रैखिक उपसमष्टि: Difference between revisions
Line 50: | Line 50: | ||
इन विषयों का विस्तार करने वाले उदाहरण [[कार्यात्मक विश्लेषण|फलनात्मक विश्लेषण]] में साधारण हैं। | इन विषयों का विस्तार करने वाले उदाहरण [[कार्यात्मक विश्लेषण|फलनात्मक विश्लेषण]] में साधारण हैं। | ||
== | ==उपसमष्टियों के गुण == | ||
सदिश रिक्त समष्टि की परिभाषा से, यह निम्नानुसार है कि उप-समष्टियों अरिक्त हैं, और योग के अंतर्गत और अदिश गुणकों के अंतर्गत बंद (गणित) हैं।<ref>{{Harvtxt|MathWorld|2021}} Subspace.</ref> समान रूप से, उपसमष्टियो को रैखिक संयोजनों के अंतर्गत बंद होने की गुण द्वारा चित्रित किया जा सकता है। अर्थात्, अरिक्त समुच्चय W उपसमष्टि है यदि और केवल यदि W के परिमित समुच्चय के कई अवयवों का प्रत्येक रैखिक संयोजन भी W से संबंधित होते हैं। | |||
समतुल्य परिभाषा बताती है कि यह एक समय में दो | समतुल्य परिभाषा बताती है कि यह एक समय में दो अवयवों के रैखिक संयोजनों पर विचार करने के भी समतुल्य है। | ||
[[टोपोलॉजिकल वेक्टर स्पेस]]<ref>{{harvtxt|DuChateau|2002}} Basic facts about Hilbert Space — class notes from Colorado State University on Partial Differential Equations (M645).</ref> यही बात परिमित | [[टोपोलॉजिकल वेक्टर स्पेस|संश्थितिक सदिश समष्टि]]<ref>{{harvtxt|DuChateau|2002}} Basic facts about Hilbert Space — class notes from Colorado State University on Partial Differential Equations (M645).</ref> उप समष्ट्यि ''W'' के सश्थितिक रूप से सिमित होने की कोई आवस्यकता नहीं होती हैं, परन्तु परिमित विमा उपसम्मुचय सदैव सिमित होता हैं। यही बात परिमित सह विमा के उप-समष्टियों के लिए भी सत्य (अर्थात, निरंतर [[रैखिक कार्यात्मक|रैखिक फलनों]] की एक सीमित संख्या द्वारा निर्धारित उप-समष्टि) होता हैं। | ||
==विवरण== | ==विवरण== |
Revision as of 08:09, 7 July 2023
परिमित क्षेत्र F5 पर द्विविमीय सदिश समष्टि में एक-विमीय उपसमष्टि। केंद्र (0, 0), हरे रंग के वृतो द्वारा दर्शाया गया हैं, कोई भी छः-1 उपसमष्टियो के अंतर्गत आता हैं, जबकि शेष 24 बिंदु यथार्थतः एक के अंतर्गत आते हैं; एक गुण जो किसी भी क्षेत्र पर तथा सभी विमाओं 1 उपसमष्टि रखता हैं। सभी F52 (i.e. a 5 × 5 वर्ग) अच्छे दृश्यकरण के लिए चार बार प्रदर्शित किया गया हैं। |
गणित में, और विशेष रूप से रैखिक बीजगणित में, रैखिक उपसमष्टि या सदिश उपसमष्टि[1][note 1] एक सदिश समष्टि है जो किसी बड़े सदिश समष्टि का उपसमुच्चय है। रैखिक उपसमष्टि को साधारण तौर पर केवल उपसमष्टि कहा जाता है जब संदर्भ इसे अन्य प्रकार के उपसमष्टि से अलग करने का कार्य करता है।
परिभाषा
यदि V क्षेत्र (गणित) K पर सदिश समष्टि है और यदि W, V का उपसमुच्चय है, तो W, V का 'रैखिक उपसमष्टि' है यदि V के संचालन के अनुसार, W, K पर सदिश समष्टि है। समान रूप से, एक रिक्त उपसमुच्चय, V का उपसमष्टि है यदि, जब w1, w2W और के अवयव हैं α, β K के अवयव हैं, तो यह αw1 + βw2 का W में अनुसरण करता है।[2][3][4][5][6]
