Jyotis

सेमीकंडक्टर सामग्री नाममात्र रूप से छोटे ऊर्जा अंतराल इंसुलेटर (बिजली) हैं। अर्धचालक सामग्री की परिभाषित संपत्ति यह है कि इसे उन अशुद्धियों के साथ डोपिंग (अर्धचालक) द्वारा समझौता किया जा सकता है जो इसके इलेक्ट्रॉनिक गुणों को नियंत्रित तरीके से बदल देते हैं।[1]

कंप्यूटर और फोटोवोल्टिक उद्योग में - ट्रांजिस्टर, लेज़र और सौर कोशिकाओं जैसे उपकरणों में उनके अनुप्रयोग के कारण - नई अर्धचालक सामग्रियों की खोज और मौजूदा सामग्रियों में सुधार सामग्री विज्ञान में अध्ययन का एक महत्वपूर्ण क्षेत्र है।

सबसे अधिक उपयोग की जाने वाली अर्धचालक सामग्री क्रिस्टलीय अकार्बनिक ठोस हैं। इन सामग्रियों को उनके घटक परमाणुओं के समूह (आवर्त सारणी) के अनुसार वर्गीकृत किया गया है।

विभिन्न अर्धचालक पदार्थ अपने गुणों में भिन्न होते हैं। इस प्रकार, सिलिकॉन की तुलना में, मिश्रित अर्धचालकों के फायदे और नुकसान दोनों हैं। उदाहरण के लिए, गैलियम आर्सेनाइड (GaAs) में सिलिकॉन की तुलना में छह गुना अधिक इलेक्ट्रॉन गतिशीलता होती है, जो तेजी से संचालन की अनुमति देती है; व्यापक बैंड गैप, जो उच्च तापमान पर बिजली उपकरणों के संचालन की अनुमति देता है, और कमरे के तापमान पर कम बिजली उपकरणों को कम थर्मल शोर देता है; इसका प्रत्यक्ष बैंड गैप इसे सिलिकॉन के अप्रत्यक्ष बैंड गैप की तुलना में अधिक अनुकूल optoelectronic गुण प्रदान करता है; इसे समायोज्य बैंड गैप चौड़ाई के साथ टर्नरी और चतुर्धातुक रचनाओं में मिश्रित किया जा सकता है, जो चयनित तरंग दैर्ध्य पर प्रकाश उत्सर्जन की अनुमति देता है, जो ऑप्टिकल फाइबर के माध्यम से सबसे कुशलता से प्रसारित तरंग दैर्ध्य से मेल खाना संभव बनाता है। GaAs को अर्ध-इन्सुलेट रूप में भी उगाया जा सकता है, जो GaAs उपकरणों के लिए जाली-मिलान इन्सुलेटिंग सब्सट्रेट के रूप में उपयुक्त है। इसके विपरीत, सिलिकॉन मजबूत, सस्ता और संसाधित करने में आसान है, जबकि GaAs भंगुर और महंगा है, और इन्सुलेशन परतें केवल ऑक्साइड परत बढ़ने से नहीं बनाई जा सकती हैं; इसलिए GaAs का उपयोग केवल वहीं किया जाता है जहां सिलिकॉन पर्याप्त नहीं है।[2] कई यौगिकों को मिश्रित करके, कुछ अर्धचालक सामग्री को ट्यून किया जा सकता है, उदाहरण के लिए, बैंड गैप या जाली स्थिरांक में। परिणाम त्रिक, चतुर्धातुक, या यहाँ तक कि पंचक रचनाएँ हैं। टर्नरी रचनाएँ शामिल बाइनरी यौगिकों की सीमा के भीतर बैंड गैप को समायोजित करने की अनुमति देती हैं; हालाँकि, प्रत्यक्ष और अप्रत्यक्ष बैंड गैप सामग्रियों के संयोजन के मामले में एक अनुपात होता है जहां अप्रत्यक्ष बैंड गैप प्रबल होता है, जो ऑप्टोइलेक्ट्रॉनिक्स के लिए उपयोग करने योग्य सीमा को सीमित करता है; जैसे AlGaAs प्रकाश उत्सर्जक डायोड इसके द्वारा 660 एनएम तक सीमित हैं। यौगिकों के जाली स्थिरांक भी अलग-अलग होते हैं, और मिश्रण अनुपात पर निर्भर सब्सट्रेट के खिलाफ जाली बेमेल, बेमेल परिमाण पर निर्भर मात्रा में दोष का कारण बनता है; यह प्राप्य विकिरणीय/गैर-विकिरणीय पुनर्संयोजन के अनुपात को प्रभावित करता है और डिवाइस की चमकदार दक्षता निर्धारित करता है। चतुर्धातुक और उच्च रचनाएँ बैंड गैप और जाली स्थिरांक को एक साथ समायोजित करने की अनुमति देती हैं, जिससे तरंग दैर्ध्य की व्यापक रेंज पर दीप्तिमान दक्षता बढ़ती है; उदाहरण के लिए AlGaInP का उपयोग LED के लिए किया जाता है। प्रकाश की उत्पन्न तरंग दैर्ध्य के लिए पारदर्शी सामग्री लाभप्रद होती है, क्योंकि इससे सामग्री के बड़े हिस्से से फोटॉन के अधिक कुशल निष्कर्षण की अनुमति मिलती है। अर्थात् ऐसे पारदर्शी पदार्थों में प्रकाश उत्पादन केवल सतह तक ही सीमित नहीं होता। अपवर्तन सूचकांक भी संरचना-निर्भर है और सामग्री से फोटॉन की निष्कर्षण दक्षता को प्रभावित करता है।[3]

टैंग-ड्रेसेलहॉस सिद्धांत का प्रस्ताव रखा, जहां इलेक्ट्रॉनों और छिद्रों में सापेक्ष प्रभाव हो सकते हैं जो नए अर्धचालक चिप्स और ऊर्जा रूपांतरण उपकरणों के विकास का नेतृत्व कर सकते हैं।

