व्युत्पन्न के सामान्यीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(24 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Fundamental construction of differential calculus}} | {{Short description|Fundamental construction of differential calculus}} | ||
{{about|गणित में प्रयुक्त शब्द|अन्य उपयोग|व्युत्पन्न (बहुविकल्पी)}} | {{about|गणित में प्रयुक्त शब्द|अन्य उपयोग|व्युत्पन्न (बहुविकल्पी)}} | ||
{{Calculus | | {{Calculus |अवकल}} | ||
गणित में, अवकलज अवकलन | गणित में, अवकलज अवकलन का मूलभूत निर्माण है और [[गणितीय विश्लेषण]], कॉम्बिनेटरिक्स, [[बीजगणित]], [[ज्यामिति]], आदि के क्षेत्रों में विभिन्न संभावित सामान्यीकरणों को स्वीकार करता है। | ||
== फ्रेचेट अवकलज == | == फ्रेचेट अवकलज == | ||
फ्रेचेट अवकलज सामान्य नॉर्मर्ड वेक्टर स्पेस <math>V, W</math> के लिए अवकलज को परिभाषित करता है। संक्षेप में, फलन <math>f : U \to W</math>, <math>U</math>, <math>V</math> का ओपन सबसेट है, जिसे <math>x \in U</math> | फ्रेचेट अवकलज सामान्य नॉर्मर्ड वेक्टर स्पेस <math>V, W</math> के लिए अवकलज को परिभाषित करता है। संक्षेप में, फलन <math>f : U \to W</math>, <math>U</math>, <math>V</math> का ओपन सबसेट है, जिसे <math>x \in U</math> फ्रेचेट अवकलनीय कहा जाता है यदि कोई परिबद्ध रैखिक ऑपरेटर <math>A:V\to W</math> उपस्थित है, जैसे कि | ||
<math display=block>\lim_{\|h\| \to 0} \frac{\| f(x + h) - f(x) - Ah\|_W}{\|h\|_V} = 0.</math> | <math display=block>\lim_{\|h\| \to 0} \frac{\| f(x + h) - f(x) - Ah\|_W}{\|h\|_V} = 0.</math> | ||
फलन को <math>x</math> के ओपन [[पड़ोस (गणित)|नेबरहुड (गणित)]] में भिन्न-भिन्न बिंदुओं के अतिरिक्त, अवकलनीय रूप में परिभाषित किया गया है, क्योंकि ऐसा नहीं करने से | फलन को <math>x</math> के ओपन [[पड़ोस (गणित)|नेबरहुड (गणित)]] में भिन्न-भिन्न बिंदुओं के अतिरिक्त, अवकलनीय रूप में परिभाषित किया गया है, क्योंकि ऐसा नहीं करने से विभिन्न [[पैथोलॉजिकल (गणित)]] उदाहरण होते हैं। | ||
फ्रेचेट अवकलज प्राथमिक एक-चर कलन में पाए जाने वाले अवकलज के सूत्र के समान है, <math display=block>\lim_{h \to 0}\frac{f(x+h) - f(x)}{h} = A,</math> और केवल A को बाएँ हाथ की ओर ले जाता है। चूँकि, फ्रेचेट अवकलज ''A'' फलन <math>t \mapsto f'(x) \cdot t</math> को दर्शाता है। | फ्रेचेट अवकलज प्राथमिक एक-चर कलन में पाए जाने वाले अवकलज के सूत्र के समान है, <math display=block>\lim_{h \to 0}\frac{f(x+h) - f(x)}{h} = A,</math> और केवल A को बाएँ हाथ की ओर ले जाता है। चूँकि, फ्रेचेट अवकलज ''A'' फलन <math>t \mapsto f'(x) \cdot t</math> को दर्शाता है। | ||
[[बहुभिन्नरूपी कैलकुलस|बहुभिन्नरूपी कलन]] में, | [[बहुभिन्नरूपी कैलकुलस|बहुभिन्नरूपी कलन]] में, अदिश फलन R<sup>n</sup> से R<sup>m</sup> तक परिभाषित अवकल समीकरणों के संदर्भ में, फ्रेचेट अवकलज A, 'R' पर रैखिक ऑपरेटर है जिसे सदिश समष्टि माना जाता है, और फलन के सर्वोत्तम रैखिक सन्निकटन से युग्मित होता है। यदि ऐसा कोई ऑपरेटर उपस्थित है, तो यह अद्वितीय है, और बिंदु x पर मैपिंग ƒ के जैकोबियन आव्यूह J<sub>''x''</sub>(ƒ) के रूप में ज्ञात n [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] से m द्वारा प्रतिनिधित्व किया जा सकता है। इस आव्यूह की प्रत्येक प्रविष्टि डोमेन समन्वय में परिवर्तन के संबंध में श्रेणी समन्वय के परिवर्तन की दर निर्दिष्ट करने वाले [[आंशिक व्युत्पन्न]] का प्रतिनिधित्व करती है। निश्चित रूप से ''g<sub>°</sub>f'' जैकोबियन आव्यूह संगत जैकोबियन आव्यूह J<sub>''x''</sub>(''g<sub>°</sub>f'') =J<sub>ƒ(''x'')</sub>(''g'')J<sub>''x''</sub>(ƒ) का गुणनफल है। यह [[श्रृंखला नियम]] का उच्च-आयामी कथन है। | ||
R<sup>n</sup> से R तक वास्तविक मान फलन के लिए ([[अदिश क्षेत्र]]), फ़्रेचेट अवकलज [[वेक्टर क्षेत्र]] से युग्मित होता है जिसे कुल अवकलज कहा जाता है। इसे प्रवणता के रूप में परिभाषित किया जा सकता है किन्तु [[बाहरी व्युत्पन्न|बाह्य अवकलज]] का उपयोग करना अधिक स्वाभाविक होता है। | |||
संवहन व्युत्पन्न | संवहन व्युत्पन्न सदिश क्षेत्र के साथ स्पेस के माध्यम से समय निर्भरता और गति के कारण परिवर्तनों को ध्यान में रखता है, और [[कुल व्युत्पन्न]] की विशेष स्तिथि है। | ||
[[वेक्टर-मूल्यवान कार्य]] | R से R<sup>n</sup> तक [[वेक्टर-मूल्यवान कार्य|वेक्टर मान फलन]] के लिए (अर्थात, [[पैरामीट्रिक वक्र]]), फ्रेचेट अवकलज प्रत्येक घटक के लिए भिन्न-भिन्न अनुरूप होते हैं। परिणामी व्युत्पन्न को वेक्टर में मैप किया जा सकता है। यह उपयोगी है, उदाहरण के लिए यदि वेक्टर मान फलन समय के माध्यम से कण की स्थिति सदिश है तो व्युत्पन्न समय के माध्यम से कण का वेग सदिश होता है। | ||
[[जटिल विश्लेषण]] में, अध्ययन की केंद्रीय वस्तुएं [[होलोमॉर्फिक फ़ंक्शन]] हैं, जो | [[जटिल विश्लेषण]] में, अध्ययन की केंद्रीय वस्तुएं [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] हैं, जो सम्मिश्र संख्याओं पर काम्प्लेक्स-मान फलन हैं जहाँ फ्रेचेट व्युत्पन्न उपस्थित है। | ||
ज्यामितीय | ज्यामितीय कलन में [[ज्यामितीय गणना|ज्यामितीय व्युत्पन्न]] लीबनिज़ नियम के शक्तिहीन रूप को संतुष्ट करता है। यह ज्यामितीय बीजगणित की वस्तुओं के लिए फ्रेचेट अवकलज का विशेषज्ञ है। ज्यामितीय कलन शक्तिशाली औपचारिकता है जिसे अवकल रूपों और ज्यामिति के समान रूपरेखा को सम्मिलित करने के लिए दिखाया गया है।<ref>[[David Hestenes]], Garrett Sobczyk: Clifford Algebra to Geometric Calculus, a Unified Language for mathematics and Physics (Dordrecht/Boston:G.Reidel Publ.Co., 1984, {{ISBN|90-277-2561-6}}</ref> | ||