परिणाम के रूप में, सभी सदिश समष्टि कम से कम दो (संभवतः भिन्न) रैखिक उपसमष्टियो से सुसज्जित होते हैं: शून्य सदिश समष्टि जिसमें अकेले शून्य सदिश और संपूर्ण सदिश समष्टि सम्मलित होता है। इन्हें सदिश समष्टि की विषम उपसमष्टि कहा जाता है।[7]
उदाहरण
उदाहरण I
सदिश समष्टि में V = 'R'3 (वास्तविक संख्याओं के क्षेत्र R पर वास्तविक समन्वय समष्टि), W को V में सभी सदिशों के समुच्चयों के रूप में लें जिसका अंतिम घटक 0 है। तो W, V का उपसमष्टि है।
सिद्ध:
- W में u और v दिया गया है तो इन्हें इस प्रकार u = (u1, u2, 0) और v = (v1, v2, 0) से व्यक्त किया जा सकता है। तब u + v = (u1+v1, u2+v2, 0+0) = (u1+v1, u2+v2, 0)। इस प्रकार, u + v, W का भी अवयव है।
- आपको W में और R में अदिश c दिया गया है, यदि पुनः u = (u1, u2, 0),तो cu = (cu1, cu2, c0) = (cu1, cu2,0) होता हैं। इस प्रकार, c'u', W का भी एक अवयव है।
उदाहरण II
मान लीजिए कि क्षेत्र पुनः R है, लेकिन अब माना की सदिश समष्टि V कार्तीय तल R2 हैं। W को 'R'2 के बिंदुओं (x, y) का समुच्चय मानें जैसे कि x = yहो। तब W 'R'2 का उपसमष्टि हैं।
सिद्ध:
- माना p = (p1, p2) और q = (q1, q2) W के अवयव हों, अर्थात् समतल में बिंदु p1 = p2 और q1 = q2 हो। तब p + q = (p1+q1, p2+q2); चूंकि p1 = p2 और q1 = q2, फिर p1 + q1 = p2 + q2, इसलिए p + q, W का अवयव है।
- मान लीजिए p = (p1, पी2) W का अवयव हो, अर्थात, समतल में बिंदु p1 = p2 हो और मान लीजिए कि c 'R' में अदिश राशि है। तब cp = (cp1, cp2); चूंकि p1 = p2, फिर c.p1 = c.p2, इसलिए c'p', W का अवयव है।
सामान्यतया, वास्तविक समन्वय समष्टि 'R' का कोई भी उपसमुच्चयn जिसे सजातीय रैखिक समीकरणों की प्रणाली द्वारा परिभाषित किया गया है, उससे उप-समष्टि प्राप्त होता हैं। (उदाहरण I में समीकरण z = 0 था, और उदाहरण II में समीकरण x = y था।)
उदाहरण III
पुनः क्षेत्र को R मानें, लेकिन अब सदिश समष्टि V को समुच्चय R मानेंR से R तक सभी फलन (गणित) का R। मान लीजिए C(R) सतत फलन से युक्त उपसमुच्चय है। तब C(R), R की उपसमष्टि हैआर.
सिद्ध:
- अवकलन से हमें पता चलता है की 0 ∈ C(R) ⊂ RR होता हैं।
- अवकलन से हम जानते हैं कि सतत फलनों का योग सतत होता है।
- पुनः, हम अवकलन से जानते हैं कि सतत फलन और एक संख्या का गुणनफल सतत होता है।
उदाहरण IV
क्षेत्र और सदिश समष्टि को पहले जैसा ही रखें, लेकिन अब सभी अवकलनीय फलनो के समुच्चय Diff (R) पर विचार किया जाता हैं। पहले जैसे ही तर्क से पता चलता है कि यह भी उपसमष्टि है।
इन विषयों का विस्तार करने वाले उदाहरण फलनात्मक विश्लेषण में साधारण हैं।
उपसमष्टियों के गुण