सिलिकॉन, गैलियम आर्सेनाइड और सिलिकन कार्बाइड जैसे पारंपरिक अर्धचालकों के विपरीत, जहां इलेक्ट्रॉनों और छिद्रों को आमतौर पर सापेक्ष कण के रूप में वर्णित किया जाता है | गैर-सापेक्ष कण जो परवलयिक ऊर्जा-संवेग संबंध | ऊर्जा-संवेग फैलाव प्रदर्शित करते हैं,[4][5] नए अर्धचालकों में हाल की खोजों, जैसे कि मैसाचुसेट्स की तकनीकी संस्था में शुआंग तांग और मिल्ड्रेड ड्रेसेलहॉस द्वारा डिराक शंकु | तांग-ड्रेसेलहॉस सिद्धांत में प्रस्तावित अर्ध-डिराक और अर्ध-डिराक सामग्रियों ने सापेक्ष कण के साथ इलेक्ट्रॉनों और छिद्रों के अस्तित्व का खुलासा किया है।[6][7][8] ये नई सामग्रियां दिलचस्प गुणों का प्रदर्शन करती हैं जो अगली पीढ़ी के कंप्यूटर चिप्स और ऊर्जा कनवर्टर विकसित करने के लिए पारंपरिक अर्धचालकों के व्यवहार से भिन्न हैं।

अर्धचालक सामग्री के प्रकार

यौगिक अर्धचालक

एक यौगिक अर्धचालक एक अर्धचालक रासायनिक यौगिक है जो कम से कम दो अलग-अलग प्रजातियों के रासायनिक तत्वों से बना होता है। ये अर्धचालक उदाहरण के लिए समूह (आवर्त सारणी) 13-15 (पुराने समूह III-V) में बनते हैं, उदाहरण के लिए बोरॉन समूह (पुराने समूह III, बोरान, अल्युमीनियम , गैलियम, ईण्डीयुम ) और नाइट्रोजन समूह (पुराने समूह V, नाइट्रोजन, फास्फोरस, हरताल , सुरमा , विस्मुट) से तत्व। संभावित सूत्रों की सीमा काफी व्यापक है क्योंकि ये तत्व बाइनरी (दो तत्व, जैसे गैलियम (III) आर्सेनाइड (GaAs)), टर्नरी (तीन तत्व, जैसे इंडियम गैलियम आर्सेनाइड (InGaAs)) और चतुर्धातुक मिश्र धातु (चार तत्व) जैसे एल्यूमीनियम गैलियम इंडियम फॉस्फाइड (AlInGaP)) मिश्र धातु और इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड (InAsSbP) बना सकते हैं। III-V यौगिक अर्धचालकों के गुण उनके समूह IV समकक्षों के समान हैं। इन यौगिकों में और विशेष रूप से II-VI यौगिक में उच्च आयनिकता, कम आयनिक यौगिकों के संबंध में मौलिक बैंडगैप को बढ़ाती है।[9]

निर्माण

मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी | मेटलऑर्गेनिक वाष्प-चरण एपिटैक्सी (एमओवीपीई) उपकरणों के लिए यौगिक अर्धचालक पतली फिल्मों के निर्माण के लिए सबसे लोकप्रिय जमाव तकनीक है।[citation needed] यह हाइड्रोजन जैसी परिवेशी गैस में अग्रदूत (रसायन विज्ञान) स्रोत सामग्री के रूप में अल्ट्राप्योर मेटलऑर्गेनिक्स और/या हाइड्राइड्स का उपयोग करता है।

पसंद की अन्य तकनीकों में शामिल हैं:

अर्धचालक सामग्री की तालिका

समूह Elem. सामग्री फ़ारमूला Band gap (eV) गैप प्रकार विवरण
IV 1 सिलिकॉन Si 1.12[10][11] indirect Used in conventional crystalline silicon (c-Si) solar cells, and in its amorphous form as amorphous silicon (a-Si) in thin-film solar cells. Most common semiconductor material in photovoltaics; dominates worldwide PV market; easy to fabricate; good electrical and mechanical properties. Forms high quality thermal oxide for insulation purposes. Most common material used in the fabrication of Integrated Circuits.
IV 1 जर्मेनियम Ge 0.67[10][11] indirect Used in early radar detection diodes and first transistors; requires lower purity than silicon. A substrate for high-efficiency multijunction photovoltaic cells. Very similar lattice constant to gallium arsenide. High-purity crystals used for gamma spectroscopy. May grow whiskers, which impair reliability of some devices.
IV 1 डायमंड C 5.47[10][11] indirect Excellent thermal conductivity. Superior mechanical and optical properties.

High carrier mobilities[12] and high electric breakdown field[13] at room temperature as excellent electronics characteristics. Extremely high nanomechanical resonator quality factor.[14]

