व्युत्पन्न के सामान्यीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Fundamental construction of differential calculus}}
{{Short description|Fundamental construction of differential calculus}}
{{about|गणित में प्रयुक्त शब्द|अन्य उपयोग|व्युत्पन्न (बहुविकल्पी)}}
{{about|गणित में प्रयुक्त शब्द|अन्य उपयोग|व्युत्पन्न (बहुविकल्पी)}}
{{Calculus |Differential}}
{{Calculus |अवकल}}
गणित में, अवकलज अवकलन कलन का मूलभूत निर्माण है और [[गणितीय विश्लेषण]], कॉम्बिनेटरिक्स, [[बीजगणित]], [[ज्यामिति]], आदि के क्षेत्रों में विभिन्न संभावित सामान्यीकरणों को स्वीकार करता है।
गणित में, अवकलज अवकलन कलन का मूलभूत निर्माण है और [[गणितीय विश्लेषण]], कॉम्बिनेटरिक्स, [[बीजगणित]], [[ज्यामिति]], आदि के क्षेत्रों में विभिन्न संभावित सामान्यीकरणों को स्वीकार करता है।



Revision as of 21:22, 1 May 2023

गणित में, अवकलज अवकलन कलन का मूलभूत निर्माण है और गणितीय विश्लेषण, कॉम्बिनेटरिक्स, बीजगणित, ज्यामिति, आदि के क्षेत्रों में विभिन्न संभावित सामान्यीकरणों को स्वीकार करता है।

फ्रेचेट अवकलज

फ्रेचेट अवकलज सामान्य नॉर्मर्ड वेक्टर स्पेस के लिए अवकलज को परिभाषित करता है। संक्षेप में, फलन , , का ओपन सबसेट है, जिसे पर फ्रेचेट अवकलनीय कहा जाता है यदि कोई परिबद्ध रैखिक ऑपरेटर उपस्थित है, जैसे कि

फलन को के ओपन नेबरहुड (गणित) में भिन्न-भिन्न बिंदुओं के अतिरिक्त, अवकलनीय रूप में परिभाषित किया गया है, क्योंकि ऐसा नहीं करने से कई पैथोलॉजिकल (गणित) प्रति-उदाहरण होते हैं।

फ्रेचेट अवकलज प्राथमिक एक-चर कलन में पाए जाने वाले अवकलज के सूत्र के समान है,

और केवल A को बाएँ हाथ की ओर ले जाता है। चूँकि, फ्रेचेट अवकलज A फलन को दर्शाता है।

बहुभिन्नरूपी कलन में, वेक्टर वैल्यूड फंक्शन Rn से Rm तक परिभाषित अवकल समीकरणों के संदर्भ में, फ्रेचेट अवकलज A, 'R' पर रैखिक ऑपरेटर है जिसे स्वयं पर सदिश समष्टि माना जाता है, और फलन के सर्वोत्तम रैखिक सन्निकटन से मेल खाता है। यदि ऐसा कोई ऑपरेटर उपस्थित है, तो यह अद्वितीय है, और बिंदु x पर मैपिंग ƒ के जैकोबियन मैट्रिक्स Jx(ƒ) के रूप में ज्ञात n मैट्रिक्स (गणित) से m द्वारा प्रतिनिधित्व किया जा सकता है। इस मैट्रिक्स की प्रत्येक प्रविष्टि डोमेन समन्वय में परिवर्तन के संबंध में श्रेणी समन्वय के परिवर्तन की दर निर्दिष्ट करने वाले आंशिक व्युत्पन्न का प्रतिनिधित्व करती है। निश्चित रूप से g°f जैकोबियन मैट्रिक्स संगत जैकोबियन मैट्रिक्स Jx(g°f) =Jƒ(x)(g)Jx(ƒ) का गुणनफल है। यह श्रृंखला नियम का उच्च-आयामी कथन है।

Rn से R तक रियल वैल्यूड फंक्शन के लिए (अदिश क्षेत्र), फ़्रेचेट अवकलज वेक्टर क्षेत्र से मेल खाता है जिसे कुल अवकलज कहा जाता है। इसे प्रवणता के रूप में परिभाषित किया जा सकता है किन्तु एक्सटीरियर डेरीवेटिव का उपयोग करना अधिक स्वाभाविक है।