सदिश रिक्त समष्टि की परिभाषा से, यह निम्नानुसार है कि उप-समष्टियों अरिक्त हैं, और योग के अंतर्गत और अदिश गुणकों के अंतर्गत बंद (गणित) हैं।[8] समान रूप से, उपसमष्टियो को रैखिक संयोजनों के अंतर्गत बंद होने की गुण द्वारा चित्रित किया जा सकता है। अर्थात्, अरिक्त समुच्चय W उपसमष्टि है यदि और केवल यदि W के परिमित समुच्चय के कई अवयवों का प्रत्येक रैखिक संयोजन भी W से संबंधित होते हैं। समतुल्य परिभाषा बताती है कि यह एक समय में दो अवयवों के रैखिक संयोजनों पर विचार करने के भी समतुल्य है।
संश्थितिक सदिश समष्टि[9] उप समष्ट्यि W के सश्थितिक रूप से सिमित होने की कोई आवस्यकता नहीं होती हैं, परन्तु परिमित विमा उपसम्मुचय सदैव सिमित होता हैं। यही बात परिमित सह विमा के उप-समष्टियों के लिए भी सत्य (अर्थात, निरंतर रैखिक फलनों की एक सीमित संख्या द्वारा निर्धारित उप-समष्टि) होता हैं।
विवरण
उप-स्थानों के विवरण में रैखिक समीकरणों की एक सजातीय प्रणाली के लिए सेट समाधान, सजातीय रैखिक पैरामीट्रिक समीकरणों की एक प्रणाली द्वारा वर्णित यूक्लिडियन अंतरिक्ष का उपसमुच्चय, वैक्टर के संग्रह की रैखिक अवधि, और शून्य स्थान, स्तंभ स्थान और पंक्ति स्थान शामिल हैं। एक मैट्रिक्स (गणित) का. ज्यामितीय रूप से (विशेष रूप से वास्तविक संख्याओं और उसके उपक्षेत्रों के क्षेत्र में), एक उप-स्थान एन-स्पेस में एक समतल (ज्यामिति) है जो मूल से होकर गुजरता है।
1-उपस्थान का प्राकृतिक वर्णन सभी संभावित अदिश मानों के लिए एक गैर-योज्य पहचान वेक्टर 'v' का अदिश गुणन है। 1-दो वैक्टरों द्वारा निर्दिष्ट उप-स्थान बराबर होते हैं यदि और केवल तभी जब एक वेक्टर को अदिश गुणन के साथ दूसरे से प्राप्त किया जा सके:
इस विचार को रैखिक विस्तार के साथ उच्च आयामों के लिए सामान्यीकृत किया गया है, लेकिन k वैक्टर के सेट द्वारा निर्दिष्ट k-स्पेस की समानता (गणित) के मानदंड इतने सरल नहीं हैं।
एक द्वंद्व (गणित) विवरण रैखिक कार्यात्मकताओं (आमतौर पर रैखिक समीकरणों के रूप में लागू) के साथ प्रदान किया जाता है। एक गैर-योज्य पहचान रैखिक कार्यात्मक 'एफ' अपने कर्नेल (रैखिक बीजगणित) कोडिमेंशन 1 के उप-स्थान 'एफ' = 0 को निर्दिष्ट करता है। दो रैखिक कार्यात्मकताओं द्वारा निर्दिष्ट कोडिमेंशन 1 के उप-स्थान बराबर होते हैं, यदि और केवल तभी जब एक कार्यात्मक दूसरे से प्राप्त किया जा सकता है अदिश गुणन के साथ (दोहरे स्थान में):
इसे समीकरणों की एक प्रणाली के साथ उच्च आयामों के लिए सामान्यीकृत किया गया है। निम्नलिखित दो उपखंड इस बाद के विवरण को विस्तार से प्रस्तुत करेंगे, और #वेक्टरों का विस्तार चार उपखंड आगे रैखिक विस्तार के विचार का वर्णन करेंगे।
रैखिक समीकरणों की प्रणाली
n चर वाले रैखिक समीकरणों की किसी भी सजातीय प्रणाली के लिए सेट किया गया समाधान निर्देशांक स्थान K में एक उप-स्थान हैn:
मैट्रिक्स का शून्य स्थान
एक परिमित-आयामी स्थान में, रैखिक समीकरणों की एक सजातीय प्रणाली को एकल मैट्रिक्स समीकरण के रूप में लिखा जा सकता है:
इस समीकरण के समाधान के सेट को मैट्रिक्स के शून्य स्थान के रूप में जाना जाता है। उदाहरण के लिए, ऊपर वर्णित उप-स्थान मैट्रिक्स का शून्य स्थान है
K का प्रत्येक उपस्थानn को कुछ मैट्रिक्स के शून्य स्थान के रूप में वर्णित किया जा सकता है (देखें)। § Algorithms अधिक जानकारी के लिए नीचे)।
रैखिक पैरामीट्रिक समीकरण
K का उपसमुच्चयnसजातीय रैखिक पैरामीट्रिक समीकरणों की एक प्रणाली द्वारा वर्णित एक उप-स्थान है:
उदाहरण के लिए, समीकरणों द्वारा पैरामीटरयुक्त सभी वैक्टर (x,y,z) का सेट
K का द्वि-आयामी उपस्थान है3, यदि K एक संख्या फ़ील्ड है (जैसे वास्तविक या तर्कसंगत संख्याएँ)।[note 2]
सदिशों का विस्तार
रैखिक बीजगणित में, पैरामीट्रिक समीकरणों की प्रणाली को एकल वेक्टर समीकरण के रूप में लिखा जा सकता है:
दाईं ओर की अभिव्यक्ति को सदिशों का रैखिक संयोजन कहा जाता है (2, 5, −1) और (3, −4, 2). कहा जाता है कि ये दोनों वेक्टर परिणामी उप-स्थान को फैलाते हैं।
सामान्य तौर पर, सदिशों का एक रैखिक संयोजन v1, में2, ... , मेंk फॉर्म का कोई वेक्टर है
सभी संभावित रैखिक संयोजनों के समुच्चय को स्पैन कहा जाता है:
यदि सदिश v1, ... , मेंk n घटक हैं, तो उनका विस्तार K का एक उपसमष्टि हैn. ज्यामितीय रूप से, स्पान मूल बिंदु के माध्यम से n-आयामी स्थान में समतल है जो बिंदु 'v' द्वारा निर्धारित होता है1, ... , मेंk.
- उदाहरण
- 'आर' में एक्सजेड-प्लेन3 को समीकरणों द्वारा मानकीकृत किया जा सकता है
- एक उप-स्थान के रूप में, xz-प्लेन वैक्टर (1,0,0) और (0,0,1) द्वारा फैला हुआ है। xz-तल में प्रत्येक वेक्टर को इन दोनों के रैखिक संयोजन के रूप में लिखा जा सकता है:
- ज्यामितीय रूप से, यह इस तथ्य से मेल खाता है कि xz-तल पर प्रत्येक बिंदु तक पहले (1,0,0) की दिशा में कुछ दूरी तय करके और फिर (0, की दिशा में कुछ दूरी तय करके) मूल बिंदु से पहुंचा जा सकता है। 0, 1).
स्तंभ स्थान और पंक्ति स्थान
परिमित-आयामी स्थान में रैखिक पैरामीट्रिक समीकरणों की एक प्रणाली को एकल मैट्रिक्स समीकरण के रूप में भी लिखा जा सकता है:
इस मामले में, उप-स्थान में वेक्टर x के सभी संभावित मान शामिल हैं। रैखिक बीजगणित में, इस उप-स्थान को मैट्रिक्स ए के स्तंभ स्थान (या छवि (गणित)) के रूप में जाना जाता है। यह बिल्कुल K का उपस्थान हैnए के कॉलम वैक्टर द्वारा फैलाया गया।
एक मैट्रिक्स का पंक्ति स्थान उसके पंक्ति वैक्टर द्वारा फैला हुआ उपस्थान है। पंक्ति स्थान दिलचस्प है क्योंकि यह शून्य स्थान का ऑर्थोगोनल पूरक है (नीचे देखें)।
स्वतंत्रता, आधार और आयाम
सामान्य तौर पर, K का एक उप-स्थानnk मापदंडों द्वारा निर्धारित (या k वैक्टर द्वारा फैलाया गया) का आयाम k है। हालाँकि, इस नियम के अपवाद भी हैं। उदाहरण के लिए, K का उपस्थान3 तीन सदिशों (1,0,0), (0,0,1), और (2,0,3) द्वारा फैला हुआ केवल xz-तल है, जिसमें समतल पर प्रत्येक बिंदु का वर्णन अपरिमित रूप से किया गया है के कई अलग-अलग मूल्य t1, t2, t3.