IV 1 ग्रे टिन, α-Sn Sn 0.08[15] indirect निम्न तापमान एलोट्रोप (डायमंड क्यूबिक जाली)।
IV 2 सिलिकन कार्बाइड, 3C-SiC SiC 2.3[10] indirect शुरुआती पीली एलईडी के लिए उपयोग किया जाता है
IV 2 सिलिकन कार्बाइड, 4H-SiC SiC 3.3[10] indirect उच्च-वोल्टेज और उच्च-तापमान अनुप्रयोगों के लिए उपयोग किया जाता है
IV 2 सिलिकन कार्बाइड, 6H-SiC SiC 3.0[10] indirect प्रारंभिक नीली एल ई डी के लिए उपयोग किया जाता है
VI 1 गंधक, α-S S8 2.6[16]
VI 1 ग्रे (त्रिकोणीय) सेलेनियम Se 1.83 - 2.0[17] indirect Used in selenium rectifiers. Band gap depends on fabrication conditions.
VI 1 लाल सेलेनियम Se 2.05 indirect [18]
VI 1 टेल्यूरियम Te 0.33[19]
III-V 2 बोरोन नाइट्राइड, घन BN 6.36[20] indirect पराबैंगनी एल ई डी के लिए संभावित रूप से उपयोगी
III-V 2 बोरोन नाइट्राइड, षट्कोणीय BN 5.96[20] quasi-direct पराबैंगनी एल ई डी के लिए संभावित रूप से उपयोगी
III-V 2 बोरोन नाइट्राइड नैनोट्यूब BN 5.5[21]
III-V 2 बोरोन फॉस्फाइड BP 2.1[22] indirect
III-V 2 बोरोन आर्सेनाइड BAs 1.82 direct Ultrahigh thermal conductivity for thermal management; Resistant to radiation damage, possible applications in betavoltaics.
III-V 2 बोरोन आर्सेनाइड B12As2 3.47 indirect Resistant to radiation damage, possible applications in betavoltaics.
III-V 2 एल्युमिनियम नाइट्राइड AlN 6.28[10] direct पीज़ोइलेक्ट्रिक। अर्धचालक के रूप में स्वयं उपयोग नहीं किया जाता; AlN-बंद GaAlN संभवतः पराबैंगनी एलईडी के लिए प्रयोग योग्य है। AlN पर 210 एनएम पर अकुशल उत्सर्जन हासिल किया गया था।
III-V 2 एल्युमीनियम फॉस्फाइड AlP 2.45[11] indirect
III-V 2 एल्युमीनियम आर्सेनाइड AlAs 2.16[11] indirect
III-V 2 एल्युमिनियम एंटीमोनाइड AlSb 1.6/2.2[11] indirect/direct
III-V 2 गैलियम नाइट्राइड GaN 3.44[10][11] direct problematic to be doped to p-type, p-doping with Mg and annealing allowed first high-efficiency blue LEDs[3] and blue lasers. Very sensitive to ESD. Insensitive to ionizing radiation. GaN transistors can operate at higher voltages and higher temperatures than GaAs, used in microwave power amplifiers. When doped with e.g. manganese, becomes a magnetic semiconductor.
III-V 2 गैलियम फॉस्फाइड GaP 2.26[10][11] indirect प्रारंभिक निम्न से मध्यम चमक वाले सस्ते लाल/नारंगी/हरे एलईडी में उपयोग किया जाता है। स्टैंडअलोन या GaAsP के साथ उपयोग किया जाता है। पीली और लाल रोशनी के लिए पारदर्शी, GaAsP लाल/पीली एलईडी के लिए सब्सट्रेट के रूप में उपयोग किया जाता है। एन-प्रकार के लिए एस या टी के साथ डोप किया गया, पी-प्रकार के लिए जेएन के साथ। शुद्ध GaP हरे रंग का उत्सर्जन करता है, नाइट्रोजन-डॉप्ड GaP पीले-हरे रंग का उत्सर्जन करता है, ZnO-डॉप्ड GaP लाल रंग का उत्सर्जन करता है।
III-V 2 गैलियम आर्सेनाइड GaAs 1.42[10][11] direct second most common in use after silicon, commonly used as substrate for other III-V semiconductors, e.g. InGaAs and GaInNAs. Brittle. Lower hole mobility than Si, P-type CMOS transistors unfeasible. High impurity density, difficult to fabricate small structures. Used for near-IR LEDs, fast electronics, and high-efficiency solar cells. Very similar lattice constant to germanium, can be grown on germanium substrates.
III-V 2 गैलियम एंटीमोनाइड GaSb 0.73[10][11] direct Used for infrared detectors and LEDs and thermophotovoltaics. Doped n with Te, p with Zn.
III-V 2 इंडियम नाइट्राइड InN 0.7[10] direct सौर सेलों में उपयोग संभव है, लेकिन पी-टाइप डोपिंग मुश्किल है। मिश्रधातु के रूप में अक्सर उपयोग किया जाता है।
III-V 2 इंडियम फॉस्फाइड InP 1.35[10] direct आमतौर पर एपिटैक्सियल InGaAs के लिए सब्सट्रेट के रूप में उपयोग किया जाता है। सुपीरियर इलेक्ट्रॉन वेग, उच्च-शक्ति और उच्च-आवृत्ति अनुप्रयोगों में उपयोग किया जाता है। ऑप्टोइलेक्ट्रॉनिक्स में उपयोग किया जाता है।
III-V 2 इंडियम आर्सेनाइड InAs 0.36[10] direct Used for infrared detectors for 1–3.8 µm, cooled or uncooled. High electron mobility. InAs dots in InGaAs matrix can serve as quantum dots. Quantum dots may be formed from a monolayer of InAs on InP or GaAs. Strong photo-Dember emitter, used as a terahertz radiation source.
III-V 2 इंडियम एंटीमोनाइड InSb 0.17[10] direct Used in infrared detectors and thermal imaging sensors, high quantum efficiency, low stability, require cooling, used in military long-range thermal imager systems. AlInSb-InSb-AlInSb structure used as quantum well. Very high electron mobility, electron velocity and ballistic length. Transistors can operate below 0.5V and above 200 GHz. Terahertz frequencies maybe achievable.