== | == बाह्य व्युत्पन्न और लाई व्युत्पन्न == | ||
स्मूथ मैनिफोल्ड पर [[विभेदक रूप|अवकल रूपों]] के [[बाहरी बीजगणित|बाह्य बीजगणित]] का अद्वितीय रैखिक मानचित्र है जो [[वर्गीकृत लीबनिज नियम]] और वर्गों को शून्य से संतुष्ट करता है। यह बाह्य बीजगणित पर ग्रेड 1 की व्युत्पत्ति होती है। R<sup>3</sup> में, ग्रेडिएंट, [[कर्ल (गणित)]], और [[विचलन]] बाह्य व्युत्पन्न की विशेष स्तिथियाँ होती हैं। ग्रेडिएंट की व्याख्या यह है कि यह "ऊपर" संकेत करती है, दूसरे शब्दों में यह फलन की सबसे तीव्र वृद्धि की दिशा की ओर संकेत करता है। इसका उपयोग अदिश (गणित) फलन या सामान्य दिशाओं के दिशात्मक डेरिवेटिव की गणना करने के लिए किया जा सकता है। विचलन बिंदु के निकट कितना स्रोत या सिंक उपस्थित है इसका माप देता है। इसका उपयोग [[विचलन प्रमेय]] द्वारा [[फ्लक्स]] की गणना के लिए किया जा सकता है। कर्ल मापता है कि बिंदु के निकट सदिश क्षेत्र का कितना स्पिन है। | |||
[[झूठ व्युत्पन्न]] | [[झूठ व्युत्पन्न|लाई व्युत्पन्न]] सदिश या टेंसर क्षेत्र के दूसरे सदिश क्षेत्र के प्रवाह के साथ परिवर्तन की दर है। सदिश क्षेत्रों पर, यह [[लेट ब्रैकेट|लाई ब्रैकेट]] का उदाहरण है (सदिश क्षेत्र मैनिफोल्ड के [[डिफोमोर्फिज्म समूह|डिफियोमोर्फिज्म समूह]] के लाई बीजगणित का निर्माण करते हैं)। यह बीजगणित पर ग्रेड 0 की व्युत्पत्ति है। | ||
[[आंतरिक उत्पाद|इंटीरियर प्रोडक्ट]] के साथ (सदिश क्षेत्र के साथ संकुचन द्वारा परिभाषित बाह्य बीजगणित पर डिग्री -1 व्युत्पत्ति), बाह्य व्युत्पन्न और लाई व्युत्पन्न [[लव सुपरएलजेब्रा|लाई सुपरएलजेब्रा]] बनाते हैं। | |||
== | == अवकल टोपोलॉजी == | ||
अवकल टोपोलॉजी में, सदिश क्षेत्र को [[कई गुना|मैनिफोल्ड]] पर स्मूथ फलनों के वलय पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है, और स्पर्शरेखा सदिश को बिंदु पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है। यह अदिश फलन के दिशात्मक व्युत्पन्न की धारणा को सामान्य मैनिफोल्ड करने की अनुमति देता है। मैनिफोल्ड R<sup>n</sup> [[सबसेट|उपसमुच्चय]] हैं, यह स्पर्शरेखा सदिश दिशात्मक अवकलज से सहमत होगा। | |||
मैनिफोल्ड्स के | मैनिफोल्ड्स के मध्य मानचित्र का पुशफॉरवर्ड (अंतर) उन मानचित्रों के स्पर्शरेखा स्थानों के मध्य प्रेरित मानचित्र है। यह [[जैकबियन मैट्रिक्स|जैकबियन आव्यूह]] को ऐब्स्ट्रैक्ट करता है। | ||
== [[सहपरिवर्ती व्युत्पन्न]] == | == [[सहपरिवर्ती व्युत्पन्न]] == | ||
[[ अंतर ज्यामिति ]] में, | [[ अंतर ज्यामिति | अवकल ज्यामिति]] में, सहपरिवर्ती व्युत्पन्न [[वक्र]] के साथ वेक्टर क्षेत्रों के दिशात्मक डेरिवेटिव लेने के लिए विकल्प बनाता है। यह [[वेक्टर बंडल|वेक्टर बंडलों]] या [[प्रमुख बंडल|प्रमुख बंडलों]] के वर्गों के लिए अदिश फलन के दिशात्मक व्युत्पन्न का विस्तार करता है। रिमेंनियन ज्यामिति में, मीट्रिक का अस्तित्व [[लेवी-Civita कनेक्शन|लेवी-सिविटा कनेक्शन]] के रूप में जाना जाने वाला अद्वितीय मुख्य [[मरोड़ टेंसर|टॉरशन]]-मुक्त सहपरिवर्ती व्युत्पन्न का चयन करता है। भौतिकी के उन्मुख व्यवहार के लिए गेज सहपरिवर्ती व्युत्पन्न भी देखें। | ||
[[बाहरी सहसंयोजक व्युत्पन्न]] | [[बाहरी सहसंयोजक व्युत्पन्न|बाह्य सहपरिवर्ती व्युत्पन्न]] बाह्य व्युत्पन्न को वेक्टर वैल्यूड रूपों तक विस्तारित करता है। | ||
== | == वीक अवकलज == | ||
दिया हुआ फलन <math>u:\R^n\to\R</math>, जो कि स्थानीय रूप से समाकलित होता है, किन्तु आवश्यक नहीं कि यह अवकलनीय हो, [[कमजोर व्युत्पन्न|वीक अवकलज]] को [[भागों द्वारा एकीकरण|आंशिक समाकलन]] के माध्यम से परिभाषित किया जा सकता है। प्रथम अभ्यास फलन को परिभाषित करता है, जो अनन्त अवकलनीय और कॉम्पैक्ट रूप से समर्थित फलन <math>\varphi \in C^{\infty}_c\left(\R^n\right)</math> और [[मल्टी-इंडेक्स नोटेशन|मल्टी-इंडेक्स]] हैं जो पूर्णांकों की लंबाई <math>n</math> की सूची <math>\alpha = (\alpha_1, \dots, \alpha_n)</math> के साथ <math display="inline">|\alpha| := \sum_1^n \alpha_i</math> है। अभ्यास फलन <math display="inline">D^\alpha \varphi := \frac{\partial^{|\alpha|} \varphi}{\partial x_1^{\alpha_1} \dotsm x_n^{\alpha_n}}</math> के लिए प्रस्तावित है| यदि कोई फलन <math>v:\R^n\to\R</math> है, तो <math>u</math> का <math display="inline">\alpha^{\text{th}} </math> वीक अवकलज उपस्थित है जैसे कि सभी अभ्यास फलन <math>\varphi</math> के लिए है- | |||
: <math>\int_{\R^n} u\ D^{\alpha} \!\varphi\ dx = (-1)^{|\alpha|}\int_{\R^n} v\ \varphi\ dx</math> | : <math>\int_{\R^n} u\ D^{\alpha} \!\varphi\ dx = (-1)^{|\alpha|}\int_{\R^n} v\ \varphi\ dx</math> | ||
यदि ऐसा | यदि ऐसा फलन उपस्थित है, तो <math>D^{\alpha} u := v </math>, जो [[लगभग हर जगह|प्रायः प्रत्येक स्थान पर]] अद्वितीय है। यह परिभाषा फलन <math>u \in C^{|\alpha|}\left(\R^n\right) </math> के अवकल के समान है, और सामान्यीकृत फलन के लिए विस्तृत की जा सकती है जिसे [[वितरण (गणित)]] फलन की ड्यूल स्पेस कहा जाता है। आंशिक अवकल समीकरणों के अध्ययन में और कार्यात्मक विश्लेषण के कुछ भागों में वीक अवकलज विशेष रूप से उपयोगी होते हैं। | ||
== | == भिन्नात्मक और उच्चतम कोटि के अवकलज == | ||