सामान्य तौर पर, वैक्टर वी1, ... , मेंk यदि रैखिकतः स्वतंत्र कहलाते हैं
के लिए (टी1, टी2, ... , टीk) ≠ (में1, में2, ... , मेंk).[note 3] अगर v1, ..., vk रैखिक रूप से स्वतंत्र हैं, फिर निर्देशांक t1, ..., tk स्पैन में एक वेक्टर के लिए विशिष्ट रूप से निर्धारित किया जाता है।
उप-स्थान एस का आधार रैखिक रूप से स्वतंत्र वैक्टर का एक सेट है जिसका विस्तार एस है। किसी आधार में तत्वों की संख्या हमेशा उप-स्थान के ज्यामितीय आयाम के बराबर होती है। किसी उप-स्थान के लिए किसी भी स्पैनिंग सेट को अनावश्यक वैक्टर को हटाकर आधार में बदला जा सकता है (अधिक जानकारी के लिए नीचे #Algorithms|§ एल्गोरिदम देखें)।
- उदाहरण
- मान लीजिए S R का उपसमष्टि है4समीकरणों द्वारा परिभाषित
- फिर वेक्टर (2,1,0,0) और (0,0,5,1) एस के लिए आधार हैं। विशेष रूप से, उपरोक्त समीकरणों को संतुष्ट करने वाले प्रत्येक वेक्टर को दोनों के रैखिक संयोजन के रूप में विशिष्ट रूप से लिखा जा सकता है आधार वैक्टर:
- उपस्थान S द्वि-आयामी है। ज्यामितीय रूप से, यह 'R' में समतल है4 बिंदुओं (0,0,0,0), (2,1,0,0), और (0,0,5,1) से गुजरते हुए।
उपस्थानों पर संचालन और संबंध
समावेशन
समावेशन संबंध|सेट-सैद्धांतिक समावेशन बाइनरी संबंध सभी उप-स्थानों (किसी भी आयाम के) के सेट पर एक आंशिक क्रम निर्दिष्ट करता है।
एक उप-स्थान कम आयाम के किसी भी उप-स्थान में स्थित नहीं हो सकता। यदि dim U = k, एक परिमित संख्या है, और U ⊂ W, तो dim W = k यदि और केवल यदि U = W है।
इंटरसेक्शन
सदिश समष्टि V के उप-स्थान U और W दिए गए हैं, तो उनका प्रतिच्छेदन (सेट सिद्धांत) U ∩ W := {'v' ∈ V : 'v' U और W दोनों का एक तत्व है} भी V का एक उपस्थान है।[10]
सबूत:
- मान लें कि 'v' और 'w' U ∩ W के तत्व हैं। फिर 'v' और 'w' U और W दोनों से संबंधित हैं। क्योंकि U एक उपसमष्टि है, तो 'v' + 'w' U से संबंधित है। इसी प्रकार , चूँकि W एक उपसमष्टि है, तो 'v' + 'w' W से संबंधित है। इस प्रकार, 'v' + 'w' U ∩W से संबंधित है।
- मान लीजिए 'v' U ∩ W से संबंधित है, और मान लीजिए कि c एक अदिश राशि है। फिर 'v' U और W दोनों से संबंधित है। चूँकि U और W उप-स्थान हैं, c'v' U और W दोनों से संबंधित है।
- चूँकि U और W सदिश समष्टि हैं, तो '0' दोनों समुच्चयों से संबंधित है। इस प्रकार, '0' U ∩ W से संबंधित है।
प्रत्येक सदिश समष्टि V के लिए, शून्य सदिश समष्टि|सेट {'0'} और V स्वयं V की उपसमष्टि हैं।[11][12]
योग
यदि U और W उपसमष्टि हैं, तो उनका 'योग' उपसमष्टि है[13][14]
उपस्थानों की जाली
ऑपरेशन #Intersection और #Sum सभी उप-स्थानों के सेट को एक सीमित मॉड्यूलर जाली बनाते हैं, जहां शून्य वेक्टर स्थान|{0} उप-स्थान, सबसे छोटा तत्व, योग ऑपरेशन का एक पहचान तत्व है, और समान उप-स्थान V, सबसे बड़ा है तत्व, प्रतिच्छेदन ऑपरेशन का एक पहचान तत्व है।
ऑर्थोगोनल पूरक