II-VI 2 कैडमियम सेलेनाइड CdSe 1.74[11] direct Nanoparticles used as quantum dots. Intrinsic n-type, difficult to dope p-type, but can be p-type doped with nitrogen. Possible use in optoelectronics. Tested for high-efficiency solar cells.
II-VI 2 कैडमियम सल्फाइड CdS 2.42[11] direct Used in photoresistors and solar cells; CdS/Cu2S was the first efficient solar cell. Used in solar cells with CdTe. Common as quantum dots. Crystals can act as solid-state lasers. Electroluminescent. When doped, can act as a phosphor.
II-VI 2 कैडमियम टेलुराइड CdTe 1.49[11] direct Used in solar cells with CdS. Used in thin film solar cells and other cadmium telluride photovoltaics; less efficient than crystalline silicon but cheaper. High electro-optic effect, used in electro-optic modulators. Fluorescent at 790 nm. Nanoparticles usable as quantum dots.
II-VI, oxide 2 ज़िंक ऑक्साइड ZnO 3.37[11] direct Photocatalytic. Band gap is tunable from 3 to 4 eV by alloying with magnesium oxide and cadmium oxide. Intrinsic n-type, p-type doping is difficult. Heavy aluminium, indium, or gallium doping yields transparent conductive coatings; ZnO:Al is used as window coatings transparent in visible and reflective in infrared region and as conductive films in LCD displays and solar panels as a replacement of indium tin oxide. Resistant to radiation damage. Possible use in LEDs and laser diodes. Possible use in random lasers.
II-VI 2 Zinc selenide ZnSe 2.7[11] direct नीले लेजर और एलईडी के लिए उपयोग किया जाता है। एन-टाइप डोपिंग करना आसान है, पी-टाइप डोपिंग कठिन है लेकिन इसे किया जा सकता है, उदाहरण के लिए नाइट्रोजन। इन्फ्रारेड ऑप्टिक्स में सामान्य ऑप्टिकल सामग्री।
II-VI 2 Zinc sulfide ZnS 3.54/3.91[11] direct बैंड गैप 3.54 eV (घन), 3.91 (हेक्सागोनल)। एन-टाइप और पी-टाइप दोनों में डोप किया जा सकता है। उपयुक्त रूप से डोप किए जाने पर सामान्य सिंटिलेटर/फॉस्फोर।
II-VI 2 Zinc telluride ZnTe 2.3[11] direct Can be grown on AlSb, GaSb, InAs, and PbSe. Used in solar cells, components of microwave generators, blue LEDs and lasers. Used in electrooptics. Together with lithium niobate used to generate terahertz radiation.
I-VII 2 Cuprous chloride CuCl 3.4[23] direct
I-VI 2 Copper sulfide Cu2S 1.2[22] indirect पी-प्रकार, Cu2S/CdS पहला कुशल पतली फिल्म सौर सेल था
IV-VI 2 Lead selenide PbSe 0.26[19] direct थर्मल इमेजिंग के लिए इन्फ्रारेड डिटेक्टरों में उपयोग किया जाता है। क्वांटम डॉट्स के रूप में प्रयोग करने योग्य नैनोक्रिस्टल। अच्छा उच्च तापमान थर्मोइलेक्ट्रिक सामग्री।
IV-VI 2 Lead(II) sulfide PbS 0.37[24] Mineral galena, first semiconductor in practical use, used in cat's whisker detectors; the detectors are slow due to high dielectric constant of PbS. Oldest material used in infrared detectors. At room temperature can detect SWIR, longer wavelengths require cooling.
IV-VI 2 Lead telluride PbTe 0.32[10] कम तापीय चालकता, थर्मोइलेक्ट्रिक जनरेटर के लिए ऊंचे तापमान पर अच्छी थर्मोइलेक्ट्रिक सामग्री।
IV-VI 2 Tin(II) sulfide SnS 1.3/1.0[25] direct/indirect टिन सल्फाइड (एसएनएस) एक अर्धचालक है जिसका प्रत्यक्ष ऑप्टिकल बैंड गैप 1.3 eV है और अवशोषण गुणांक 1.3 eV से ऊपर फोटॉन ऊर्जा के लिए 104 सेमी−1 से ऊपर है। यह एक पी-प्रकार अर्धचालक है जिसके विद्युत गुणों को डोपिंग और संरचनात्मक संशोधन द्वारा तैयार किया जा सकता है और यह एक दशक से पतली फिल्म सौर कोशिकाओं के लिए सरल, गैर विषैले और सस्ती सामग्री में से एक के रूप में उभरा है।
IV-VI 2 Tin(IV) sulfide SnS2 2.2[26] SnS2 का व्यापक रूप से गैस सेंसिंग अनुप्रयोगों में उपयोग किया जाता है।
IV-VI 2 Tin telluride SnTe 0.18 जटिल बैंड संरचना.
IV-VI 3 Lead tin telluride Pb1−xSnxTe 0-0.29 इन्फ्रारेड डिटेक्टरों और थर्मल इमेजिंग के लिए उपयोग किया जाता है
V-VI, layered 2 Bismuth telluride Bi2Te3 0.13[10] सेलेनियम या सुरमा के साथ मिश्रित होने पर कमरे के तापमान के पास कुशल थर्मोइलेक्ट्रिक सामग्री। संकीर्ण-अंतराल स्तरित अर्धचालक। उच्च विद्युत चालकता, कम तापीय चालकता। टोपोलॉजिकल इन्सुलेटर.
II-V 2 Cadmium phosphide Cd3P2 0.5[27]
II-V 2 Cadmium arsenide Cd3As2 0 N-type intrinsic semiconductor. Very high electron mobility. Used in infrared detectors, photodetectors, dynamic thin-film pressure sensors, and magnetoresistors. Recent measurements suggest that 3D Cd3As2 is actually a zero band-gap Dirac semimetal in which electrons behave relativistically as in graphene.[28]
II-V 2 Zinc phosphide Zn3P2 1.5[29] direct आमतौर पर पी-प्रकार.
II-V 2 Zinc diphosphide ZnP2 2.1[30]