वास्तविक संख्याओं में | वास्तविक संख्याओं में अवकलन प्रक्रिया को पुनरावृत्त किया जा सकता है, अर्थात, द्वितीय और उच्चतम कोटि के अवकलज प्राप्त करने के लिए एक से अधिक बार अवकलज प्रस्तावित कर सकते हैं। मल्टीवेरिएबल कैलकुस में अध्ययन किए गए कई चर के फलन के लिए उच्चतम अवकलज भी परिभाषित किए जा सकते हैं। इस स्तिथि में, अवकलज को पुनः प्रस्तावित करने के अतिरिक्त, [[अलग-अलग|विभिन्न]] चरों के संबंध में आंशिक अवकलज को पुनः प्रस्तावित किया जाता है। उदाहरण के लिए, n चरों के स्केलर फलन के द्वितीय क्रम के आंशिक अवकलज को n द्वारा n आव्यूह, [[हेसियन मैट्रिक्स|हेसियन आव्यूह]] में व्यवस्थित किया जा सकता है। सूक्ष्म बिंदुओं में उच्चतम अवकलज आंतरिक रूप से परिभाषित नहीं होते हैं, और जटिल फैशन में निर्देशांक के चयन पर निर्भर करते हैं (विशेष रूप से, फलन का हेस्सियन आव्यूह [[टेन्सर]] नहीं है)। उच्चतम अवकलज के निकट अपने [[महत्वपूर्ण बिंदु (गणित)|क्रिटिकल पॉइंट (गणित)]] पर फलन के [[मैक्सिमा और मिनिमा|स्थानीय एक्स्ट्रेमा]] के विश्लेषण के लिए महत्वपूर्ण अनुप्रयोग हैं। मैनिफोल्ड्स की टोपोलॉजी के लिए इस विश्लेषण के उन्नत अनुप्रयोग के लिए [[मोर्स सिद्धांत]] देखें। | ||
किसी भी प्राकृतिक संख्या n के n-वें | किसी भी प्राकृतिक संख्या n के n-वें अवकलज के अतिरिक्त, भिन्नात्मक या ऋणात्मक क्रमों के अवकलज को परिभाषित करने के लिए विभिन्न विधियाँ हैं, जिनका अध्ययन भिन्नात्मक कलन में किया जाता है। प्रथम क्रम अवकलज इंटीग्रल के समान है, जहाँ शब्द डिफरेंट इंटीग्रल है। | ||
== क्वाटरनियोनिक | == क्वाटरनियोनिक अवकलज == | ||
[[चतुष्कोणीय विश्लेषण]] में, | [[चतुष्कोणीय विश्लेषण|क्वाटरनियोनिक विश्लेषण]] में, अवकलज को वास्तविक और काम्प्लेक्स फलन के समान परिभाषित किया जा सकता है। चूँकि, [[चार का समुदाय|चतुष्कोण]] <math>\mathbb{H}</math> विनिमेय नहीं हैं, अंतर भागफल की सीमा दो भिन्न-भिन्न अवकलज देती है- बायाँ अवकलज | ||
:<math>\lim_{h \to 0} \left[h^{-1} \left(f(a+h) - f(a) \right) \right]</math> | :<math>\lim_{h \to 0} \left[h^{-1} \left(f(a+h) - f(a) \right) \right]</math> | ||
और | और दायाँ अवकलज | ||
:<math>\lim_{h \to 0}\left[\left(f(a+h) - f(a) \right) h^{-1} \right].</math> | :<math>\lim_{h \to 0}\left[\left(f(a+h) - f(a) \right) h^{-1} \right].</math> | ||
इन सीमाओं का अस्तित्व | इन सीमाओं का अस्तित्व अधिक प्रतिबंधात्मक स्थिति है। उदाहरण के लिए, यदि <math>f:\mathbb{H} \to \mathbb{H}</math> ओपन कनेक्टेड समुच्चय <math>U \subset \mathbb{H}</math> पर प्रत्येक बिंदु पर बाएं-डेरिवेटिव हैं तब <math>a,b \in \mathbb{H}</math> के लिए <math>f(q) = a + qb</math> है। | ||
== | == अन्तर संकारक, क्यू-एनालॉग्स और टाइम स्केल == | ||
* किसी | * किसी फलन का [[ क्यू-व्युत्पन्न | क्यू-अवकलज]] सूत्र द्वारा परिभाषित किया गया है-<math display="block"> D_q f(x)=\frac{f(qx)-f(x)}{(q-1)x}.</math> x अशून्य के लिए, यदि f, x का अवकलनीय फलन है तो {{math|''q'' → 1}} की सीमा में हम सामान्य अवकलज प्राप्त करते हैं, इस प्रकार q-अवकलज को q-डिफ़ॉर्मेशन के रूप में देखा जा सकता है। [[द्विपद सूत्र]] और [[टेलर विस्तार]] जैसे साधारण अवकल कलन के परिणामों के बड़े निकाय में क्यू-एनालॉग होते हैं जो 19वें दशक में शोधित किये गए थे, किन्तु विशेष फलन के सिद्धांत में, 20वें दशक के बड़े अंश के लिए अपेक्षाकृत अस्पष्ट बने रहे। कॉम्बिनेटरिक्स की प्रगति और [[क्वांटम समूह|क्वांटम समूहों]] की शोध ने स्थिति को नाटकीय रूप से परिवर्तित कर दिया है और क्यू-एनालॉग्स की लोकप्रियता बढ़ रही है। | ||
* [[अंतर समीकरण]] | * [[अंतर समीकरण|डिफरेंस समीकरणों]] का [[अंतर ऑपरेटर|अन्तर संकारक]] मानक व्युत्पन्न का डिस्क्रीट एनालॉग है। <math display="block">\Delta f(x)=f(x+1)-f(x)</math> | ||
* क्यू-व्युत्पन्न, | * क्यू-[[ क्यू-व्युत्पन्न |अवकलज]], अन्तर संकारक और मानक व्युत्पन्न सभी को भिन्न-भिन्न टाइम स्केल कैलकुलस पर समान रूप में देखा जा सकता है। उदाहरण के लिए, <math>\varepsilon = (q-1)x </math> को लेने पर हमारे निकट हो सकता है-<math display="block"> \frac{f(qx)-f(x)}{(q-1)x} = \frac{f(x+\varepsilon)-f(x)}{\varepsilon}.</math> क्यू-अवकलज [[वोल्फगैंग हैन]] अंतर की विशेष स्तिथि है,<ref>{{cite journal |last=Hahn |first=Wolfgang |authorlink=Wolfgang Hahn |title=Über Orthogonalpolynome, die q-Differenzengleichungen genügen |year=1949 |journal=[[Mathematische Nachrichten]] |issn=0025-584X |volume=2 |issue=1–2 |pages=4–34 |doi=10.1002/mana.19490020103 |mr=0030647}}</ref> <math display="block"> \frac{f(qx+\omega)-f(x)}{qx+\omega-x}.</math>हैन अंतर, क्यू-अवकलज का सामान्यीकरण है। | ||
* | * q-अवकलज, फेमिलिअर अवकलज की विशेष स्तिथि है। <math> z = qx </math> को लेने पर हमारे निकट है- <math display="block">\lim_{z \to x}\frac{f(z) - f(x)}{z - x} = \lim_{q \to 1}\frac{f(qx) - f(x)}{qx - x} = \lim_{q \to 1}\frac{f(qx)-f(x)}{(q-1)x}.</math> | ||
== बीजगणित में | == बीजगणित में अवकलज == | ||
बीजगणित में, | बीजगणित में, व्युत्पन्न के सामान्यीकरण को बीजगणितीय संरचना जैसे रिंग या लाइ बीजगणित में अवकलन के लीबनिज़ नियम को प्रस्तावित करके प्राप्त किया जा सकता है। | ||
=== | === अवकलज === | ||
अवकलज वलय या बीजगणित पर रैखिक मानचित्र है जो लीबनिज़ नियम को संतुष्ट करता है। उच्चतम अवकलज और [[बीजगणितीय अंतर समीकरण|बीजगणितीय अवकल समीकरण]] को भी परिभाषित किया जा सकता है। वे अवकल गैलोज सिद्धांत और [[डी-मॉड्यूल]] के सिद्धांत में विशुद्ध रूप से बीजगणितीय सेटिंग में अध्ययन किए जाते हैं, जहाँ वे अधिकांशतः अवकलज की कम बीजगणितीय परिभाषाओं से सहमत होते हैं। | |||
उदाहरण के लिए, क्रमविनिमेय वलय R पर | उदाहरण के लिए, क्रमविनिमेय वलय R पर [[बहुपद]] के अवकल बीजगणित को निम्न द्वारा परिभाषित किया जाता है- | ||