अगर एक आंतरिक उत्पाद स्थान है और का एक उपसमुच्चय है , फिर का ओर्थोगोनल पूरक , निरूपित , फिर से एक उपस्थान है।[21] अगर परिमित-आयामी है और एक उपस्थान है, फिर के आयाम और पूरक संबंध को संतुष्ट करें .[22] इसके अलावा, कोई भी वेक्टर अपने आप में ऑर्थोगोनल नहीं है और का सीधा योग है और .[23] ऑर्थोगोनल पूरकों को दो बार लागू करने से मूल उपस्थान वापस आ जाता है: प्रत्येक उपस्थान के लिए .[24] इस ऑपरेशन को निषेध के रूप में समझा जाता है (), उप-स्थानों की जाली को एक (संभवतः अनंत सेट) ऑर्थोपूरक जाली बनाता है (हालांकि वितरणात्मक जाली नहीं)।[citation needed]
अन्य द्विरेखीय रूपों वाले स्थानों में, इनमें से कुछ नहीं बल्कि सभी परिणाम अभी भी मान्य हैं। उदाहरण के लिए, छद्म-यूक्लिडियन रिक्त स्थान और सिम्प्लेक्टिक वेक्टर स्पेस स्थान में, ऑर्थोगोनल पूरक मौजूद हैं। हालाँकि, इन स्थानों में शून्य वेक्टर हो सकते हैं जो स्वयं के लिए ऑर्थोगोनल हैं, और परिणामस्वरूप उप-स्थान मौजूद हैं ऐसा है कि . परिणामस्वरूप, यह ऑपरेशन उप-स्थानों की जाली को बूलियन बीजगणित (न ही हेटिंग बीजगणित) में नहीं बदलता है।[citation needed]
एल्गोरिदम
उप-स्थानों से निपटने के लिए अधिकांश एल्गोरिदम में पंक्ति में कमी शामिल है। यह एक मैट्रिक्स में प्राथमिक पंक्ति संचालन को लागू करने की प्रक्रिया है, जब तक कि यह या तो पंक्ति सोपानक रूप या कम पंक्ति सोपानक रूप तक नहीं पहुंच जाता। पंक्ति कटौती में निम्नलिखित महत्वपूर्ण गुण हैं:
- कम किए गए मैट्रिक्स में मूल के समान ही शून्य स्थान है।
- पंक्ति कटौती से पंक्ति सदिशों की अवधि नहीं बदलती है, यानी कम किए गए मैट्रिक्स में मूल के समान पंक्ति स्थान होता है।
- पंक्ति में कमी कॉलम वैक्टर की रैखिक निर्भरता को प्रभावित नहीं करती है।
पंक्ति स्थान का आधार
- इनपुट एन एम × एन मैट्रिक्स ए।
- ए के पंक्ति स्थान के लिए आउटपुट ए आधार।
- ए को पंक्ति सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- सोपानक रूप की गैर-शून्य पंक्तियाँ ए की पंक्ति स्थान के लिए आधार हैं।
पंक्ति और स्तंभ स्थानों के लिए पंक्ति स्थान पर आलेख देखें#आधार 2।
यदि हम इसके बजाय मैट्रिक्स ए को कम पंक्ति सोपानक रूप में रखते हैं, तो पंक्ति स्थान के लिए परिणामी आधार विशिष्ट रूप से निर्धारित होता है। यह जाँचने के लिए एक एल्गोरिदम प्रदान करता है कि क्या दो पंक्ति स्थान समान हैं और, विस्तार से, क्या K के दो उप-स्थान समान हैंnबराबर हैं.
उपस्थान सदस्यता
- इनपुट ए आधार {बी1, बी2, ..., बीk} K के उप-स्थान S के लिएn, और n घटकों के साथ एक वेक्टर 'v'।
- 'आउटपुट' यह निर्धारित करता है कि 'v' S का एक तत्व है या नहीं
- एक (k+1)×n मैट्रिक्स A बनाएं जिसकी पंक्तियाँ वेक्टर 'b' हों1, ... , बीk और वी.
- ए को पंक्ति सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- यदि सोपानक रूप में शून्यों की एक पंक्ति है, तो सदिश {b1, ..., bk, v} रैखिक रूप से निर्भर हैं, और इसलिए v ∈ S.