II-V 2 Zinc arsenide Zn3As2 1.0[31] सबसे कम प्रत्यक्ष और अप्रत्यक्ष बैंडगैप 30 meV या एक दूसरे के भीतर हैं।[31]
II-V 2 Zinc antimonide Zn3Sb2 इन्फ्रारेड डिटेक्टरों और थर्मल इमेजर्स, ट्रांजिस्टर और मैग्नेटोरेसिस्टर्स में उपयोग किया जाता है।
Oxide 2 Titanium dioxide, anatase TiO2 3.20[32] indirect फोटोकैटलिटिक, एन-प्रकार
Oxide 2 Titanium dioxide, rutile TiO2 3.0[32] direct फोटोकैटलिटिक, एन-प्रकार
Oxide 2 Titanium dioxide, brookite TiO2 3.26[32] [33]
Oxide 2 Copper(I) oxide Cu2O 2.17[34] सबसे अधिक अध्ययन किए गए अर्धचालकों में से एक। कई अनुप्रयोगों और प्रभावों को पहली बार इसके साथ प्रदर्शित किया गया। सिलिकॉन से पहले, रेक्टिफायर डायोड में उपयोग किया जाता था।
Oxide 2 Copper(II) oxide CuO 1.2 एन-प्रकार अर्धचालक[35]
Oxide 2 Uranium dioxide UO2 1.3 High Seebeck coefficient, resistant to high temperatures, promising thermoelectric and thermophotovoltaic applications. Formerly used in URDOX resistors, conducting at high temperature. Resistant to radiation damage.
Oxide 2 Tin dioxide SnO2 3.7 ऑक्सीजन की कमी वाला एन-प्रकार अर्धचालक। गैस सेंसर में उपयोग किया जाता है।
Oxide 3 Barium titanate BaTiO3 3 Ferroelectric, piezoelectric. Used in some uncooled thermal imagers. Used in nonlinear optics.
Oxide 3 Strontium titanate SrTiO3 3.3 Ferroelectric, piezoelectric. Used in varistors. Conductive when niobium-doped.
Oxide 3 Lithium niobate LiNbO3 4 Ferroelectric, piezoelectric, shows Pockels effect. Wide uses in electrooptics and photonics.
V-VI 2 monoclinic Vanadium(IV) oxide VO2 0.7[36] optical 67°C से नीचे स्थिर
Layered 2 Lead(II) iodide PbI2 2.4[37] PbI2 अपने थोक रूप में 2.4 eV के बैंडगैप के साथ एक स्तरित प्रत्यक्ष बैंडगैप अर्धचालक है, जबकि इसके 2D मोनोलेयर में ~2.5 eV का अप्रत्यक्ष बैंडगैप है, जिसमें 1-3 eV के बीच बैंडगैप को ट्यून करने की संभावनाएं हैं।
Layered 2 Molybdenum disulfide MoS2 1.23 eV (2H)[38] indirect
Layered 2 Gallium selenide GaSe 2.1 indirect फोटोकंडक्टर. अरेखीय प्रकाशिकी में उपयोग। 2D-सामग्री के रूप में उपयोग किया जाता है। वायु संवेदनशील[39][40][41]
Layered 2 Indium selenide InSe 1.26-2.35 eV[41] direct (indirect in 2D) वायु संवेदनशील. कुछ- और मोनो-लेयर रूप में उच्च विद्युत गतिशीलता[39][40][41]
Layered 2 Tin sulfide SnS >1.5 eV direct
Layered 2 Bismuth sulfide Bi2S3 1.3[10]
Magnetic, diluted (DMS)[42] 3 Gallium manganese arsenide GaMnAs
Magnetic, diluted (DMS) 3 Lead manganese telluride PbMnTe
Magnetic 4 Lanthanum calcium manganate La0.7Ca0.3MnO3 विशाल चुंबकत्व
Magnetic 2 Iron(II) oxide FeO 2.2 [43] antiferromagnetic Band gap for iron oxide nanoparticles was found to be 2.2 eV and on doping the band gap found to be increased up to 2.5 eV
Magnetic 2 Nickel(II) oxide NiO 3.6–4.0 direct[44][45] प्रति-लौहचुंबकीय
Magnetic 2 Europium(II) oxide EuO लौह-चुंबकीय
Magnetic 2 Europium(II) sulfide EuS लौह-चुंबकीय
Magnetic 2 Chromium(III) bromide CrBr3
other 3 Copper indium selenide, CIS CuInSe2 1 direct
other 3 Silver gallium sulfide AgGaS2 अरैखिक ऑप्टिकल गुण
other 3 Zinc silicon phosphide ZnSiP2 2.0[22]
other 2 Arsenic trisulfide Orpiment As2S3 2.7[46] direct क्रिस्टलीय और कांच जैसी अवस्था में अर्धचालक
other 2 Arsenic sulfide Realgar As4S4 क्रिस्टलीय और कांच जैसी अवस्था में अर्धचालक
other 2 Platinum silicide PtSi 1-5 µm के लिए इन्फ्रारेड डिटेक्टरों में उपयोग किया जाता है। अवरक्त खगोल विज्ञान में उपयोग किया जाता है। उच्च स्थिरता, कम बहाव, माप के लिए उपयोग किया जाता है। कम क्वांटम दक्षता।
other 2 Bismuth(III) iodide BiI3
other 2 Mercury(II) iodide HgI2 कमरे के तापमान पर काम करने वाले कुछ गामा-रे और एक्स-रे डिटेक्टरों और इमेजिंग सिस्टम में उपयोग किया जाता है।
other 2 Thallium(I) bromide TlBr 2.68[47] कमरे के तापमान पर काम करने वाले कुछ गामा-रे और एक्स-रे डिटेक्टरों और इमेजिंग सिस्टम में उपयोग किया जाता है। वास्तविक समय एक्स-रे छवि सेंसर के रूप में उपयोग किया जाता है।
other 2 Silver sulfide Ag2S 0.9[48]
other 2 Iron disulfide FeS2 0.95[49] Mineral pyrite. Used in later cat's whisker detectors, investigated for solar cells.
other 4 Copper zinc tin sulfide, CZTS Cu2ZnSnS4 1.49 direct Cu2ZnSnS4 is derived from CIGS, replacing the Indium/Gallium with earth abundant Zinc/Tin.
other 4 Copper zinc antimony sulfide, CZAS Cu1.18Zn0.40Sb1.90S7.2 2.2[50] direct Copper zinc antimony sulfide is derived from copper antimony sulfide (CAS), a famatinite class of compound.
other 3 Copper tin sulfide, CTS Cu2SnS3 0.91[22] direct Cu2SnS3 is p-type semiconductor and it can be used in thin film solar cell application.