:<math>\left(a_d x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0\right)' = da_d x^{d-1} + (d - 1)a_{d-1}x^{d-2} + \cdots + a_1.</math> | :<math>\left(a_d x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0\right)' = da_d x^{d-1} + (d - 1)a_{d-1}x^{d-2} + \cdots + a_1.</math> | ||
मानचित्रण <math>f\mapsto f'</math> | मानचित्रण <math>f\mapsto f'</math> बहुपद वलय R[X] पर अवकलज है। इस परिभाषा को [[तर्कसंगत कार्य|परिमेय फलन]] के लिए भी विस्तृत किया जा सकता है। | ||
अवकलज की धारणा गैर विनिमेय के साथ-साथ क्रमविनिमेय वलयों पर प्रस्तावित होती है और नॉन-अस्सोसिएटिव बीजगणितीय संरचनाओं जैसे लाई बीजगणित पर भी प्रस्तावित होती है। | |||
=== | === टाइप का अवकलज === | ||
[[प्रकार सिद्धांत]] में, कई अमूर्त डेटा प्रकारों को | [[प्रकार सिद्धांत]] में, कई अमूर्त डेटा प्रकारों को रूपांतरण द्वारा उत्पन्न [[सार्वभौमिक बीजगणित|बीजगणित]] के रूप में वर्णित किया जा सकता है जो प्रकार के आधार पर संरचनाओं को पुनः प्रकार में मैप करता है। उदाहरण के लिए, टाइप A वाले [[बाइनरी ट्री]] के टाइप T को 1+A×T<sup>2</sup>→T परिवर्तन द्वारा उत्पन्न बीजगणित के रूप में दर्शाया जा सकता है। '1' एम्प्टी ट्री के निर्माण का प्रतिनिधित्व करता है, और द्वितीय पद ट्री के निर्माण को मान और दो उपप्रकारों से दर्शाता है। '+' दर्शाता है कि ट्री का निर्माण किसी भी प्रकार से किया जा सकता है। | ||
इस | इस प्रकार का व्युत्पन्न वह प्रकार है जो किसी विशेष उपसंरचना के संदर्भ को इसकी बाह्य संरचना के संबंध में वर्णित करता है। द्वितीय प्रकार दोनों के मध्य अंतर का प्रतिनिधित्व है। ट्री के उदाहरण में, व्युत्पन्न प्रकार है जो इनफार्मेशन का वर्णन करता है, विशेष सबट्री को उसके मूल ट्री के निर्माण के लिए दिया जाता है। यह इनफार्मेशन टपल है जिसमें बाइनरी इंडिकेटर होता है। इस प्रकार को 2×A×T के रूप में दर्शाया जा सकता है, जो ट्री के प्रकार को उत्पन्न करने वाले परिवर्तन के व्युत्पन्न की भाँति दिखता है। | ||
टाइप के व्युत्पन्न की इस अवधारणा में व्यावहारिक अनुप्रयोग हैं, जैसे [[कार्यात्मक प्रोग्रामिंग भाषा|फंक्शनल प्रोग्रामिंग भाषाओं]] में उपयोग की जाने वाली [[ज़िपर (डेटा संरचना)]] तकनीक है। | |||
== | == अवकल ऑपरेटर == | ||
अवकल संकारक बीजगणितीय व्यंजक में संभवतः विभिन्न क्रमों के विभिन्न व्युत्पन्नों को जोड़ता है। यह विशेष रूप से स्थिर गुणांक वाले साधारण [[रैखिक अंतर समीकरण|रैखिक अवकल समीकरणों]] पर विचार करने में उपयोगी है। उदाहरण के लिए, यदि f(x) चर का दो बार अवकलनीय फलन है, तो अवकल समीकरण <math>f'' + 2f' - 3f = 4x - 1</math> को <math>L(f)=4x-1</math> के रूप में पुनः लिखा जा सकता है, जहाँ | |||
<math display=block> L=\frac{d^2}{dx^2}+2\frac{d}{dx}-3</math> | |||
x के फलनों पर कार्य करने वाला द्वितीय क्रम रैखिक स्थिर गुणांक अंतर ऑपरेटर है। यहाँ मुख्य विचार यह है कि हम शून्य, प्रथम और द्वितीय क्रम के अवकलज के विशेष [[रैखिक संयोजन]] पर विचार करते हैं। यह हमें इस अवकल समीकरण के समाधानों के समुच्चय को सामान्य समाकलन के साथ सादृश्य द्वारा इसके दाहिने हाथ की ओर 4x−1 के सामान्यीकृत एंटीडेरिवेटिव के रूप में विचार करने की अनुमति प्रदान करता है और औपचारिक रूप से अंकित करता है- | |||
<math display="block">f(x)=L^{-1}(4x-1).</math> | |||
भिन्न-भिन्न चरों के अवकलज का संयोजन [[आंशिक अंतर ऑपरेटर|आंशिक अवकल ऑपरेटर]] की धारणा में होता है। लीनियर ऑपरेटर जो प्रत्येक फलन को इसके अवकलज को असाइन करता है, [[समारोह स्थान|फलन स्पेस]] पर [[छद्म अंतर ऑपरेटर|अवकल संकारक]] का उदाहरण है। [[फूरियर रूपांतरण]] के माध्यम से, छद्म-अवकल संकारकों को परिभाषित किया जा सकता है जो भिन्नात्मक कलन के लिए अनुमति प्रदान करते हैं। | |||
इनमें से कुछ ऑपरेटर इतने महत्वपूर्ण हैं कि उनके अपने नाम हैं: | इनमें से कुछ ऑपरेटर इतने महत्वपूर्ण हैं कि उनके अपने नाम हैं: | ||
* | * R<sup>3</sup> पर [[लाप्लास ऑपरेटर]] या लाप्लासियन द्वितीय कोटि का आंशिक अवकल संकारक {{math|Δ}} है जो तीन चरों के अदिश फलन के ग्रेडियेंट के विचलन द्वारा दिया गया है, या स्पष्ट रूप से- <math display="block"> \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}. </math> एनालॉगस ऑपरेटरों को किसी भी चर के फलन के लिए परिभाषित किया जा सकता है। | ||
* डी'अलेम्बर्टियन या वेव ऑपरेटर लाप्लासियन के समान है, | * डी'अलेम्बर्टियन या वेव ऑपरेटर लाप्लासियन के समान है, किन्तु चार चरों के फलनों पर कार्य करता है। इसकी परिभाषा R<sup>3</sup> के [[ यूक्लिडियन अंतरिक्ष | यूक्लिडियन]] [[डॉट उत्पाद|डॉट गुणनफल]] के अतिरिक्त मिन्कोव्स्की स्पेस के अनिश्चित [[मीट्रिक टेंसर]] का उपयोग करती है- <math display="block"> \square = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}. </math> | ||
* श्वार्ज़ियन | * श्वार्ज़ियन अवकलज अरैखिक अवकल संकारक है जो वर्णन करता है कि किस प्रकार [[आंशिक-रैखिक मानचित्र]] द्वारा काम्प्लेक्स फलन का अनुमान लगाया जा सकता है, उसी प्रकार सामान्य अवकलज वर्णन करता है कि रैखिक मानचित्र द्वारा फलन का अनुमान किस प्रकार लगाया जा सकता है। | ||
* [[विर्टिंगर डेरिवेटिव]] | * [[विर्टिंगर डेरिवेटिव]] अवकल संकारकों का समुच्चय है जो काम्प्लेक्स फलनों के लिए अवकल कलन के निर्माण की अनुमति देता है जो वास्तविक चर के फलनों के लिए सामान्य अवकलन के समान है। | ||
== अन्य सामान्यीकरण == | == अन्य सामान्यीकरण == | ||