स्तंभ स्थान का आधार
- इनपुट एन एम × एन मैट्रिक्स ए
- 'ए के कॉलम स्पेस के लिए आउटपुट ए आधार
- ए को पंक्ति सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- निर्धारित करें कि सोपानक प्रपत्र के किन स्तंभों में पंक्ति सोपानक रूप है। मूल मैट्रिक्स के संबंधित कॉलम कॉलम स्थान के लिए आधार हैं।
कॉलम स्पेस#आधार के लिए कॉलम स्पेस पर लेख देखें।
यह कॉलम स्पेस के लिए एक आधार तैयार करता है जो मूल कॉलम वैक्टर का एक सबसेट है। यह काम करता है क्योंकि धुरी वाले स्तंभ सोपानक रूप के स्तंभ स्थान के लिए आधार हैं, और पंक्ति में कमी स्तंभों के बीच रैखिक निर्भरता संबंधों को नहीं बदलती है।
एक वेक्टर के लिए निर्देशांक
- इनपुट ए आधार {बी1, बी2, ..., बीk} K के उप-स्थान S के लिएn, और एक वेक्टर v ∈ S
- आउटपुट नंबर t1, टी2, ..., टीk ऐसा है कि v = t1b1 + ··· + tkbk
- एक संवर्धित मैट्रिक्स ए बनाएं जिसके कॉलम 'बी' हैं1,...,बीk , अंतिम कॉलम v है।
- ए को कम पंक्ति सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- घटे हुए सोपानक रूप के अंतिम स्तंभ को पहले k स्तंभों के रैखिक संयोजन के रूप में व्यक्त करें। प्रयुक्त गुणांक वांछित संख्याएँ हैं t1, t2, ..., tk. (ये कम किए गए इकोलोन फॉर्म के अंतिम कॉलम में बिल्कुल पहली k प्रविष्टियाँ होनी चाहिए।)
यदि कम पंक्ति सोपानक प्रपत्र के अंतिम कॉलम में एक धुरी है, तो इनपुट वेक्टर 'v' S में नहीं है।
शून्य स्थान का आधार
- इनपुट एन एम × एन मैट्रिक्स ए।
- आउटपुट ए के शून्य स्थान के लिए एक आधार
- ए को छोटी पंक्ति के सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- कम पंक्ति सोपानक प्रपत्र का उपयोग करके, निर्धारित करें कि कौन सा चर है x1, x2, ..., xn मुक्त हैं। आश्रित चर के लिए मुक्त चर के संदर्भ में समीकरण लिखें।
- प्रत्येक निःशुल्क चर x के लिएi, जिसके लिए शून्य स्थान में एक वेक्टर चुनें xi = 1 और शेष मुक्त चर शून्य हैं। सदिशों का परिणामी संग्रह A के शून्य स्थान का आधार है।
कर्नेल (मैट्रिक्स)#आधार के लिए शून्य स्थान पर लेख देखें।
दो उपस्थानों के योग और प्रतिच्छेदन का आधार
दो उपस्थान दिए गए हैं U और W का V, योग का एक आधार और चौराहा ज़ैसेनहौस एल्गोरिथ्म का उपयोग करके गणना की जा सकती है।
उपसमष्टि के लिए समीकरण
- इनपुट ए आधार {बी1, बी2, ..., बीk} K के उप-स्थान S के लिएn
- 'आउटपुट' एक (n − k) × n मैट्रिक्स जिसका शून्य स्थान S है।
- एक मैट्रिक्स ए बनाएं जिसकी पंक्तियाँ हैं b1, b2, ..., bk.
- ए को कम पंक्ति सोपानक रूप में रखने के लिए प्रारंभिक पंक्ति संचालन का उपयोग करें।
- होने देना c1, c2, ..., cn कम पंक्ति सोपानक प्रपत्र के स्तंभ बनें। धुरी के बिना प्रत्येक स्तंभ के लिए, स्तंभ को धुरी वाले स्तंभों के रैखिक संयोजन के रूप में व्यक्त करते हुए एक समीकरण लिखें।
- इसका परिणाम n - k रैखिक समीकरणों की एक सजातीय प्रणाली में होता है जिसमें चर 'c' शामिल होते हैं1,...,सीn. (n − k) × n} इस प्रणाली के अनुरूप मैट्रिक्स नलस्पेस एस के साथ वांछित मैट्रिक्स है।
- उदाहरण
- यदि A का लघु पंक्ति सोपानक रूप है
- फिर कॉलम वैक्टर c1, ..., c6 समीकरणों को संतुष्ट करें
- इससे यह निष्कर्ष निकलता है कि A के पंक्ति सदिश समीकरणों को संतुष्ट करते हैं
- विशेष रूप से, ए के पंक्ति वैक्टर संबंधित मैट्रिक्स के शून्य स्थान के लिए आधार हैं।
यह भी देखें
- चक्रीय उपस्थान
- अपरिवर्तनीय उपस्थान
- मल्टीलिनियर सबस्पेस लर्निंग
- भागफल स्थान (रैखिक बीजगणित)
- सिग्नल उपस्थान
- सबस्पेस टोपोलॉजी
टिप्पणियाँ
- ↑ The term linear subspace is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called linear manifolds for emphasizing that there are also manifolds.