अर्धचालक मिश्रधातु प्रणालियों की तालिका

निम्नलिखित अर्धचालक प्रणालियों को कुछ हद तक समायोजित किया जा सकता है, और ये किसी एक सामग्री का नहीं बल्कि सामग्रियों के एक वर्ग का प्रतिनिधित्व करते हैं।

समूह Elem. सामग्री वर्ग Formula data-sort-type=number | Band gap (eV) Gap type विवरण
Lower Upper
IV-VI 3 लेड टिन टेलुराइड Pb1−xSnxTe 0 0.29 Used in infrared detectors and for thermal imaging
IV 2 सिलिकॉन जर्मेनियम Si1−xGex 0.67 1.11[10] अप्रत्यक्ष adjustable band gap, allows construction of heterojunction structures. Certain thicknesses of superlattices have direct band gap.[51]
IV 2 सिलिकॉन-टिन Si1−xSnx 1.0 1.11 अप्रत्यक्ष Adjustable band gap.[52]
III-V 3 एल्यूमिनियम गैलियम आर्सेनाइड AlxGa1−xAs 1.42 2.16[10] प्रत्यक्ष/अप्रत्यक्ष direct band gap for x<0.4 (corresponding to 1.42–1.95 eV); can be lattice-matched to GaAs substrate over entire composition range; tends to oxidize; n-doping with Si, Se, Te; p-doping with Zn, C, Be, Mg.[3] Can be used for infrared laser diodes. Used as a barrier layer in GaAs devices to confine electrons to GaAs (see e.g. QWIP). AlGaAs with composition close to AlAs is almost transparent to sunlight. Used in GaAs/AlGaAs solar cells.
III-V 3 इंडियम गैलियम आर्सेनाइड InxGa1−xAs 0.36 1.43 प्रत्यक्ष Well-developed material. Can be lattice matched to InP substrates. Use in infrared technology and thermophotovoltaics. Indium content determines charge carrier density. For x=0.015, InGaAs perfectly lattice-matches germanium; can be used in multijunction photovoltaic cells. Used in infrared sensors, avalanche photodiodes, laser diodes, optical fiber communication detectors, and short-wavelength infrared cameras.
III-V 3 इंडियम गैलियम फॉस्फाइड InxGa1−xP 1.35 2.26 प्रत्यक्ष/अप्रत्यक्ष used for HEMT and HBT structures and high-efficiency multijunction solar cells for e.g. satellites. Ga0.5In0.5P is almost lattice-matched to GaAs, with AlGaIn used for quantum wells for red lasers.
III-V 3 एल्यूमिनियम इंडियम आर्सेनाइड AlxIn1−xAs 0.36 2.16 प्रत्यक्ष/अप्रत्यक्ष Buffer layer in metamorphic HEMT transistors, adjusting lattice constant between GaAs substrate and GaInAs channel. Can form layered heterostructures acting as quantum wells, in e.g. quantum cascade lasers.
III-V 3 एल्यूमिनियम इंडियम एंटीमोनाइड AlxIn1−xSb
III-V 3 गैलियम आर्सेनाइड नाइट्राइड GaAsN
III-V 3 गैलियम आर्सेनाइड फॉस्फाइड GaAsP 1.43 2.26 प्रत्यक्ष/अप्रत्यक्ष लाल, नारंगी और पीले एलईडी में उपयोग किया जाता है। अक्सर GaP पर उगाया जाता है। नाइट्रोजन के साथ डोप किया जा सकता है।
III-V 3 गैलियम आर्सेनाइड एंटीमोनाइड GaAsSb 0.7 1.42[10] प्रत्यक्ष
III-V 3 एल्यूमिनियम गैलियम नाइट्राइड AlGaN 3.44 6.28 प्रत्यक्ष Used in blue laser diodes, ultraviolet LEDs (down to 250 nm), and AlGaN/GaN HEMTs. Can be grown on sapphire. Used in heterojunctions with AlN and GaN.
III-V 3 एल्यूमिनियम गैलियम फॉस्फाइड AlGaP 2.26 2.45 अप्रत्यक्ष कुछ हरे एलईडी में उपयोग किया जाता है।
III-V 3 इंडियम गैलियम नाइट्राइड InGaN 2 3.4 प्रत्यक्ष InxGa1–xN, x आमतौर पर 0.02–0.3 के बीच (निकट-यूवी के लिए 0.02, 390 एनएम के लिए 0.1, 420 एनएम के लिए 0.2, 440 एनएम के लिए 0.3)। नीलमणि, SiC वेफर्स या सिलिकॉन पर एपिटैक्सियल रूप से उगाया जा सकता है। आधुनिक नीले और हरे एलईडी में उपयोग किए जाने वाले InGaN क्वांटम कुएं हरे से पराबैंगनी तक प्रभावी उत्सर्जक हैं। विकिरण क्षति के प्रति असंवेदनशील, उपग्रह सौर कोशिकाओं में संभावित उपयोग। दोषों के प्रति असंवेदनशील, जाली बेमेल क्षति के प्रति सहनशील। उच्च ताप क्षमता.
III-V 3 इंडियम आर्सेनाइड एंटीमोनाइड InAsSb
III-V 3 इंडियम गैलियम एंटीमोनाइड InGaSb
III-V 4 एल्यूमिनियम गैलियम इंडियम फॉस्फाइड AlGaInP प्रत्यक्ष/अप्रत्यक्ष InAlGaP, InGaAlP, AlInGaP भी; GaAs सबस्ट्रेट्स से मेल खाने वाले जाली के लिए इन मोल अंश लगभग 0.48 पर तय किया गया है, Al/Ga अनुपात को लगभग 1.9 और 2.35 eV के बीच बैंड अंतराल प्राप्त करने के लिए समायोजित किया गया है; Al/Ga/In अनुपात के आधार पर प्रत्यक्ष या अप्रत्यक्ष बैंड अंतराल; 560-650 एनएम के बीच तरंग दैर्ध्य के लिए उपयोग किया जाता है; जमाव के दौरान क्रमबद्ध चरणों का निर्माण होता है, जिसे रोका जाना चाहिए[3]
III-V 4 एल्यूमिनियम गैलियम आर्सेनाइड फॉस्फाइड AlGaAsP
III-V 4 इंडियम गैलियम आर्सेनाइड फॉस्फाइड InGaAsP
III-V 4 इंडियम गैलियम आर्सेनाइड एंटीमोनाइड InGaAsSb थर्मोफोटोवोल्टिक्स में उपयोग करें।
III-V 4 इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड InAsSbP थर्मोफोटोवोल्टिक्स में उपयोग करें।
III-V 4 एल्यूमिनियम इंडियम आर्सेनाइड फॉस्फाइड AlInAsP
III-V 4 एल्यूमिनियम गैलियम आर्सेनाइड नाइट्राइड AlGaAsN
III-V 4 इंडियम गैलियम आर्सेनाइड नाइट्राइड InGaAsN
III-V 4 इंडियम एल्यूमीनियम आर्सेनाइड नाइट्राइड InAlAsN
III-V 4 गैलियम आर्सेनाइड एंटीमोनाइड नाइट्राइड GaAsSbN
III-V 5 गैलियम इंडियम नाइट्राइड आर्सेनाइड एंटीमोनाइड GaInNAsSb
III-V 5 गैलियम इंडियम आर्सेनाइड एंटीमोनाइड फॉस्फाइड GaInAsSbP InAs, GaSb और अन्य सबस्ट्रेट्स पर उगाया जा सकता है। अलग-अलग संरचना से जाली का मिलान किया जा सकता है। संभवतः मध्य-अवरक्त एल ई डी के लिए प्रयोग करने योग्य।
II-VI 3 Cadmium zinc telluride, CZT CdZnTe 1.4 2.2 direct Efficient solid-state x-ray and gamma-ray detector, can operate at room temperature. High electro-optic coefficient. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe.
II-VI 3 मरकरी कैडमियम टेलुराइड HgCdTe 0 1.5 Known as "MerCad". Extensive use in sensitive cooled infrared imaging sensors, infrared astronomy, and infrared detectors. Alloy of mercury telluride (a semimetal, zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 µm and 12–15 µm atmospheric windows. Can be grown on CdZnTe.
II-VI 3 मरकरी जिंक टेलुराइड HgZnTe 0 2.25 इन्फ्रारेड डिटेक्टरों, इन्फ्रारेड इमेजिंग सेंसर और इन्फ्रारेड खगोल विज्ञान में उपयोग किया जाता है। HgCdTe की तुलना में बेहतर यांत्रिक और थर्मल गुण लेकिन संरचना को नियंत्रित करना अधिक कठिन है। जटिल हेटरोस्ट्रक्चर बनाना अधिक कठिन है।
II-VI 3 मरकरी जिंक सेलेनाइड HgZnSe
II-V 4 जिंक कैडमियम फॉस्फाइड आर्सेनाइड (Zn1−xCdx)3(P1−yAsy)2[53] 0[28] 1.5[54] ऑप्टोइलेक्ट्रॉनिक्स (फोटोवोल्टिक्स सहित), इलेक्ट्रॉनिक्स और थर्मोइलेक्ट्रिक्स में विभिन्न अनुप्रयोग।[55]
other 4 कॉपर इंडियम गैलियम सेलेनाइड, सीआईजीएस Cu(In,Ga)Se2 1 1.7 प्रत्यक्ष CuInxGa1–xSe2. Polycrystalline. Used in thin film solar cells.