[[कार्यात्मक विश्लेषण]] में, [[कार्यात्मक व्युत्पन्न]] | [[कार्यात्मक विश्लेषण|फंक्शनल विश्लेषण]] में, [[कार्यात्मक व्युत्पन्न|भिन्नात्मक अवकलज]] फंक्शनल के फलन के सापेक्ष अवकलज को परिभाषित करता है। यह अनंत [[आयाम|आयामी]] सदिश समष्टि के लिए दिशात्मक व्युत्पन्न का विस्तार है। विचरण कलन में विचरण अवकलज महत्वपूर्ण स्तिथि है। | ||
[[ उप व्युत्पन्न ]] और [[ उपश्रेणी ]] | [[ उप व्युत्पन्न | सबडेरिवेटिव]] और [[ उपश्रेणी |सबग्रेडिएंट]] कॉन्वेक्स विश्लेषण में उपयोग किए जाने वाले अवमुख फलनों के अवकलज के सामान्यीकरण हैं। | ||
कम्यूटेटिव बीजगणित में, काहलर | कम्यूटेटिव बीजगणित में, काहलर अवकल [[ क्रमविनिमेय अंगूठी | क्रमविनिमेय वलय]] या [[मॉड्यूल (बीजगणित)]] के यूनिवर्सल डेरिवेटिव हैं। उनका उपयोग अवकल ज्यामिति से बाह्य व्युत्पन्न के एनालॉग को परिभाषित करने के लिए किया जा सकता है जो मात्र स्मूथ मैनिफोल्ड्स के अतिरिक्त आर्बिटरी बीजगणितीय विविधता पर प्रस्तावित होते है। | ||
[[पी-एडिक विश्लेषण]] में, डेरिवेटिव की सामान्य परिभाषा | [[पी-एडिक विश्लेषण]] में, डेरिवेटिव की सामान्य परिभाषा पर्याप्त नहीं है और इसके अतिरिक्त अवकलनीयता की आवश्यकता होती है। | ||
[[ व्युत्पन्न केक ]] फ्रेचेट | [[ व्युत्पन्न केक | गैटॉक्स डेरिवेटिव]] फ्रेचेट अवकलज को [[स्थानीय रूप से उत्तल|स्थानीय कॉन्वेक्स]] [[टोपोलॉजिकल वेक्टर स्पेस]] तक वस्तृत करता है। फ़्रेचेट अवकलनीयता गैटॉक्स अवकलनीयता की तुलना में परिमित आयामों में दृढ़ स्थिति है। दो चरम सीमाओं के मध्य [[अर्ध-व्युत्पन्न|क्वासि-डेरिवेटिव]] है। | ||
[[माप सिद्धांत]] में, रैडॉन-निकोडीम | [[माप सिद्धांत]] में, रैडॉन-निकोडीम अवकलज जेकोबियन आव्यूह और निर्धारक का सामान्यीकरण करता है, जिसका उपयोग चरों को मापने के लिए किया जाता है। यह माप μ को दूसरे माप ν के संदर्भ में व्यक्त करता है। | ||
एच-व्युत्पन्न सार वीनर स्पेस और मालियाविन कलन के अध्ययन में व्युत्पन्न की धारणा है। इसका उपयोग स्टोकेस्टिक प्रक्रियाओं के अध्ययन में किया जाता है। | |||
लाप्लासियन का उपयोग करने वाले लाप्लासियन और | लाप्लासियन का उपयोग करने वाले लाप्लासियन और अवकल समीकरणों का फ्रैक्टल्स पर विश्लेषण किया जा सकता है। प्रथम कोटि के अवकलज का कोई पूर्ण रूप से संतोषजनक एनालॉग नहीं है।<ref>[https://www.ams.org/notices/199910/fea-strichartz.pdf Analysis on Fractals], Robert S. Strichartz - Article in Notices of the AMS</ref> | ||
{{Anchor|Analogues_of_derivatives_in_fields_of_positive_characteristic}} | {{Anchor|Analogues_of_derivatives_in_fields_of_positive_characteristic}} | ||
गुणक कलन जोड़ को गुणन से | कार्लिट्ज अवकलज, सामान्य अवकलन के समान ऑपरेशन है, किन्तु वास्तविक या सम्मिश्र संख्याओं के सामान्य संदर्भ के साथ [[औपचारिक लॉरेंट श्रृंखला]] के रूप में सकारात्मक अभिलक्षण (बीजगणित) के [[स्थानीय क्षेत्र|स्थानीय क्षेत्रों]] में कुछ [[परिमित क्षेत्र]] F<sub>''q''</sub> में गुणांक के साथ परिवर्तित कर दिया गया है। (यह ज्ञात है कि सकारात्मक अभिलक्षण का स्थानीय क्षेत्र लॉरेंट श्रृंखला क्षेत्र के लिए आइसोमॉर्फिक है)। घातीय फलन, [[लघुगणक]] और अन्य के लिए उपयुक्त रूप से परिभाषित एनालॉग्स के साथ-साथ अवकलज का उपयोग विश्लेषण, समाकलन, टेलर श्रृंखला के साथ-साथ अवकल समीकरणों के सिद्धांत को विकसित करने के लिए किया जा सकता है।<ref>{{cite book |title=सकारात्मक विशेषता में विश्लेषण|last=Kochubei |first= Anatoly N.|year=2009 |publisher= Cambridge University Press |location= New York |isbn= 978-0-521-50977-0}}</ref> | ||
मूल व्युत्पत्ति के विस्तार या अमूर्तता की उपरोक्त विभिन्न धारणाओं में से दो या दो से अधिक को जोड़ना संभव हो सकता है। उदाहरण के लिए, फिन्स्लर ज्यामिति में, स्पेसेस का अध्ययन करते है जो [[स्थानीय रूप से]] बनच स्पेस की भाँति दिखता है। इस प्रकार कोई भिन्नात्मक अवकलज और सहपरिवर्ती अवकलज की कुछ विशेषताओं के साथ अवकलज चाहता है। | |||
गुणक कलन, जोड़ को गुणन से परिवर्तित कर देता है, इसलिए यह अनुपातों के घातांक की सीमा से संबंधित होता है। यह ज्यामितीय अवकलज और द्विमितीय अवकलज के विकास की अनुमति देता है। इसके अतिरिक्त, जिस प्रकार अवकल संकारक के निकट डिस्क्रीट एनालॉग होता है उसी प्रकार अवकल संकारक के इन गुणक अवकलज के डिस्क्रीट एनालॉग भी होते हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|अंकगणितीय व्युत्पन्न}} | ||
* {{annotated link| | * {{annotated link|दीनी व्युत्पन्न}} | ||
* {{annotated link| | * {{annotated link|हस डेरिवेटिव}} | ||
* {{annotated link| | * {{annotated link|लघुगणक व्युत्पन्न}} | ||
* {{annotated link| | * {{annotated link|लघुगणक अवकलन}} | ||
* {{annotated link| | * {{annotated link|नॉन-क्लासिकल एनालिसिस}} | ||
* {{annotated link| | * {{annotated link|पिंचरले व्युत्पन्न}} | ||
* {{annotated link| | * {{annotated link|अर्ध-अवकलनीयता}} | ||
* {{annotated link| | * {{annotated link|सममित व्युत्पन्न}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 150: | Line 150: | ||
{{Analysis in topological vector spaces}} | {{Analysis in topological vector spaces}} | ||
[Category:Generalizations of the derivative | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category:Created On 27/04/2023]] | [[Category:Created On 27/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using sidebar with the child parameter]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:व्युत्पन्न के सामान्यीकरण]] |
Latest revision as of 10:41, 4 May 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, अवकलज अवकलन का मूलभूत निर्माण है और गणितीय विश्लेषण, कॉम्बिनेटरिक्स, बीजगणित, ज्यामिति, आदि के क्षेत्रों में विभिन्न संभावित सामान्यीकरणों को स्वीकार करता है।