संवहन व्युत्पन्न सदिश क्षेत्र के साथ स्पेस के माध्यम से समय निर्भरता और गति के कारण परिवर्तनों को ध्यान में रखता है, और कुल व्युत्पन्न की विशेष स्तिथि है।

R से Rn तक वेक्टर वैल्यूड फंक्शन के लिए (अर्थात, पैरामीट्रिक वक्र), फ्रेचेट अवकलज प्रत्येक घटक के अवकलज को भिन्न-भिन्न लेने के अनुरूप है। परिणामी व्युत्पन्न को वेक्टर में मैप किया जा सकता है। यह उपयोगी है, उदाहरण के लिए यदि वेक्टर वैल्यूड फंक्शन समय के माध्यम से कण की स्थिति सदिश है तो व्युत्पन्न समय के माध्यम से कण का वेग सदिश होता है।

जटिल विश्लेषण में, अध्ययन की केंद्रीय वस्तुएं होलोमॉर्फिक फ़ंक्शन हैं, जो सम्मिश्र संख्याओं पर काम्प्लेक्स-वैल्यूड फंक्शन हैं जहाँ फ्रेचेट व्युत्पन्न उपस्थित है।

ज्यामितीय कलन में ज्यामितीय व्युत्पन्न लीबनिज़ नियम के शक्तिहीन रूप को संतुष्ट करता है। यह ज्यामितीय बीजगणित की वस्तुओं के लिए फ्रेचेट अवकलज का विशेषज्ञ है। ज्यामितीय कलन शक्तिशाली औपचारिकता है जिसे अवकल रूपों और अवकल ज्यामिति के समान रूपरेखा को सम्मिलित करने के लिए दिखाया गया है।[1]


बाह्य व्युत्पन्न और लाई व्युत्पन्न

स्मूथ मैनिफोल्ड पर अवकल रूपों के बाह्य बीजगणित पर, बाह्य व्युत्पन्न अद्वितीय रैखिक मानचित्र है जो वर्गीकृत लीबनिज नियम और वर्गों को शून्य से संतुष्ट करता है। यह बाह्य बीजगणित पर ग्रेड 1 की व्युत्पत्ति है। R3 में, ग्रेडिएंट, कर्ल (गणित), और विचलन बाह्य व्युत्पन्न की विशेष स्तिथियाँ हैं। ढाल की सहज व्याख्या यह है कि यह "ऊपर" संकेत करती है, दूसरे शब्दों में यह फ़ंक्शन की सबसे तीव्र वृद्धि की दिशा में संकेत करता है। इसका उपयोग स्केलर (गणित) फ़ंक्शंस या सामान्य दिशाओं के दिशात्मक डेरिवेटिव की गणना करने के लिए किया जा सकता है। विचलन बिंदु के निकट कितना स्रोत या सिंक उपस्थित है इसका माप देता है। इसका उपयोग विचलन प्रमेय द्वारा फ्लक्स की गणना के लिए किया जा सकता है। कर्ल मापता है कि बिंदु के निकट सदिश क्षेत्र का कितना स्पिन है।

लाई व्युत्पन्न सदिश या टेंसर क्षेत्र के दूसरे सदिश क्षेत्र के प्रवाह के साथ परिवर्तन की दर है। सदिश क्षेत्रों पर, यह लाई ब्रैकेट का उदाहरण है (सदिश क्षेत्र मैनिफोल्ड के डिफियोमोर्फिज्म समूह के लाई बीजगणित का निर्माण करते हैं)। यह बीजगणित पर ग्रेड 0 व्युत्पत्ति है।

इंटीरियर प्रोडक्ट के साथ (सदिश क्षेत्र के साथ संकुचन द्वारा परिभाषित बाह्य बीजगणित पर डिग्री -1 व्युत्पत्ति), बाह्य व्युत्पन्न और लाई व्युत्पन्न लाई सुपरएलजेब्रा बनाते हैं।

अवकल टोपोलॉजी

अवकल टोपोलॉजी में, सदिश क्षेत्र को मैनिफोल्ड पर स्मूथ फंक्शन्स के रिंग पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है, और स्पर्शरेखा सदिश को बिंदु पर व्युत्पत्ति के रूप में परिभाषित किया जा सकता है। यह स्केलर फ़ंक्शन के दिशात्मक व्युत्पन्न की धारणा को सामान्य मैनिफोल्ड करने की अनुमति देता है। मैनिफोल्ड के लिए जो Rn के उपसमुच्चय हैं, यह स्पर्शरेखा सदिश दिशात्मक अवकलज से सहमत होगा।