यह भी देखें

  • heterojunction
  • कार्बनिक अर्धचालक
  • सेमीकंडक्टर लक्षण वर्णन तकनीक

संदर्भ

  1. Jones, E.D. (1991). "Control of Semiconductor Conductivity by Doping". In Miller, L. S.; Mullin, J. B. (eds.). इलेक्ट्रॉनिक सामग्री. New York: Plenum Press. pp. 155–171. doi:10.1007/978-1-4615-3818-9_12. ISBN 978-1-4613-6703-1.
  2. Milton Ohring Reliability and failure of electronic materials and devices Academic Press, 1998, ISBN 0-12-524985-3, p. 310.
  3. 3.0 3.1 3.2 3.3 John Dakin, Robert G. W. Brown Handbook of optoelectronics, Volume 1, CRC Press, 2006 ISBN 0-7503-0646-7 p. 57
  4. Charles Kittel (1996). पर। सीआईटी. p. 202. ISBN 978-0-471-11181-8.
  5. Green, M. A. (1990). "सिलिकॉन में आंतरिक सांद्रता, राज्यों का प्रभावी घनत्व और प्रभावी द्रव्यमान". Journal of Applied Physics. 67 (6): 2944–2954. Bibcode:1990JAP....67.2944G. doi:10.1063/1.345414.
  6. New material shares many of graphene’s unusual properties. Thin films of bismuth-antimony have potential for new semiconductor chips, thermoelectric devices. MIT News Office (24 April 2012).
  7. Tang, Shuang; Dresselhaus, Mildred (2012). "BiSb थिन फिल्म्स में अनिसोट्रोपिक सिंगल-डिराक-कोन्स का निर्माण". Nano Letters. 12 (4): 2021–2026. doi:10.1021/nl300064d.
  8. Tang, Shuang; Dresselhaus, Mildred (2012). "BiSb पतली फिल्म प्रणाली में डायराक-कोन सामग्री की एक बड़ी विविधता का निर्माण". Nanoscale. 4 (24): 7786–7790. doi:10.1039/C2NR32436A.
  9. Yu, Peter; Cardona, Manuel (2010). अर्धचालकों के मूल सिद्धांत (4 ed.). Springer-Verlag Berlin Heidelberg. p. 2. Bibcode:2010fuse.book.....Y. doi:10.1007/978-3-642-00710-1. ISBN 978-3-642-00709-5.
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 "NSM Archive - Physical Properties of Semiconductors". www.ioffe.ru. Archived from the original on 2015-09-28. Retrieved 2010-07-10.
  11. 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 11.16 Safa O. Kasap; Peter Capper (2006). Springer handbook of electronic and photonic materials. Springer. pp. 54, 327. ISBN 978-0-387-26059-4.
  12. Isberg, Jan; Hammersberg, Johan; Johansson, Erik; Wikström, Tobias; Twitchen, Daniel J.; Whitehead, Andrew J.; Coe, Steven E.; Scarsbrook, Geoffrey A. (2002-09-06). "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond". Science (in English). 297 (5587): 1670–1672. Bibcode:2002Sci...297.1670I. doi:10.1126/science.1074374. ISSN 0036-8075. PMID 12215638. S2CID 27736134.
  13. Pierre, Volpe (2010). "High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer". Physica Status Solidi. 207 (9): 2088–2092. Bibcode:2010PSSAR.207.2088V. doi:10.1002/pssa.201000055. S2CID 122210971.
  14. Y. Tao, J. M. Boss, B. A. Moores, C. L. Degen (2012). Single-Crystal Diamond Nanomechanical Resonators with Quality Factors exceeding one Million. arXiv:1212.1347
  15. "Tin, Sn". www.matweb.com.
  16. Abass, A. K.; Ahmad, N. H. (1986). "Indirect band gap investigation of orthorhombic single crystals of sulfur". Journal of Physics and Chemistry of Solids. 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X.
  17. Todorov, T. (2017). "Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material". Nature Communications. 8 (1): 682. Bibcode:2017NatCo...8..682T. doi:10.1038/s41467-017-00582-9. PMC 5613033. PMID 28947765. S2CID 256640449.
  18. Rajalakshmi, M.; Arora, Akhilesh (2001). "Stability of Monoclinic Selenium Nanoparticles". Solid State Physics. 44: 109.
  19. 19.0 19.1 Dorf, Richard (1993). The Electrical Engineering Handbook. CRC Press. pp. 2235–2236. ISBN 0-8493-0185-8.
  20. 20.0 20.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J (2008). "Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy" (PDF). Journal of Physics: Condensed Matter. 20 (7): 075233. Bibcode:2008JPCM...20g5233E. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612. S2CID 52027854.
  21. "Boron nitride nanotube". www.matweb.com.
  22. 22.0 22.1 22.2 22.3 Madelung, O. (2004). Semiconductors: Data Handbook. Birkhäuser. p. 1. ISBN 978-3-540-40488-0.
  23. Claus F. Klingshirn (1997). Semiconductor optics. Springer. p. 127. ISBN 978-3-540-61687-0.
  24. "Lead(II) sulfide". www.matweb.com.
  25. Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray (26 May 2013). "Annealing influence over structural and optical properties of sprayed SnS thin films". Optical Materials. 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034.
  26. Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron (2016). "Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst". Journal of Materials Chemistry A. 4 (4): 1312–1318. doi:10.1039/C5TA08214E.
  27. Haacke, G.; Castellion, G. A. (1964). "Preparation and Semiconducting Properties of Cd3P2". Journal of Applied Physics. 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886.
  28. 28.0 28.1 Borisenko, Sergey; et al. (2014). "Experimental Realization of a Three-Dimensional Dirac Semimetal". Physical Review Letters. 113 (27603): 027603. arXiv:1309.7978. Bibcode:2014PhRvL.113b7603B. doi:10.1103/PhysRevLett.113.027603. PMID 25062235. S2CID 19882802.