फ्रेचेट अवकलज
फ्रेचेट अवकलज सामान्य नॉर्मर्ड वेक्टर स्पेस के लिए अवकलज को परिभाषित करता है। संक्षेप में, फलन , , का ओपन सबसेट है, जिसे फ्रेचेट अवकलनीय कहा जाता है यदि कोई परिबद्ध रैखिक ऑपरेटर उपस्थित है, जैसे कि
फ्रेचेट अवकलज प्राथमिक एक-चर कलन में पाए जाने वाले अवकलज के सूत्र के समान है,
बहुभिन्नरूपी कलन में, अदिश फलन Rn से Rm तक परिभाषित अवकल समीकरणों के संदर्भ में, फ्रेचेट अवकलज A, 'R' पर रैखिक ऑपरेटर है जिसे सदिश समष्टि माना जाता है, और फलन के सर्वोत्तम रैखिक सन्निकटन से युग्मित होता है। यदि ऐसा कोई ऑपरेटर उपस्थित है, तो यह अद्वितीय है, और बिंदु x पर मैपिंग ƒ के जैकोबियन आव्यूह Jx(ƒ) के रूप में ज्ञात n आव्यूह (गणित) से m द्वारा प्रतिनिधित्व किया जा सकता है। इस आव्यूह की प्रत्येक प्रविष्टि डोमेन समन्वय में परिवर्तन के संबंध में श्रेणी समन्वय के परिवर्तन की दर निर्दिष्ट करने वाले आंशिक व्युत्पन्न का प्रतिनिधित्व करती है। निश्चित रूप से g°f जैकोबियन आव्यूह संगत जैकोबियन आव्यूह Jx(g°f) =Jƒ(x)(g)Jx(ƒ) का गुणनफल है। यह श्रृंखला नियम का उच्च-आयामी कथन है।
Rn से R तक वास्तविक मान फलन के लिए (अदिश क्षेत्र), फ़्रेचेट अवकलज वेक्टर क्षेत्र से युग्मित होता है जिसे कुल अवकलज कहा जाता है। इसे प्रवणता के रूप में परिभाषित किया जा सकता है किन्तु बाह्य अवकलज का उपयोग करना अधिक स्वाभाविक होता है।
संवहन व्युत्पन्न सदिश क्षेत्र के साथ स्पेस के माध्यम से समय निर्भरता और गति के कारण परिवर्तनों को ध्यान में रखता है, और कुल व्युत्पन्न की विशेष स्तिथि है।
R से Rn तक वेक्टर मान फलन के लिए (अर्थात, पैरामीट्रिक वक्र), फ्रेचेट अवकलज प्रत्येक घटक के लिए भिन्न-भिन्न अनुरूप होते हैं। परिणामी व्युत्पन्न को वेक्टर में मैप किया जा सकता है। यह उपयोगी है, उदाहरण के लिए यदि वेक्टर मान फलन समय के माध्यम से कण की स्थिति सदिश है तो व्युत्पन्न समय के माध्यम से कण का वेग सदिश होता है।
जटिल विश्लेषण में, अध्ययन की केंद्रीय वस्तुएं होलोमॉर्फिक फलन हैं, जो सम्मिश्र संख्याओं पर काम्प्लेक्स-मान फलन हैं जहाँ फ्रेचेट व्युत्पन्न उपस्थित है।
ज्यामितीय कलन में ज्यामितीय व्युत्पन्न लीबनिज़ नियम के शक्तिहीन रूप को संतुष्ट करता है। यह ज्यामितीय बीजगणित की वस्तुओं के लिए फ्रेचेट अवकलज का विशेषज्ञ है। ज्यामितीय कलन शक्तिशाली औपचारिकता है जिसे अवकल रूपों और ज्यामिति के समान रूपरेखा को सम्मिलित करने के लिए दिखाया गया है।[1]
बाह्य व्युत्पन्न और लाई व्युत्पन्न
स्मूथ मैनिफोल्ड पर अवकल रूपों के बाह्य बीजगणित का अद्वितीय रैखिक मानचित्र है जो वर्गीकृत लीबनिज नियम और वर्गों को शून्य से संतुष्ट करता है। यह बाह्य बीजगणित पर ग्रेड 1 की व्युत्पत्ति होती है। R3 में, ग्रेडिएंट, कर्ल (गणित), और विचलन बाह्य व्युत्पन्न की विशेष स्तिथियाँ होती हैं। ग्रेडिएंट की व्याख्या यह है कि यह "ऊपर" संकेत करती है, दूसरे शब्दों में यह फलन की सबसे तीव्र वृद्धि की दिशा की ओर संकेत करता है। इसका उपयोग अदिश (गणित) फलन या सामान्य दिशाओं के दिशात्मक डेरिवेटिव की गणना करने के लिए किया जा सकता है। विचलन बिंदु के निकट कितना स्रोत या सिंक उपस्थित है इसका माप देता है। इसका उपयोग विचलन प्रमेय द्वारा फ्लक्स की गणना के लिए किया जा सकता है। कर्ल मापता है कि बिंदु के निकट सदिश क्षेत्र का कितना स्पिन है।
लाई व्युत्पन्न सदिश या टेंसर क्षेत्र के दूसरे सदिश क्षेत्र के प्रवाह के साथ परिवर्तन की दर है। सदिश क्षेत्रों पर, यह लाई ब्रैकेट का उदाहरण है (सदिश क्षेत्र मैनिफोल्ड के डिफियोमोर्फिज्म समूह के लाई बीजगणित का निर्माण करते हैं)। यह बीजगणित पर ग्रेड 0 की व्युत्पत्ति है।
इंटीरियर प्रोडक्ट के साथ (सदिश क्षेत्र के साथ संकुचन द्वारा परिभाषित बाह्य बीजगणित पर डिग्री -1 व्युत्पत्ति), बाह्य व्युत्पन्न और लाई व्युत्पन्न लाई सुपरएलजेब्रा बनाते हैं।
अवकल टोपोलॉजी
अवकल टोपोलॉजी में, सदिश क्षेत्र को मैनिफोल्ड पर स्मूथ फलनों के वलय पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है, और स्पर्शरेखा सदिश को बिंदु पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है। यह अदिश फलन के दिशात्मक व्युत्पन्न की धारणा को सामान्य मैनिफोल्ड करने की अनुमति देता है। मैनिफोल्ड Rn उपसमुच्चय हैं, यह स्पर्शरेखा सदिश दिशात्मक अवकलज से सहमत होगा।
मैनिफोल्ड्स के मध्य मानचित्र का पुशफॉरवर्ड (अंतर) उन मानचित्रों के स्पर्शरेखा स्थानों के मध्य प्रेरित मानचित्र है। यह जैकबियन आव्यूह को ऐब्स्ट्रैक्ट करता है।
सहपरिवर्ती व्युत्पन्न
अवकल ज्यामिति में, सहपरिवर्ती व्युत्पन्न वक्र के साथ वेक्टर क्षेत्रों के दिशात्मक डेरिवेटिव लेने के लिए विकल्प बनाता है। यह वेक्टर बंडलों या प्रमुख बंडलों के वर्गों के लिए अदिश फलन के दिशात्मक व्युत्पन्न का विस्तार करता है। रिमेंनियन ज्यामिति में, मीट्रिक का अस्तित्व लेवी-सिविटा कनेक्शन के रूप में जाना जाने वाला अद्वितीय मुख्य टॉरशन-मुक्त सहपरिवर्ती व्युत्पन्न का चयन करता है। भौतिकी के उन्मुख व्यवहार के लिए गेज सहपरिवर्ती व्युत्पन्न भी देखें।
बाह्य सहपरिवर्ती व्युत्पन्न बाह्य व्युत्पन्न को वेक्टर वैल्यूड रूपों तक विस्तारित करता है।
वीक अवकलज
दिया हुआ फलन , जो कि स्थानीय रूप से समाकलित होता है, किन्तु आवश्यक नहीं कि यह अवकलनीय हो, वीक अवकलज को आंशिक समाकलन के माध्यम से परिभाषित किया जा सकता है। प्रथम अभ्यास फलन को परिभाषित करता है, जो अनन्त अवकलनीय और कॉम्पैक्ट रूप से समर्थित फलन और मल्टी-इंडेक्स हैं जो पूर्णांकों की लंबाई की सूची के साथ है। अभ्यास फलन के लिए प्रस्तावित है| यदि कोई फलन है, तो का वीक अवकलज उपस्थित है जैसे कि सभी अभ्यास फलन के लिए है-