मैनिफोल्ड्स के मध्य मानचित्र का पुशफॉरवर्ड (अंतर) उन मानचित्रों के स्पर्शरेखा स्थानों के मध्य प्रेरित मानचित्र है। यह जैकबियन मैट्रिक्स को ऐब्स्ट्रैक्ट करता है।

सहपरिवर्ती व्युत्पन्न

अवकल ज्यामिति में, सहपरिवर्ती व्युत्पन्न वक्र के साथ वेक्टर क्षेत्रों के दिशात्मक डेरिवेटिव लेने के लिए विकल्प बनाता है। यह वेक्टर बंडलों या प्रमुख बंडलों के वर्गों के लिए स्केलर फ़ंक्शंस के दिशात्मक व्युत्पन्न का विस्तार करता है। रिमेंनियन ज्यामिति में, मीट्रिक का अस्तित्व लेवी-सिविटा कनेक्शन के रूप में जाना जाने वाला अद्वितीय मुख्य टॉरशन-मुक्त सहपरिवर्ती व्युत्पन्न चयन करता है। भौतिकी के उन्मुख व्यवहार के लिए गेज सहपरिवर्ती व्युत्पन्न भी देखें।

बाह्य सहपरिवर्ती व्युत्पन्न बाह्य व्युत्पन्न को वेक्टर वैल्यूड रूपों तक विस्तारित करता है।

वीक डेरीवेटिव

दिया हुआ फलन , जो कि स्थानीय रूप से समाकलित फलन है, किन्तु आवश्यक नहीं कि यह अवकलनीय हो, वीक डेरीवेटिव को आंशिक समाकलन के माध्यम से परिभाषित किया जा सकता है। प्रथम टेस्ट फ़ंक्शंस को परिभाषित करें, जो अनन्त अवकलनीय और कॉम्पैक्ट रूप से समर्थित फलन और मल्टी-इंडेक्स हैं जो पूर्णांकों की लंबाई की सूची के साथ है। टेस्ट फ़ंक्शंस के लिए प्रस्तावित है| यदि कोई फ़ंक्शन है, तो का वीक डेरीवेटिव उपस्थित है जैसे कि सभी टेस्ट फ़ंक्शंस के लिए हमारे पास है-

यदि ऐसा फलन उपस्थित है, तो , जो प्रायः प्रत्येक स्थान पर अद्वितीय है। यह परिभाषा फलन के अवकल के समान है, और सामान्यीकृत फलन के लिए विस्तृत की जा सकती है जिसे वितरण (गणित) फ़ंक्शंस कि ड्यूल स्पेस कहा जाता है। आंशिक अवकल समीकरणों के अध्ययन में और कार्यात्मक विश्लेषण के कुछ भागों में वीक डेरीवेटिव विशेष रूप से उपयोगी होते हैं।

उच्च क्रम और भिन्नात्मक अवकलज

वास्तविक संख्याओं में कोई भी अवकलन प्रक्रिया को पुनरावृत्त कर सकता है, अर्थात, द्वितीय और उच्च क्रम का अवकलज प्राप्त करने के लिए एक से अधिक बार अवकलज प्रस्तावित कर सकते हैं। मल्टीवेरिएबल कैलकुस में अध्ययन किए गए कई चर के फलन के लिए उच्च अवकलज भी परिभाषित किए जा सकते हैं। इस स्तिथि में, अवकलज को पुनः-पुनः प्रस्तावित करने के अतिरिक्त, विभिन्न चरों के संबंध में आंशिक अवकलज को पुनः-पुनः प्रस्तावित किया जाता है। उदाहरण के लिए, n चरों के स्केलर फलन के द्वितीय क्रम के आंशिक अवकलज को n द्वारा n मैट्रिक्स, हेसियन मैट्रिक्स में व्यवस्थित किया जा सकता है। सूक्ष्म बिंदुओं में उच्च अवकलज आंतरिक रूप से परिभाषित नहीं होते हैं, और जटिल फैशन में निर्देशांक के चयन पर निर्भर करते हैं (विशेष रूप से, फलन का हेस्सियन मैट्रिक्स टेन्सर नहीं है)। फिर भी, उच्च अवकलज के पास अपने क्रिटिकल पॉइंट (गणित) पर फलन के स्थानीय एक्स्ट्रेमा के विश्लेषण के लिए महत्वपूर्ण अनुप्रयोग हैं। मैनिफोल्ड्स की टोपोलॉजी के लिए इस विश्लेषण के उन्नत अनुप्रयोग के लिए मोर्स सिद्धांत देखें।