- ↑ Generally, K can be any field of such characteristic that the given integer matrix has the appropriate rank in it. All fields include integers, but some integers may equal to zero in some fields.
- ↑ This definition is often stated differently: vectors v1, ..., vk are linearly independent if t1v1 + ··· + tkvk ≠ 0 for (t1, t2, ..., tk) ≠ (0, 0, ..., 0). The two definitions are equivalent.
उद्धरण
- ↑ Halmos (1974) pp. 16-17, § 10
- ↑ Anton (2005, p. 155)
- ↑ Beauregard & Fraleigh (1973, p. 176)
- ↑ Herstein (1964, p. 132)
- ↑ Kreyszig (1972, p. 200)
- ↑ Nering (1970, p. 20)
- ↑ Hefferon (2020) p. 100, ch. 2, Definition 2.13
- ↑ MathWorld (2021) Subspace.
- ↑ DuChateau (2002) Basic facts about Hilbert Space — class notes from Colorado State University on Partial Differential Equations (M645).
- ↑ Nering (1970, p. 21)
- ↑ Hefferon (2020) p. 100, ch. 2, Definition 2.13
- ↑ Nering (1970, p. 20)
- ↑ Nering (1970, p. 21)
- ↑ Vector space related operators.
- ↑ Nering (1970, p. 22)
- ↑ Hefferon (2020) p. 148, ch. 2, §4.10
- ↑ Axler (2015) p. 21 § 1.40
- ↑ Katznelson & Katznelson (2008) pp. 10-11, § 1.2.5
- ↑ Halmos (1974) pp. 28-29, § 18
- ↑ Halmos (1974) pp. 30-31, § 19
- ↑ Axler (2015) p. 193, § 6.46
- ↑ Axler (2015) p. 195, § 6.50
- ↑ Axler (2015) p. 194, § 6.47
- ↑ Axler (2015) p. 195, § 6.51
स्रोत
पाठ्यपुस्तक
- Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
- Axler, Sheldon Jay (2015). रैखिक बीजगणित सही ढंग से किया गया (3rd ed.). Springer. ISBN 978-3-319-11079-0.
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Company, ISBN 0-395-14017-X
- Halmos, Paul Richard (1974) [1958]. परिमित-आयामी वेक्टर रिक्त स्थान (2nd ed.). Springer. ISBN 0-387-90093-4.
- Hefferon, Jim (2020). लीनियर अलजेब्रा (4th ed.). Orthogonal Publishing. ISBN 978-1-944325-11-4.
- Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016
- Katznelson, Yitzhak; Katznelson, Yonatan R. (2008). ए (संक्षिप्त) रैखिक बीजगणित का परिचय. American Mathematical Society. ISBN 978-0-8218-4419-9.
- Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd ed.), New York: Wiley, ISBN 0-471-50728-8
- Lay, David C. (August 22, 2005), Linear Algebra and Its Applications (3rd ed.), Addison Wesley, ISBN 978-0-321-28713-7
- Leon, Steven J. (2006), Linear Algebra With Applications (7th ed.), Pearson Prentice Hall
- Meyer, Carl D. (February 15, 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived from the original on March 1, 2001
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
- Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole, ISBN 0-534-99845-3
वेब
- Weisstein, Eric Wolfgang. "उपस्पेस". MathWorld. Retrieved 16 Feb 2021.
{{cite web}}
: CS1 maint: url-status (link) - DuChateau, Paul (5 Sep 2002). "हिल्बर्ट स्पेस के बारे में बुनियादी तथ्य" (PDF). Colorado State University. Retrieved 17 Feb 2021.
{{cite web}}
: CS1 maint: url-status (link)
बाहरी संबंध
- Strang, Gilbert (7 May 2009). "The four fundamental subspaces". Archived from the original on 2021-12-11. Retrieved 17 Feb 2021 – via YouTube.
- Strang, Gilbert (5 May 2020). "The big picture of linear algebra". Archived from the original on 2021-12-11. Retrieved 17 Feb 2021 – via YouTube.