यदि ऐसा फलन उपस्थित है, तो , जो प्रायः प्रत्येक स्थान पर अद्वितीय है। यह परिभाषा फलन के अवकल के समान है, और सामान्यीकृत फलन के लिए विस्तृत की जा सकती है जिसे वितरण (गणित) फलन की ड्यूल स्पेस कहा जाता है। आंशिक अवकल समीकरणों के अध्ययन में और कार्यात्मक विश्लेषण के कुछ भागों में वीक अवकलज विशेष रूप से उपयोगी होते हैं।
भिन्नात्मक और उच्चतम कोटि के अवकलज
वास्तविक संख्याओं में अवकलन प्रक्रिया को पुनरावृत्त किया जा सकता है, अर्थात, द्वितीय और उच्चतम कोटि के अवकलज प्राप्त करने के लिए एक से अधिक बार अवकलज प्रस्तावित कर सकते हैं। मल्टीवेरिएबल कैलकुस में अध्ययन किए गए कई चर के फलन के लिए उच्चतम अवकलज भी परिभाषित किए जा सकते हैं। इस स्तिथि में, अवकलज को पुनः प्रस्तावित करने के अतिरिक्त, विभिन्न चरों के संबंध में आंशिक अवकलज को पुनः प्रस्तावित किया जाता है। उदाहरण के लिए, n चरों के स्केलर फलन के द्वितीय क्रम के आंशिक अवकलज को n द्वारा n आव्यूह, हेसियन आव्यूह में व्यवस्थित किया जा सकता है। सूक्ष्म बिंदुओं में उच्चतम अवकलज आंतरिक रूप से परिभाषित नहीं होते हैं, और जटिल फैशन में निर्देशांक के चयन पर निर्भर करते हैं (विशेष रूप से, फलन का हेस्सियन आव्यूह टेन्सर नहीं है)। उच्चतम अवकलज के निकट अपने क्रिटिकल पॉइंट (गणित) पर फलन के स्थानीय एक्स्ट्रेमा के विश्लेषण के लिए महत्वपूर्ण अनुप्रयोग हैं। मैनिफोल्ड्स की टोपोलॉजी के लिए इस विश्लेषण के उन्नत अनुप्रयोग के लिए मोर्स सिद्धांत देखें।
किसी भी प्राकृतिक संख्या n के n-वें अवकलज के अतिरिक्त, भिन्नात्मक या ऋणात्मक क्रमों के अवकलज को परिभाषित करने के लिए विभिन्न विधियाँ हैं, जिनका अध्ययन भिन्नात्मक कलन में किया जाता है। प्रथम क्रम अवकलज इंटीग्रल के समान है, जहाँ शब्द डिफरेंट इंटीग्रल है।
क्वाटरनियोनिक अवकलज
क्वाटरनियोनिक विश्लेषण में, अवकलज को वास्तविक और काम्प्लेक्स फलन के समान परिभाषित किया जा सकता है। चूँकि, चतुष्कोण विनिमेय नहीं हैं, अंतर भागफल की सीमा दो भिन्न-भिन्न अवकलज देती है- बायाँ अवकलज
और दायाँ अवकलज
इन सीमाओं का अस्तित्व अधिक प्रतिबंधात्मक स्थिति है। उदाहरण के लिए, यदि ओपन कनेक्टेड समुच्चय पर प्रत्येक बिंदु पर बाएं-डेरिवेटिव हैं तब के लिए है।
अन्तर संकारक, क्यू-एनालॉग्स और टाइम स्केल
- किसी फलन का क्यू-अवकलज सूत्र द्वारा परिभाषित किया गया है-x अशून्य के लिए, यदि f, x का अवकलनीय फलन है तो q → 1 की सीमा में हम सामान्य अवकलज प्राप्त करते हैं, इस प्रकार q-अवकलज को q-डिफ़ॉर्मेशन के रूप में देखा जा सकता है। द्विपद सूत्र और टेलर विस्तार जैसे साधारण अवकल कलन के परिणामों के बड़े निकाय में क्यू-एनालॉग होते हैं जो 19वें दशक में शोधित किये गए थे, किन्तु विशेष फलन के सिद्धांत में, 20वें दशक के बड़े अंश के लिए अपेक्षाकृत अस्पष्ट बने रहे। कॉम्बिनेटरिक्स की प्रगति और क्वांटम समूहों की शोध ने स्थिति को नाटकीय रूप से परिवर्तित कर दिया है और क्यू-एनालॉग्स की लोकप्रियता बढ़ रही है।
- डिफरेंस समीकरणों का अन्तर संकारक मानक व्युत्पन्न का डिस्क्रीट एनालॉग है।
- क्यू-अवकलज, अन्तर संकारक और मानक व्युत्पन्न सभी को भिन्न-भिन्न टाइम स्केल कैलकुलस पर समान रूप में देखा जा सकता है। उदाहरण के लिए, को लेने पर हमारे निकट हो सकता है-क्यू-अवकलज वोल्फगैंग हैन अंतर की विशेष स्तिथि है,[2]हैन अंतर, क्यू-अवकलज का सामान्यीकरण है।
- q-अवकलज, फेमिलिअर अवकलज की विशेष स्तिथि है। को लेने पर हमारे निकट है-
बीजगणित में अवकलज
बीजगणित में, व्युत्पन्न के सामान्यीकरण को बीजगणितीय संरचना जैसे रिंग या लाइ बीजगणित में अवकलन के लीबनिज़ नियम को प्रस्तावित करके प्राप्त किया जा सकता है।
अवकलज
अवकलज वलय या बीजगणित पर रैखिक मानचित्र है जो लीबनिज़ नियम को संतुष्ट करता है। उच्चतम अवकलज और बीजगणितीय अवकल समीकरण को भी परिभाषित किया जा सकता है। वे अवकल गैलोज सिद्धांत और डी-मॉड्यूल के सिद्धांत में विशुद्ध रूप से बीजगणितीय सेटिंग में अध्ययन किए जाते हैं, जहाँ वे अधिकांशतः अवकलज की कम बीजगणितीय परिभाषाओं से सहमत होते हैं।
उदाहरण के लिए, क्रमविनिमेय वलय R पर बहुपद के अवकल बीजगणित को निम्न द्वारा परिभाषित किया जाता है-
मानचित्रण बहुपद वलय R[X] पर अवकलज है। इस परिभाषा को परिमेय फलन के लिए भी विस्तृत किया जा सकता है।
अवकलज की धारणा गैर विनिमेय के साथ-साथ क्रमविनिमेय वलयों पर प्रस्तावित होती है और नॉन-अस्सोसिएटिव बीजगणितीय संरचनाओं जैसे लाई बीजगणित पर भी प्रस्तावित होती है।
टाइप का अवकलज
प्रकार सिद्धांत में, कई अमूर्त डेटा प्रकारों को रूपांतरण द्वारा उत्पन्न बीजगणित के रूप में वर्णित किया जा सकता है जो प्रकार के आधार पर संरचनाओं को पुनः प्रकार में मैप करता है। उदाहरण के लिए, टाइप A वाले बाइनरी ट्री के टाइप T को 1+A×T2→T परिवर्तन द्वारा उत्पन्न बीजगणित के रूप में दर्शाया जा सकता है। '1' एम्प्टी ट्री के निर्माण का प्रतिनिधित्व करता है, और द्वितीय पद ट्री के निर्माण को मान और दो उपप्रकारों से दर्शाता है। '+' दर्शाता है कि ट्री का निर्माण किसी भी प्रकार से किया जा सकता है।
इस प्रकार का व्युत्पन्न वह प्रकार है जो किसी विशेष उपसंरचना के संदर्भ को इसकी बाह्य संरचना के संबंध में वर्णित करता है। द्वितीय प्रकार दोनों के मध्य अंतर का प्रतिनिधित्व है। ट्री के उदाहरण में, व्युत्पन्न प्रकार है जो इनफार्मेशन का वर्णन करता है, विशेष सबट्री को उसके मूल ट्री के निर्माण के लिए दिया जाता है। यह इनफार्मेशन टपल है जिसमें बाइनरी इंडिकेटर होता है। इस प्रकार को 2×A×T के रूप में दर्शाया जा सकता है, जो ट्री के प्रकार को उत्पन्न करने वाले परिवर्तन के व्युत्पन्न की भाँति दिखता है।