किसी भी प्राकृतिक संख्या n के n-वें अवकलज के अतिरिक्त, भिन्नात्मक या ऋणात्मक क्रमों के अवकलज को परिभाषित करने के लिए विभिन्न विधियाँ हैं, जिनका अध्ययन भिन्नात्मक कलन में किया जाता है। प्रथम क्रम अवकलज इंटीग्रल के समान है, जहाँ शब्द डिफरेंट इंटीग्रल है।

क्वाटरनियोनिक अवकलज

क्वाटरनियोनिक विश्लेषण में, अवकलज को वास्तविक और काम्प्लेक्स फ़ंक्शंस के समान परिभाषित किया जा सकता है। चूँकि, चतुष्कोण विनिमेय नहीं हैं, अंतर भागफल की सीमा दो भिन्न-भिन्न अवकलज देती है- बायाँ अवकलज

और दायाँ अवकलज

इन सीमाओं का अस्तित्व अधिक प्रतिबंधात्मक स्थिति है। उदाहरण के लिए, यदि ओपन कनेक्टेड सेट पर प्रत्येक बिंदु पर बाएं-डेरिवेटिव हैं तब के लिए है।

अंतर ऑपरेटर, क्यू-एनालॉग्स और टाइम स्केल

  • किसी फ़ंक्शन का क्यू-व्युत्पन्न सूत्र द्वारा परिभाषित किया गया है
    एक्स नॉनज़रो के लिए, यदि एफ एक्स का एक अलग-अलग कार्य है तो सीमा में q → 1 हम सामान्य व्युत्पन्न प्राप्त करते हैं, इस प्रकार क्यू-व्युत्पन्न को इसके क्यू-विरूपण के रूप में देखा जा सकता है। द्विपद सूत्र और टेलर विस्तार जैसे साधारण अवकल कलन के परिणामों के एक बड़े निकाय में प्राकृतिक क्यू-एनालॉग हैं जो 19वीं शताब्दी में खोजे गए थे, किन्तु 20वीं शताब्दी के एक बड़े हिस्से के लिए विशेष के सिद्धांत के बाहर अपेक्षाकृत अस्पष्ट बने रहे। कार्य करता है। कॉम्बिनेटरिक्स की प्रगति और क्वांटम समूहों की खोज ने स्थिति को नाटकीय रूप से बदल दिया है, और क्यू-एनालॉग्स की लोकप्रियता बढ़ रही है।
  • अंतर समीकरणों का अंतर ऑपरेटर मानक व्युत्पन्न का एक और असतत एनालॉग है।
  • क्यू-व्युत्पन्न, अंतर ऑपरेटर और मानक व्युत्पन्न सभी को अलग-अलग समय के कैलकुस पर एक ही चीज़ के रूप में देखा जा सकता है। उदाहरण के लिए, लेना , शायद हम
    क्यू-व्युत्पन्न वोल्फगैंग हैन अंतर का एक विशेष मामला है,[2]
    हैन अंतर न केवल क्यू-व्युत्पन्न का सामान्यीकरण है बल्कि आगे के अंतर का विस्तार भी है।
  • यह भी ध्यान दें कि q-व्युत्पन्न और कुछ नहीं बल्कि परिचित व्युत्पन्न का एक विशेष मामला है। लेना . तो हमारे पास हैं,


बीजगणित में डेरिवेटिव

बीजगणित में, व्युत्पत्ति के सामान्यीकरण को उत्पाद नियम को बीजगणितीय संरचना में लागू करके प्राप्त किया जा सकता है, जैसे कि रिंग (गणित) या लाइ बीजगणित।