  29. Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. (2009). "Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2" (PDF). Applied Physics Letters. 95 (11): 112103. Bibcode:2009ApPhL..95k2103K. doi:10.1063/1.3225151. ISSN 0003-6951.
  30. Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. (1980). "Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation". Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds: 237–242.
  31. 31.0 31.1 Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. (1999). "Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2". Journal of Applied Physics. 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569.
  32. 32.0 32.1 32.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. (2016). "Review of functional titanium oxides. I: TiO2 and its modifications". Progress in Solid State Chemistry. 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002.
  33. S. Banerjee; et al. (2006). "Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy" (PDF). Current Science. 90 (10): 1378.
  34. O. Madelung; U. Rössler; M. Schulz, eds. (1998). "Cuprous oxide (Cu2O) band structure, band energies". Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. Vol. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. pp. 1–4. doi:10.1007/10681727_62. ISBN 978-3-540-64583-2.
  35. Lee, Thomas H. (2004). Planar Microwave Engineering: A practical guide to theory, measurement, and circuits. UK: Cambridge Univ. Press. p. 300. ISBN 978-0-521-83526-8.
  36. Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. (1990). "Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3". Physical Review B. 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. doi:10.1103/physrevb.41.4993. PMID 9994356.
  37. Sinha, Sapna (2020). "Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene". Nature Communications. 11 (1): 823. Bibcode:2020NatCo..11..823S. doi:10.1038/s41467-020-14481-z. PMC 7010709. PMID 32041958. S2CID 256633781.
  38. Kobayashi, K.; Yamauchi, J. (1995). "Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces". Physical Review B. 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. doi:10.1103/PhysRevB.51.17085. PMID 9978722.
  39. 39.0 39.1 Arora, Himani; Erbe, Artur (2021). "Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe". InfoMat (in English). 3 (6): 662–693. doi:10.1002/inf2.12160. ISSN 2567-3165.
  40. 40.0 40.1 Arora, Himani; Jung, Younghun; Venanzi, Tommaso; Watanabe, Kenji; Taniguchi, Takashi; Hübner, René; Schneider, Harald; Helm, Manfred; Hone, James C.; Erbe, Artur (2019-11-20). "Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties". ACS Applied Materials & Interfaces. 11 (46): 43480–43487. doi:10.1021/acsami.9b13442. hdl:11573/1555190. ISSN 1944-8244. PMID 31651146. S2CID 204884014.
  41. 41.0 41.1 41.2 Arora, Himani (2020). "Charge transport in two-dimensional materials and their electronic applications" (PDF). Doctoral Dissertation. Retrieved July 1, 2021.
  42. B. G. Yacobi Semiconductor materials: an introduction to basic principles Springer, 2003, ISBN 0-306-47361-5
  43. Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil (2019). "Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities". Journal of Taibah University for Science. 13: 280–285. doi:10.1080/16583655.2019.1565437. S2CID 139826266.
  44. Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
  45. Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
  46. Arsenic sulfide (As2S3)
  47. Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors
  48. HODES; Ebooks Corporation (8 October 2002). Chemical Solution Deposition of Semiconductor Films. CRC Press. pp. 319–. ISBN 978-0-8247-4345-1. Retrieved 28 June 2011.
  49. Arumona Edward Arumona; Amah A N (2018). "Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium". Advanced Journal of Graduate Research. 3: 41–46. doi:10.21467/ajgr.3.1.41-46.
  50. Prashant K Sarswat; Michael L Free (2013). "Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode". International Journal of Photoenergy. 2013: 1–7. doi:10.1155/2013/154694.
  51. Rajakarunanayake, Yasantha Nirmal (1991) Optical properties of Si-Ge superlattices and wide band gap II-VI superlattices Dissertation (Ph.D.), California Institute of Technology
  52. Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo A. Torres; Schwingenschlögl, Udo; Hussain, Muhammad M. (2014). "Tin – an unlikely ally for silicon field effect transistors?". Physica Status Solidi RRL. 8 (4): 332–335. Bibcode:2014PSSRR...8..332H. doi:10.1002/pssr.201308300. S2CID 93729786.
  53. Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. (2014). "Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics". Inorganic Materials. 50 (9): 868–873. doi:10.1134/S0020168514090143. S2CID 94409384.
  54. Cisowski, J. (1982). "Level Ordering in II3-V2 Semiconducting Compounds". Physica Status Solidi B. 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.
  55. Arushanov, E. K. (1992). "II3V2 compounds and alloys". Progress in Crystal Growth and Characterization of Materials. 25 (3): 131–201. doi:10.1016/0960-8974(92)90030-T.