टाइप के व्युत्पन्न की इस अवधारणा में व्यावहारिक अनुप्रयोग हैं, जैसे फंक्शनल प्रोग्रामिंग भाषाओं में उपयोग की जाने वाली ज़िपर (डेटा संरचना) तकनीक है।
अवकल ऑपरेटर
अवकल संकारक बीजगणितीय व्यंजक में संभवतः विभिन्न क्रमों के विभिन्न व्युत्पन्नों को जोड़ता है। यह विशेष रूप से स्थिर गुणांक वाले साधारण रैखिक अवकल समीकरणों पर विचार करने में उपयोगी है। उदाहरण के लिए, यदि f(x) चर का दो बार अवकलनीय फलन है, तो अवकल समीकरण को के रूप में पुनः लिखा जा सकता है, जहाँ
इनमें से कुछ ऑपरेटर इतने महत्वपूर्ण हैं कि उनके अपने नाम हैं:
- R3 पर लाप्लास ऑपरेटर या लाप्लासियन द्वितीय कोटि का आंशिक अवकल संकारक Δ है जो तीन चरों के अदिश फलन के ग्रेडियेंट के विचलन द्वारा दिया गया है, या स्पष्ट रूप से- एनालॉगस ऑपरेटरों को किसी भी चर के फलन के लिए परिभाषित किया जा सकता है।
- डी'अलेम्बर्टियन या वेव ऑपरेटर लाप्लासियन के समान है, किन्तु चार चरों के फलनों पर कार्य करता है। इसकी परिभाषा R3 के यूक्लिडियन डॉट गुणनफल के अतिरिक्त मिन्कोव्स्की स्पेस के अनिश्चित मीट्रिक टेंसर का उपयोग करती है-
- श्वार्ज़ियन अवकलज अरैखिक अवकल संकारक है जो वर्णन करता है कि किस प्रकार आंशिक-रैखिक मानचित्र द्वारा काम्प्लेक्स फलन का अनुमान लगाया जा सकता है, उसी प्रकार सामान्य अवकलज वर्णन करता है कि रैखिक मानचित्र द्वारा फलन का अनुमान किस प्रकार लगाया जा सकता है।
- विर्टिंगर डेरिवेटिव अवकल संकारकों का समुच्चय है जो काम्प्लेक्स फलनों के लिए अवकल कलन के निर्माण की अनुमति देता है जो वास्तविक चर के फलनों के लिए सामान्य अवकलन के समान है।
अन्य सामान्यीकरण
फंक्शनल विश्लेषण में, भिन्नात्मक अवकलज फंक्शनल के फलन के सापेक्ष अवकलज को परिभाषित करता है। यह अनंत आयामी सदिश समष्टि के लिए दिशात्मक व्युत्पन्न का विस्तार है। विचरण कलन में विचरण अवकलज महत्वपूर्ण स्तिथि है।
सबडेरिवेटिव और सबग्रेडिएंट कॉन्वेक्स विश्लेषण में उपयोग किए जाने वाले अवमुख फलनों के अवकलज के सामान्यीकरण हैं।
कम्यूटेटिव बीजगणित में, काहलर अवकल क्रमविनिमेय वलय या मॉड्यूल (बीजगणित) के यूनिवर्सल डेरिवेटिव हैं। उनका उपयोग अवकल ज्यामिति से बाह्य व्युत्पन्न के एनालॉग को परिभाषित करने के लिए किया जा सकता है जो मात्र स्मूथ मैनिफोल्ड्स के अतिरिक्त आर्बिटरी बीजगणितीय विविधता पर प्रस्तावित होते है।
पी-एडिक विश्लेषण में, डेरिवेटिव की सामान्य परिभाषा पर्याप्त नहीं है और इसके अतिरिक्त अवकलनीयता की आवश्यकता होती है।
गैटॉक्स डेरिवेटिव फ्रेचेट अवकलज को स्थानीय कॉन्वेक्स टोपोलॉजिकल वेक्टर स्पेस तक वस्तृत करता है। फ़्रेचेट अवकलनीयता गैटॉक्स अवकलनीयता की तुलना में परिमित आयामों में दृढ़ स्थिति है। दो चरम सीमाओं के मध्य क्वासि-डेरिवेटिव है।
माप सिद्धांत में, रैडॉन-निकोडीम अवकलज जेकोबियन आव्यूह और निर्धारक का सामान्यीकरण करता है, जिसका उपयोग चरों को मापने के लिए किया जाता है। यह माप μ को दूसरे माप ν के संदर्भ में व्यक्त करता है।
एच-व्युत्पन्न सार वीनर स्पेस और मालियाविन कलन के अध्ययन में व्युत्पन्न की धारणा है। इसका उपयोग स्टोकेस्टिक प्रक्रियाओं के अध्ययन में किया जाता है।
लाप्लासियन का उपयोग करने वाले लाप्लासियन और अवकल समीकरणों का फ्रैक्टल्स पर विश्लेषण किया जा सकता है। प्रथम कोटि के अवकलज का कोई पूर्ण रूप से संतोषजनक एनालॉग नहीं है।[3]
कार्लिट्ज अवकलज, सामान्य अवकलन के समान ऑपरेशन है, किन्तु वास्तविक या सम्मिश्र संख्याओं के सामान्य संदर्भ के साथ औपचारिक लॉरेंट श्रृंखला के रूप में सकारात्मक अभिलक्षण (बीजगणित) के स्थानीय क्षेत्रों में कुछ परिमित क्षेत्र Fq में गुणांक के साथ परिवर्तित कर दिया गया है। (यह ज्ञात है कि सकारात्मक अभिलक्षण का स्थानीय क्षेत्र लॉरेंट श्रृंखला क्षेत्र के लिए आइसोमॉर्फिक है)। घातीय फलन, लघुगणक और अन्य के लिए उपयुक्त रूप से परिभाषित एनालॉग्स के साथ-साथ अवकलज का उपयोग विश्लेषण, समाकलन, टेलर श्रृंखला के साथ-साथ अवकल समीकरणों के सिद्धांत को विकसित करने के लिए किया जा सकता है।[4]
मूल व्युत्पत्ति के विस्तार या अमूर्तता की उपरोक्त विभिन्न धारणाओं में से दो या दो से अधिक को जोड़ना संभव हो सकता है। उदाहरण के लिए, फिन्स्लर ज्यामिति में, स्पेसेस का अध्ययन करते है जो स्थानीय रूप से बनच स्पेस की भाँति दिखता है। इस प्रकार कोई भिन्नात्मक अवकलज और सहपरिवर्ती अवकलज की कुछ विशेषताओं के साथ अवकलज चाहता है।
गुणक कलन, जोड़ को गुणन से परिवर्तित कर देता है, इसलिए यह अनुपातों के घातांक की सीमा से संबंधित होता है। यह ज्यामितीय अवकलज और द्विमितीय अवकलज के विकास की अनुमति देता है। इसके अतिरिक्त, जिस प्रकार अवकल संकारक के निकट डिस्क्रीट एनालॉग होता है उसी प्रकार अवकल संकारक के इन गुणक अवकलज के डिस्क्रीट एनालॉग भी होते हैं।
यह भी देखें
- अंकगणितीय व्युत्पन्न
- दीनी व्युत्पन्न
- हस डेरिवेटिव
- लघुगणक व्युत्पन्न
- लघुगणक अवकलन
- नॉन-क्लासिकल एनालिसिस
- पिंचरले व्युत्पन्न
- अर्ध-अवकलनीयता
- सममित व्युत्पन्न
टिप्पणियाँ
- ↑ David Hestenes, Garrett Sobczyk: Clifford Algebra to Geometric Calculus, a Unified Language for mathematics and Physics (Dordrecht/Boston:G.Reidel Publ.Co., 1984, ISBN 90-277-2561-6
- ↑ Hahn, Wolfgang (1949). "Über Orthogonalpolynome, die q-Differenzengleichungen genügen". Mathematische Nachrichten. 2 (1–2): 4–34. doi:10.1002/mana.19490020103. ISSN 0025-584X. MR 0030647.
- ↑ Analysis on Fractals, Robert S. Strichartz - Article in Notices of the AMS
- ↑ Kochubei, Anatoly N. (2009). सकारात्मक विशेषता में विश्लेषण. New York: Cambridge University Press. ISBN 978-0-521-50977-0.
[Category:Generalizations of the derivative