व्युत्पत्ति

एक व्युत्पत्ति (अमूर्त बीजगणित) एक क्षेत्र पर एक अंगूठी या बीजगणित पर एक रेखीय नक्शा है जो लीबनिज़ कानून (उत्पाद नियम) को संतुष्ट करता है। उच्च डेरिवेटिव और बीजगणितीय अंतर समीकरण को भी परिभाषित किया जा सकता है। वे अवकल गैलोज सिद्धांत और डी-मॉड्यूल के सिद्धांत में विशुद्ध रूप से बीजगणितीय सेटिंग में अध्ययन किए जाते हैं, किन्तु कई अन्य क्षेत्रों में भी बदलते हैं, जहाँ वे अक्सर डेरिवेटिव की कम बीजगणितीय परिभाषाओं से सहमत होते हैं।

उदाहरण के लिए, क्रमविनिमेय वलय R पर एक बहुपद के अवकल बीजगणित को निम्न द्वारा परिभाषित किया जाता है

मानचित्रण फिर बहुपद वलय R[X] पर एक व्युत्पत्ति है। इस परिभाषा को तर्कसंगत कार्यों के लिए भी बढ़ाया जा सकता है।

व्युत्पत्ति की धारणा गैर-अनुक्रमिक के साथ-साथ क्रमविनिमेय वलयों पर भी लागू होती है, और यहां तक ​​कि गैर-सहयोगी बीजगणितीय संरचनाओं पर भी लागू होती है, जैसे ले बीजगणित।

एक प्रकार का व्युत्पन्न

प्रकार सिद्धांत में, कई अमूर्त डेटा प्रकारों को एक रूपांतरण द्वारा उत्पन्न सार्वभौमिक बीजगणित के रूप में वर्णित किया जा सकता है जो प्रकार के आधार पर संरचनाओं को वापस प्रकार में मैप करता है। उदाहरण के लिए, टाइप ए के मान वाले बाइनरी ट्री के टाइप टी को 1+A×T परिवर्तन द्वारा उत्पन्न बीजगणित के रूप में दर्शाया जा सकता है।2→टी. 1 एक खाली पेड़ के निर्माण का प्रतिनिधित्व करता है, और दूसरा शब्द एक पेड़ के निर्माण को एक मूल्य और दो उपप्रकारों से दर्शाता है। + इंगित करता है कि एक पेड़ का निर्माण किसी भी तरह से किया जा सकता है।

इस तरह के एक प्रकार का व्युत्पन्न वह प्रकार है जो किसी विशेष संरचना के संदर्भ में उसके अगले बाहरी युक्त संरचना के संबंध में वर्णन करता है। दूसरा तरीका रखो, यह दोनों के मध्य अंतर का प्रतिनिधित्व करने वाला प्रकार है। पेड़ के उदाहरण में, व्युत्पन्न एक प्रकार है जो आवश्यक जानकारी का वर्णन करता है, एक विशेष सबट्री को उसके मूल पेड़ का निर्माण करने के लिए। यह जानकारी एक टपल है जिसमें बाइनरी इंडिकेटर होता है कि बच्चा बाईं ओर है या दाईं ओर, माता-पिता का मान और सिबलिंग सबट्री। इस प्रकार को 2×A×T के रूप में दर्शाया जा सकता है, जो पेड़ के प्रकार को उत्पन्न करने वाले परिवर्तन के व्युत्पन्न की तरह दिखता है।

एक प्रकार के व्युत्पन्न की इस अवधारणा में व्यावहारिक अनुप्रयोग हैं, जैसे कार्यात्मक प्रोग्रामिंग भाषाओं में उपयोग की जाने वाली ज़िपर (डेटा संरचना) तकनीक।

अवकल ऑपरेटर

एक अवकल संकारक एक बीजगणितीय व्यंजक में संभवतः विभिन्न क्रमों के कई व्युत्पन्नों को जोड़ता है। यह विशेष रूप से स्थिर गुणांक वाले साधारण रैखिक अंतर समीकरणों पर विचार करने में उपयोगी है। उदाहरण के लिए, यदि f(x) एक चर का दो बार अवकलनीय फलन है, तो अवकल समीकरण प्रपत्र में पुनः लिखा जा सकता है , कहाँ

एक्स के कार्यों पर अभिनय करने वाला दूसरा क्रम रैखिक निरंतर गुणांक अंतर ऑपरेटर है। यहाँ मुख्य विचार यह है कि हम एक ही बार में शून्य, प्रथम और द्वितीय क्रम के डेरिवेटिव के एक विशेष रैखिक संयोजन पर विचार करते हैं। यह हमें इस अवकल समीकरण के समाधानों के समुच्चय को इसके दाहिने हाथ की ओर 4x−1 के सामान्यीकृत प्रतिअवकलन के रूप में सोचने की अनुमति देता है, सामान्य समाकल के साथ सादृश्य द्वारा, और औपचारिक रूप से लिखने के लिए

अलग-अलग चर के डेरिवेटिव का संयोजन एक आंशिक अंतर ऑपरेटर की धारणा में होता है। लीनियर ऑपरेटर जो प्रत्येक फ़ंक्शन को इसके डेरिवेटिव को असाइन करता है, फलन स्थान पर छद्म अंतर ऑपरेटर का एक उदाहरण है। फूरियर रूपांतरण के माध्यम से, छद्म-अवकल ऑपरेटरों को परिभाषित किया जा सकता है जो भिन्नात्मक कलन के लिए अनुमति देते हैं।

इनमें से कुछ ऑपरेटर इतने महत्वपूर्ण हैं कि उनके अपने नाम हैं:

  • आर पर लाप्लास ऑपरेटर या लाप्लासियन3 एक दूसरे क्रम का आंशिक अंतर ऑपरेटर है Δ तीन वेरिएबल्स के स्केलर फ़ंक्शन के ग्रेडियेंट के विचलन द्वारा दिया गया है, या स्पष्ट रूप से
    अनुरूप ऑपरेटरों को किसी भी चर के कार्यों के लिए परिभाषित किया जा सकता है।
  • डी'अलेम्बर्टियन या वेव ऑपरेटर लाप्लासियन के समान है, किन्तु चार चर के कार्यों पर कार्य करता है। इसकी परिभाषा आर के यूक्लिडियन अंतरिक्ष डॉट उत्पाद के बजाय मिन्कोव्स्की अंतरिक्ष के अनिश्चित मीट्रिक टेंसर का उपयोग करती है।3:
  • श्वार्ज़ियन व्युत्पन्न एक गैर-रैखिक अंतर ऑपरेटर है जो वर्णन करता है कि कैसे एक आंशिक-रैखिक मानचित्र द्वारा एक जटिल फ़ंक्शन का अनुमान लगाया जाता है, उसी तरह एक सामान्य व्युत्पन्न वर्णन करता है कि एक रैखिक मानचित्र द्वारा फ़ंक्शन का अनुमान कैसे लगाया जाता है।
  • विर्टिंगर डेरिवेटिव डिफरेंशियल ऑपरेटर्स का एक सेट है जो जटिल कार्यों के लिए एक डिफरेंशियल कैलकुलस के निर्माण की अनुमति देता है जो वास्तविक चर के कार्यों के लिए सामान्य डिफरेंशियल कैलकुलस के समान है।

अन्य सामान्यीकरण

कार्यात्मक विश्लेषण में, कार्यात्मक व्युत्पन्न कार्यों के स्थान पर कार्यात्मक के एक फलन के संबंध में व्युत्पन्न को परिभाषित करता है। यह एक अनंत आयामी सदिश समष्टि के लिए दिशात्मक व्युत्पन्न का विस्तार है। विविधताओं की कलन में परिवर्तनशील व्युत्पन्न एक महत्वपूर्ण मामला है।

उप व्युत्पन्न और उपश्रेणी उत्तल विश्लेषण में उपयोग किए जाने वाले उत्तल कार्यों के व्युत्पन्न के सामान्यीकरण हैं।

कम्यूटेटिव बीजगणित में, काहलर डिफरेंशियल एक क्रमविनिमेय अंगूठी या मॉड्यूल (बीजगणित) के सार्वभौमिक व्युत्पन्न हैं। उनका उपयोग अंतर ज्यामिति से बाहरी व्युत्पन्न के एक एनालॉग को परिभाषित करने के लिए किया जा सकता है जो केवल चिकनी मैनिफोल्ड्स के बजाय मनमाना बीजगणितीय किस्मों पर लागू होता है।

पी-एडिक विश्लेषण में, डेरिवेटिव की सामान्य परिभाषा काफी मजबूत नहीं है, और इसके बजाय सख्ती से भिन्न होने की आवश्यकता होती है।

व्युत्पन्न केक फ्रेचेट डेरिवेटिव को स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस स्थान तक बढ़ाता है। फ़्रेचेट डिफरेंशियलिटी गैटॉक्स डिफरेंशियलिटी की तुलना में एक सख्त स्थिति है, यहां तक ​​कि परिमित आयामों में भी। दो चरम सीमाओं के मध्य अर्ध-व्युत्पन्न है।

माप सिद्धांत में, रैडॉन-निकोडीम डेरिवेटिव जेकोबियन मैट्रिक्स और निर्धारक का सामान्यीकरण करता है, जिसका उपयोग वेरिएबल्स को मापने के लिए किया जाता है। यह एक माप μ को दूसरे माप ν (कुछ शर्तों के तहत) के संदर्भ में व्यक्त करता है।

एच-व्युत्पन्न | एच-व्युत्पन्न सार वीनर रिक्त स्थान और मालियाविन कलन के अध्ययन में व्युत्पन्न की धारणा है। इसका उपयोग स्टोकेस्टिक प्रक्रियाओं के अध्ययन में किया जाता है।

लाप्लासियन का उपयोग करने वाले लाप्लासियन और डिफरेंशियल इक्वेशन का फ्रैक्टल्स पर विश्लेषण किया जा सकता है। प्रथम-क्रम व्युत्पन्न या ढाल का कोई पूरी तरह से संतोषजनक अनुरूप नहीं है।[3]

कार्लिट्ज डेरिवेटिव सामान्य भेदभाव के समान एक ऑपरेशन है, किन्तु वास्तविक या जटिल संख्याओं के सामान्य संदर्भ के साथ औपचारिक लॉरेंट श्रृंखला के रूप में सकारात्मक विशेषता_(बीजगणित) के स्थानीय क्षेत्रों में कुछ परिमित क्षेत्र एफ में गुणांक के साथ बदल दिया गया है।q (यह ज्ञात है कि सकारात्मक विशेषता का कोई भी स्थानीय क्षेत्र लॉरेंट श्रृंखला क्षेत्र के लिए आइसोमॉर्फिक है)। घातीय फलन, लघुगणक और अन्य के लिए उपयुक्त रूप से परिभाषित एनालॉग्स के साथ-साथ व्युत्पन्न का उपयोग चिकनाई, विश्लेषण, एकीकरण, टेलर श्रृंखला के साथ-साथ अंतर समीकरणों के सिद्धांत को विकसित करने के लिए किया जा सकता है।[4] मूल व्युत्पत्ति के विस्तार या अमूर्तता की उपरोक्त विभिन्न धारणाओं में से दो या दो से अधिक को जोड़ना संभव हो सकता है। उदाहरण के लिए, फिन्स्लर ज्यामिति में, एक स्थान का अध्ययन करता है जो स्थानीय रूप से बनच रिक्त स्थान की तरह दिखता है। इस प्रकार कोई कार्यात्मक व्युत्पन्न और सहसंयोजक व्युत्पन्न की कुछ विशेषताओं के साथ एक व्युत्पन्न चाहता है।

गुणक कलन जोड़ को गुणन से बदल देता है, और इसलिए भिन्नताओं के अनुपात की सीमा से निपटने के बजाय, यह अनुपातों के घातांक की सीमा से संबंधित है। यह ज्यामितीय व्युत्पन्न और द्विमितीय व्युत्पन्न के विकास की अनुमति देता है। इसके अलावा, क्लासिकल डिफरेंशियल ऑपरेटर की तरह ही एक असतत एनालॉग, डिफरेंस ऑपरेटर होता है, वैकल्पिक कैलकुली में डेरिवेटिव और इंटीग्रल की सूची भी होती है।

यह भी देखें

टिप्पणियाँ

  1. David Hestenes, Garrett Sobczyk: Clifford Algebra to Geometric Calculus, a Unified Language for mathematics and Physics (Dordrecht/Boston:G.Reidel Publ.Co., 1984, ISBN 90-277-2561-6
  2. Hahn, Wolfgang (1949). "Über Orthogonalpolynome, die q-Differenzengleichungen genügen". Mathematische Nachrichten. 2 (1–2): 4–34. doi:10.1002/mana.19490020103. ISSN 0025-584X. MR 0030647.
  3. Analysis on Fractals, Robert S. Strichartz - Article in Notices of the AMS
  4. Kochubei, Anatoly N. (2009). सकारात्मक विशेषता में विश्लेषण. New York: Cambridge University Press. ISBN 978-0-521-50977-0.

[Category:Generalizations of the derivative